您所在的位置: 上海有色 > 有色金属产品库 > 石墨烯锂离子电池 > 石墨烯锂离子电池百科

石墨烯锂离子电池百科

锂离子电池

2018-05-11 19:18:46

锂离子电池锂离子二次电池作为新型高电压、高能量密度的可充电电池,其独特的物理和电化学性能,具有广泛的民用和国防应用的前景。其突出的特点是:重量轻、储能大、无污染、无记忆效应、使用寿命长。在同体积重量情况下,锂电池的蓄电能力是镍氢电池的1.6倍,是镍镉电池的4倍,并且目前人类只开发利用了其理论电量的20%~30%,开发前景非常光明。同时它是一种真正的绿色环保电池,不会对环境造成污染,是目前最佳的能应用到电动车上的电池。我国从二十世纪九十年代开始开发和利用锂离子电池,至今已取得突破性进展,研制出了完全拥有自主知识产权的锂离子电池。

石墨烯在柔性锂离子电池中的应用及前景

2019-03-07 10:03:00

为了满意日益增长的对电子产品小型化、多样性和可变性的需求, 柔性可穿戴的便携式电子产品成为未来开展的趋势。近年来,可卷绕式显示屏的面世及电子衬衫和卷屏手机等柔性电子产品概念的提出,引发了科研作业者对柔性电子技能的研讨热潮。柔性电子技能行将带来新一轮电子技能,并将对社会生活方式及习气发生性影响。柔性电化学储能材料不只需求接受电池、电容器材料自身在电化学过程中引起的体积改变,一起还需求器材在机械变形条件下也可以正常作业。 石墨烯基柔性锂离子 电池材料开展现状 柔性锂离子电池是锂离子电池范畴的新式研讨方向之一, 现在仍处于试验室研讨阶段。开展柔性锂离子电池的首要困难在于怎么取得高功用的柔性电极极片。 石墨烯也具有很高的电导率和热导率、优异的电化学功用以及易功用化的表面, 一起简单加工构成柔性薄膜。因而,石墨烯被认为是一种极具潜力的先进柔性电化学储能材料。 石墨烯在可弯折柔性锂离子电池中的运用首要包含2个方面: 石墨烯作为导电增强相, 凭借高分子、纸、纺织布供给柔性骨架, 以进步柔性极片的电子导电特性, 取得复合导电基体, 并担载活性物质; 石墨烯或其复合材料直接作为柔性基体或柔性电极。石墨烯/柔性基体复合结构 石墨烯具有很高的电子电导率, 可选用喷涂、滋润、涂覆等不同办法, 将石墨烯附着于各类柔性基底上, 运用基底供给柔性支撑,供给力学功用,石墨烯供给导电网络, 构成了石墨烯/柔性基体复合结构。常见的基体材料, 如高分子、纸、纺织布等, 都可制备这种类型的电极。 Cheng研讨组运用大孔径和高孔隙率的滤纸作为过滤介质, 选用真空抽滤法, 以石墨烯涣散液作为滤液, 得到了石墨烯/纤维素复合纸。在抽滤过程中,石墨烯进入滤纸内部, 受纤维素纤维的毛细效果力和表面官能团的一起效果而结实结合在其表面, 而且持续堆积填充在由纤维素纤维构成的三维网状孔隙内,终究构成一种具有石墨烯和纤维素双相三维交错结构的石墨烯/纤维素复合结构。在这种双相三维交错结构中, 纤维素纤维作为柔性三维骨架,为复合结构供给了杰出的力学功用和离子传输通道。 石墨烯薄膜及复合材料的柔性基体 为了进步活性物质在柔性电极中的份额, 石墨烯薄膜也可直接充任负极运用。选用真空抽滤等办法, 已可很多制备石墨烯薄膜。另一方面,石墨烯具有特殊的二维层状结构和丰厚的表面官能团, 也使得石墨烯薄膜具有高的可弯折和力学特性。石墨烯柔性电极的功用表征 电化学测验首要包含半电池的电化学功用和动态条件下的全电池电化学功用测验等. 现在大部分柔性电极都是拼装成扣子式半电池进行电化学功用的研讨,一起在静态条件下对其拉伸、剪切、弯折强度进行测验。 Ruoff研讨组具体研讨了GO薄膜的制造及拉伸、曲折等力学行为。Kim等人用气相化学堆积法制备了高品质石墨烯薄膜, 将石墨烯转移到PET基底上并包覆一层聚二甲基硅氧烷(PDMS)进行力学功用测验,Cheng研讨组对石墨烯薄膜及石墨烯/纤维素复合纸进行了拉伸测验和重复弯折的试验。Cheng研讨组用泡沫Ni模板定向化学气相堆积制备了三维石墨烯泡沫,互连的网络状结构使其具有高的比表面积、高电导率和柔性。因石墨烯泡沫内存在褶皱和波纹。开展趋势猜测 综上所述, 柔性仍处于试验室研讨阶段, 现在首要会集在可弯折的柔性锂离子电池范畴。 得益于杰出的二维结构和力学特性,石墨烯有望作为柔性电极的中心材料得到广泛运用。虽然如此, 柔性电池依然处于开展的初期, 间隔实践运用仍有适当长的间隔。针对石墨烯柔性电极存在的首要问题,未来的开展方向可能会会集在以下几个方面: 柔性电极的力学功用增强及高可变形性,进步现有石墨烯复合柔性电极拉伸强度和抗弯折功用,解决方案可能将会集在:与碳纳米管复合、与聚合物或柔性基体复合、选用新式的电极结构规划。 具有自我修正才能的柔性电池; 快速充电才能的进步; 柔性电极制备新工艺的开发; 柔性锂离子电池器材拼装及规划。现在存在的问题首要包含: (1) 电解质的优化改善;(2) 柔性封装材料的开展;(3) 极耳与石墨烯柔性极片的衔接。极耳是锂离子电池极片与外电路衔接的重要组成部分,传统锂离子电池中一般选用金属铝和镍作为极耳。因为柔性锂离子电池一般选用碳基极片。 总结 跟着柔性电子产品的开展, 柔性锂离子电池作为其要害部件之一也备受瞩目。虽然近年来, 柔性锂离子电池用电极材料制备技能现已取得了巨大发展,但柔性锂离子电池的功用仍远远达不到传统锂离子电池的水平, 远不能满意实践运用的需求。得益于杰出的二维结构和力学特性,石墨烯有望作为柔性电极的中心材料得到广泛运用石墨烯薄膜直接作为柔性基体可以下降电极的质量, 进步电池的全体能量密度, 因而将具有更宽广的开展前景。

锂离子电池价值何在

2019-03-08 09:05:26

纵观人类前史,咱们现已阅历了两次工业革新,第一次是蒸汽机,第2次是电力。现在,咱们正在阅历第三次工业革新,即关于动力互联网与再生性动力的革新。 第三次工业革新有五大支柱 一、向不行再生动力转型; 二、将每一大洲的建筑转化为微型发电厂,以便就地搜集可再生动力; 三、在每一栋建筑物以及基础设施中运用氢和其他存储技能,以存储间歇式源; 四、运用互联网技能将每大洲的电力网转化为动力同享网络,调剂余缺,合理装备运用; 五、运输工具转向插电式以及燃料电池动力车,所需电源来自上述电网。 动力存储技能发展至今,针对不同的范畴、不同的需求,人们已提出和开发了多种储能技能来满意运用。全球储能技能主要有物理储能、化学储能(如钠硫电池、全钒液流电池、铅酸电池、锂离子电池、超级电容器等)、电磁储能和相变储能等几类。 锂离子电池原理 锂离子电池一般是运用锂合金金属氧化物为正极材料、石墨为负极材料、运用非水电解质的电池。 充电时,正极的锂离子和电子分隔,锂离子在电池内部,穿过隔阂进入负极材料,电子经过充电机外部电路进入负极,和锂离子结合,停留在负极材料。 正极 正极材料:可选的正极材料许多,干流产品多选用锂铁磷酸盐。 正极反响:放电时锂离子嵌入,充电时锂离子脱嵌。 负极 负极材料:多选用石墨。新的研讨发现钛酸盐可能是更好的材料。 负极反响:放电时锂离子脱嵌,充电时锂离子嵌入。 简略来说,锂离子电池就是由正极材料、负极材料、电解液、隔阂和外壳组成的能量贮存设备。相比较而言,锂离子电池储能则是现在储能产品开发中最可行的技能道路。锂离子电池具有能量密度大、自放电小、没有回忆效应、工作温度规模宽、可快速充放电、运用寿命长、没有环境污染等长处,被称为绿色电池。此外,它的均匀输出电压高(约3.6V),为Ni-Cd、Ni-MH电池的3倍,输出功率大,充电效率高,第1次循环后基本上为100%。当下,在特斯拉、比亚迪、银隆等厂商推进下,锂离子电池成为储能干流电池技能的趋势越来越显着。 现在,在新动力范畴得到广泛运用的锂离子电池主要有三元锂电池、磷酸铁锂电池和钛酸锂电池。

浅析鳞片石墨在锂离子电池中的应用

2019-01-04 15:16:49

鳞片石墨是一种非金属矿物质,结晶完整,片薄且韧性好,物化性能优异,具有耐高温、耐氧化、抗腐蚀、导热、导电性能强等特有的物理、化学性能。 鳞片石墨的导电性比一般非金属矿高100倍,是运用范围极为广范的导电材料。其中,锂离子电池就是利用鳞片石墨粉的导电性进行工作的。 在锂离子电池材料中,负极材料是决定电池性能的关键。作为一种高结晶度的石墨材料,鳞片石墨的粒度直接影响电极比表面积和边缘碳原子所占的比例,这与首次充电时的不可逆比容量有很大的影响,所以鳞片石墨在电池中起到至关重要的作用。 一、鳞片石墨具有电子导电率高、锂离子扩散系数大、嵌埋容量高和嵌埋电位低等诸多优点,所以鳞片石墨是锂电池最重要的材料之一。 二、鳞片石墨可以使锂电池电压平稳,减小锂电池中的内阻,可以使电池中电量储存时间长。增加电池的利用时间。 三、鳞片石墨可以减少锂电池中鳞片石墨粉的用量,使电池成本大大降低。 综上所述,鳞片石墨对锂离子电池来说,不仅能够延长电池使用时间,促使电压平稳,增强导电率,还可降低电池成本。

不会爆炸的水基锂离子电池

2019-01-04 09:45:37

9月10日物理学家组织网报道称,美国华人科学家团队研制出一款基于水基电解液的新型锂离子电池,不仅电压首次达到笔记本电脑等家用电子产品所需的4伏标准,且能完全避免现有商用锂电池存在的着火和爆炸危险。尽管当前它的续航还不如传统材料,但研究人员希望可为进一步的研究奠定基础。市面上最常见的电池,仍然采用了两侧都有电极的锂离子方案。在充放电的过程中,粒子可在两极间来回移动。位于中间的电解质,可以帮助粒子的移动。然而大多数情况下,电解质都是由易燃的有机化学物质构成。马里兰大学工程师、兼研究合著者ChunshengWang表示:虽然有防火的水基电解质存在,但水并不是很活泼,因此这种安全电池通常也并不强劲。现有电子产品中,锂离子电池都使用非水性电解液。工作时,电池电压必须满足4伏标准,而在这个工作电压下水容易分解,所以锂电池常用有机溶剂作为电解液,但这类电解液易燃易爆,可能导致电子产品着火爆炸,存在极大安全隐患。 马里兰大学王春生团队联合美陆军研究实验室许康等科学家,合作开发出了这款升级版水基锂电池。研究人员设计出一种新型聚合物凝胶涂层,因其特殊的排水性,涂在电极上后,水分子无法靠近电极表面;首次充电后,凝胶分解形成稳定界面,将电极和电解液隔离,阻止水分子在工作电压下分解。该技术不仅提高了电池的储能和充放电性能,还完全规避了有机溶剂电解质易爆炸的危险。 虽然新电池的工作电压已达到商用水平,但与现有锂离子电池相比,还有很大的提升空间。比如,新电池的材料成本较高,且只能充放电50次到100次,要想具有商业竞争优势,充放电周期必须达到500次以上。 但不可否认的是,新电池背后的电化学处理方法,对钠离子电池、锂硫电池、锌镁多离子电池等电池技术,以及电镀和电化学合成等领域,具有重要借鉴意义。

废旧锂离子电池有价金属回收技术

2019-02-21 15:27:24

一、干法技能     干法是经过复原焙烧别离钴、铝,浸出别离钴和黑的一种锂离子电池收回处理办法。该办法将电池坚持在阻隔水分与空气的环境中,一般是在氮气或气环境中进行,将锂离子电池在高温下进行燃烧,别离出各种金属。温豪杰,等提出了高温焙烧收回金属钴的工艺。先对锂离子废旧电池进行放电处理,剥离外壳,收回金属材料;将电芯与焦炭、石灰石混合,投入焙烧中进行复原焙烧。有机物燃烧生成二氧化碳及其他气体,钴酸锂被复原为金属钴和氧化锂,氟和磷元素被沉渣固定,铝被氧化为Al2O3炉渣。大部分氧化锂以蒸气方式逸出,将其用水吸收,金属铜、锂、镍、等构成含碳合金,再用惯例湿法冶金技能进行深加工处理。干法工艺流程较短,进程中考虑了氟污染的防治,而且锂元素得以收回。     在国外,日本索尼和住友金属矿山公司合作开发出了从废旧锂离子电池中收回钴等元素的技能。先将电池燃烧,去除有机物,再挑选去除铁、铜后,将剩下粉末加热并溶于酸中,用有机溶媒提取氧化钴。     Churl Kyoung Lee,等先把废旧锂离子电池破碎,并在不同温度范围内进行热处理,将碳粉和粘合剂等可燃材料变为气体,留下LiCoO2。在恒温水浴(75℃)、液固体积质量比20L/g、硝酸浓度1mol/L、1.7%H2O2溶液中溶解LiCoO2,Co和Li的浸出率均到达85%。     干法工艺相对简略,不足之处是能耗较高,电解质溶液和电极中其他成分经过燃烧转变为CO2或其他有害成分,如P2O5等。燃烧除掉有机物的办法易引起大气污染,合金纯度较低,后续湿法冶金进程仍需一系列净化除杂进程。     二、湿法技能     湿法是以无机酸溶液将废旧电池中的各有价成分浸出后,再以络合交换法、碱煮-酸溶法、酸溶-萃取-沉积法等加以收回。     Zhang Pingwei,等用4mol/L溶液在80℃下浸出锂离子二次电池正极废料,Co、Li的浸出率均大于99%,之后用0.9mol/L的PC-88A(2-乙基已基磷酸-单-2乙基已基醚)萃取Co,反萃取后以硫酸钴方式收回钴。溶液中的锂经过参加饱满碳酸钠溶液,在100℃下沉积为碳酸锂得以收回,收回率挨近80%。Kudo Mistuhiko,等用酸浸出锂离子电池正极废料,往浸出液中参加金属,使Co2+变成Co,然后加碱去除金属,获得金属Co。Hayashi,等用硫酸或浸出,在浸出液中参加碱金属碳酸盐,沉积物质经焙烧获得更纯的正极活性物质。Supasan,等用HNO3溶液浸出锂离子电池正极废料,往混合浸出液参加LiOH,使各金属生成氢氧化物沉积,沉积物经过滤并焙烧,得金属氧化物的混合物。     王晓峰,等先将电极材料在80℃的稀中溶解,滤去不溶物质后用调理pH=4,挑选性沉积出铝的氢氧化物,然后参加含NH4Cl的,调理pH至10左右,使钴、镍生成的合作物,再通入纯氧气把CO2+、Ni2+氧化为三价离子,并将溶液重复经过弱酸性阳离子交换树脂,对饱满树脂用不同浓度的硫酸铵溶液洗脱钴和镍,再用草酸盐从洗脱液中沉积钴和镍。申勇峰选用硫酸浸出-电解工艺收回钴。用10mol/L硫酸溶液,在70℃下浸出钴、锂,调理溶液pH至2.0~3.0,90℃鼓风拌和,中和水解脱除其间的杂质,再在55~60℃下以钛板作阳极,以钴片作阴极,以235A/m2电流密度电解,得到契合国家标准的电钴。钟海云,等从锂离子二次电池正极废料-铝钴膜中收回钴选用的是碱浸-酸溶-净化-沉钴的全湿法流程。先用100g/L的NaOH溶液浸出铝钴膜废料,制备氢氧化铝,再向剩下废猜中参加稀H2SO4和H2O2,酸溶后的溶液调pH至5.0净化除杂,然后参加草酸铵溶液淀钴,终究制得草酸钴产品。吴芳选用碱溶解电池材料,预先除掉约90%的铝,然后选用H2SO4+H2O2系统浸出滤渣,浸出后的滤液中含有Fe2+、Ca2+、Mn2+等杂质,用P2O4溶剂萃获得到钴和锂的混合液,然后用P507溶剂萃取别离钴、锂,反萃取后得到硫酸钴,萃液沉积收回碳酸锂,得到的碳酸锂到达零级产品要求,锂的一次收回率为76.5%。专利“从含钻下脚猜中高效提取钴化合物的新工艺”供给了另一条思路。将钴锰料在反响釜顶用工业硫酸溶解,去除不溶的有机物残渣后得到弄清的CoSO4、MnSO4混合溶液。将溶液参加到含有工业的化器中,坚持pH在9以上,反响必定时刻后用离心机将沉积别离,滤液送反响釜。向反响釜中参加NaOH溶液并加热至欢腾坚持5min。热沉的悬浮液冷却到60℃后用离心机别离出钴化合物。将钴化合物在反响釜顶用浓硫酸溶解并稀释、过滤得到硫酸钴弄清液。此弄清液送沉积槽,参加碳酸钠溶液调pH至8.0,使生成紫红色沉积,对此沉积拌和水洗数次,然后晒干得碱式碳酸钴产品。金泳勋,等研讨了选用浮选法从废旧锂离子电池中收回锂钴氧化物,但收回的锂钴氧化物含有石墨等杂质,不能用来制造锂离子电池。温豪杰,等选用碱浸-酸溶-净化-沉钻工艺收回锂离子电池正极废猜中的铝和钻,得到化学纯氢氧化铝,收回率为94.89%,以草酸钴方式收回钴,直收率为94.23%。     以湿法处理废旧锂离子电池,浸出液需求严厉净化,耗费许多电能,有机试剂也会对环境和人体健康有晦气影响,而且工艺流程长,对设备要求高,本钱高。现行的湿法工艺都较杂乱,资源收回率低,存在二次污染等问题。有研讨者提出的AEA工艺,虽有工艺简略、二次污染程度低、资源收回率高级优势,但其经济可行性还需进一步研讨。     McLaughlin提出,选用Toxco法(火法与湿法相结合),首先将抛弃材料在液氮中冷却,机械破碎后,参加去离子水,使锂与水反响生成氢氧化锂,并以此作为首要产品,但该法未述及对钴等其他元素的收回。     Kim,等对电极材料的直接修正进行了实验探究,但其处理功率还不能得到确保,而且修正之后的电极材料是否具有杰出的充放电和安全功能、是否可以直接用作锂离子电池的电极材料,还有待进一步考证。     总归,各国对抛弃锂离子电池的收回再生工艺研讨起步都较晚,而且因为锂离子电池对环境的污染相对其他电池品种较小、收回处理本钱高,所以一向没有高效、经济、环保的收回工艺,所以有必要寻求一种合理、有用、清洁的金属收回和资源使用途径。     三、生物浸出工艺     所谓微生物浸出就是用微生物将系统的有用组分转化为可溶化合物并挑选性地溶解出来,得到含金属的溶液,完成目标组分与杂质组分别离,得到含金属的溶液,完成目标组分与杂质组分别离,终究收回有用金属。生物浸出技能是生物、冶金、化学等多学科穿插技能,是一个杂乱的进程,包含细菌成长代谢的生物学、细菌与矿藏表面相互效果的表面化学、动力学等,化学氧化、生物氧化与原电池反响往往同时发生。其间微生物对细菌浸出的特殊效果一般认为有3种氧化机理:直接氧化反响、Fe3+氧化硫化物的化学氧化反响、原电池反响。在这3种浸出机理中,微生物都起着至关重要的效果。生物浸出中的首要菌种有氧化硫杆菌、氧化铁杆菌、氧化铁硫杆菌和聚硫杆菌等,它们都归于自养菌,能成长在普通微生物难以生计的较强的酸性介质里,经过对S、Fe、N等无机化合物的氧化获得能量,从CO2中获得碳,从铵盐中获得氮来构成本身细胞。在许多酸性水域中都有这类杆菌成长,只需取回某各水来加以驯化、培育,即可接种于所要浸出的废渣中进行细菌浸出。这种办法具有低本钱、低能耗、无污染等长处,已在采矿工业中广泛使用。     生物浸出技能已成功使用于从低档次,难处理矿石中提取金属,使用于废水处理及从各种抛弃物如抛弃线路板、干电池、镍-镉电池等中收回金属,也是一个十分抢手的研讨课题。学习生物冶金技能,使微生物直接或直接参加废旧电池粉末中的二氧化锰的复原收回,二氧化锰的终究浸出率可达93%。与传统电池收回技能比较,其特殊优势在于环境友好,并可完成有机废物与废旧电池的综合治理。使用生物浸出技能处理抛弃锂离子电池的研讨才刚刚起步。辛宝平,等研讨了选用生物淋滤溶出法从抛弃锂离子电池中收回钴。先把废旧电池拆分并挑选,用含有微生物的溶液淋滤溶出废旧锂离子电池中的钴,调查了培育条件、质量浓度、开始pH值和电极材料参加量等对生物淋滤钴溶出的影响,并探讨了进步钴离子生物溶出功率的办法及工艺条件。选用氧化亚铁硫杆菌和氧化硫硫杆菌的混合菌液进行实验,关于锂离子电池中的钴,生物淋滤较之比化学浸出具有更高的溶出功率。国外最近也报导了选用嗜酸氧化铁硫杆菌浸出抛弃锂离子电池中的钴和锂的实验研讨结果。因为选用单一菌种,浸出率很低,未对其他金属的收回进行研讨,也未进行浸出机理及动力学方面的研讨。

你能分清锂电池、锂离子电池、锂聚合物电池吗?

2019-01-04 15:16:49

12345678

锂离子电池磷酸铁锂正极材料的研究进展

2019-01-04 13:39:36

锂离子电池因其具有能量密度高、自放电流小、安全性高、可大电流充放电、循环次数多、寿命长等优点,越来越多地应用于手机、笔记本电脑、数码相机、电动汽车、航空航天、军事装备等多个领域。锂电池产业已经成为国民经济发展的重要产业方向之一。目前,锂离子电池正极材料分为以下几类:①具有层状结构的钴酸锂、镍酸锂正极材料;②具有尖晶石结构的锰酸锂正极材料;③具有橄榄石结构的磷酸铁锂正极材料;此外还有三元材料。磷酸铁锂正极材料的理论比容量为170mA/g,电压平台为3.7V,在全充电状态下具有良好的热稳定性、较小的吸湿性和优良的充放电循环性能,因此成为现今动力、储能锂离子电池领域研究和生产开发的重点。LiFePO4基本性能LiFePO4基本结构磷酸铁锂正极材料具有正交的橄榄石结构,pnma空间群,如图1所示。在晶体结构中,氧原子以稍微扭曲的六方紧密堆积的方式排列。Fe与Li分别位于氧原子八面体中心4c和4a位置,形成了FeO6和LiO6八面体。LiFePO4充放电原理磷酸铁锂电池充放电的过程是在LiFePO4与FePO4两相之间进行的,如图2所示,其具体机理为:在充放电过程中,Li+在两个电极之间往返嵌入和脱出。充电时,Li+从正极脱出,迁移到晶体表面,在电场力的作用下,经过电解液,然后穿过隔膜,经电解液迁移到负极晶体表面进而嵌入负极晶格,负极处于富锂状态。与此同时,电子经正极导电体流向正极电极,经外电路流向负极的集流体,再经负极导电体流到负极,使负极的电荷达到平衡。锂离子从正极脱出后,磷酸铁锂转化为磷酸铁;而放电过程则相反。其充放电反应式可表示成式(1)和式(2)充电时放电时LiFePO4改性由于磷酸铁锂正极材料本身较差的导电率和较低的锂离子扩散系数,国内外研究者在这些方面进行了大量的研究,也取得了一些很好的效果。其改性研究主要在3个方面:掺杂法、包覆法和材料纳米化。掺杂法掺杂法主要是指在磷酸铁锂晶格中的阳离子位置掺杂一些导电性好的金属离子,改变晶粒的大小,造成材料的晶格缺陷,从而提高晶粒内电子的导电率以及锂离子的扩散速率,进而达到提高LiFeP04材料性能的目的。目前,掺杂的金属离子主要有T14+、CO2+、Zn2+、Mn2+、La2+、V3+、Mg2+。包覆法在LiFeP04材料表面包覆碳是提高电子电导率的一种有效方法,碳可以起到以下几个方面的作用:①抑制LiFeP04晶粒的长大,增大比表面积;②增强粒子间和表面电子的导电率,减少电池极化的发生;③起到还原剂的作用,避免Fe的生成,提高产品纯度;④充当成核剂,减小产物的粒径;⑤吸附并保持电解液的稳定。材料纳米化相较在导电性方面的限制,锂离子在磷酸铁锂材料中的扩散是电池放电的最主要也是决定性的控制步骤。由于LiFeP04的橄榄石结构,决定了锂离子的扩散通道是一维的,因此可以减小颗粒的粒径来缩短锂离子扩散路径,从而达到改善锂离子扩散速率的问题。纳米材料的优点主要有:①纳米材料具有高比表面积,增大了反应界面并可以提供更多的扩散通道;②材料的缺陷和微孔多,理论储锂容量高;③因纳米离子的小尺寸效应,减少了锂离子嵌入脱出深度和行程;④聚集的纳米粒子的间隙缓解了锂离子在脱嵌时的应力,提高了循环寿命;⑤纳米材料的超塑性和蠕变性,使其具有较强的体积变化承受能力,而且可以降低聚合物电解质的玻璃化转变温度。Ren等对纳米化的磷酸铁锂制备进行了详细的研究,他们利用亲水性的碳纳米颗粒作为模型制备出介孔磷酸铁锂正极材料。发现其具有亚微米大小的颗粒中心在2.9nm和30nm的双峰孔分布,介孔的引入也有利于电解质的流动和锂离子的扩散。在1C倍率下,放电比容量为137mA·h/g。在30C高倍率充放电后,材料的容量仍能恢复到160mA·h/g。可以看出纳米化的磷酸铁锂电化学性能得到了显著地提升。从长杰等利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形磷酸铁锂正极材料。经分析检验结果表明,材料的首次放电比容量达161.8mA·h/g,库仑效率为98.3%,室温下在0.2℃、0.5℃,1℃, 2℃及5℃倍率充放电其首次放电比容量分别为156.5mA·h/g, 144mA·h/g,138.9mA·h/g,125.6mA·h/g和105.7mA·h/g,材料具有较好的电化学性能。Chen等以偏磷酸亚铁和石墨的纳米层状模板,通过水热法制备出拥有纳米层状形态的LiFeP04颗粒。通过SEM分析,尽管原纳米层模板LiFeP04纳米层模板之间存在差异,但最终得到的LiFeP04模板的纳米层状态保存完好。拉曼光谱表明,原纳米有机基团的分层模板成功地转换成细小的具有有序石墨结构的碳颗粒,并很好地分散在层状LiFeP04颗粒之间。经使用循环伏安法和电阻抗法评估,锂离子扩散系数分别是1.5X10-11cm2/s和3.1X10-13cm2/s,而电子电导率为3.28mS/cm,远远高于普LiFeP04的电导率(结语采用离子掺杂、包覆、材料纳米化3种改性方法对磷酸铁锂正极材料在电导率低、锂离子扩散速率慢、低温放电性能差等方面的不足有很大的改进。其中离子掺杂通过掺杂导电性好的离子,改变了颗粒大小,造成材料的晶格缺陷,从而提高了材料电子的电导率和锂离子的扩散率;包覆主要以碳包覆为主,抑制LiFeP04晶粒的长大,增大了比表面积,从而增强粒子间和表面电子的导电率;材料的纳米化一方面增大了材料的比表面积,为界面反应提供更多的扩散通道,另一方面,缩短了离子扩散的距离,减小了锂离子在脱嵌时的应力,提高循环寿命。此外,磷酸铁锂正极材料改性方面仍存在一些不足,如离子掺杂改进材料的导电率和锂离子扩散速率方面仍存在分歧;纳米材料的制备工艺、生产成本要求较高;此外,除了考虑实验室条件下的可行性研究外,还要考虑大规模工业化的生产要求,这些都有待于进一步研究。因此,通过以上方法来全面提高磷酸铁锂的综合性能仍然是当前和今后该领域研究和应用的主要发展方向之一。文章选自:《化工进展》 作者:张克宇,姚耀春

锂离子电池正极三元材料的研究进展及应用

2019-03-08 09:05:26

锂离子电池是20世纪90年代敏捷开展起来的新一代二次电池,广泛用于小型便携式电子通讯产品和电动交通工具。电池材料分为正极材料、负极材料、隔阂、电解液等。正极材料是制作锂离子电池的要害材料之一,占有电池本钱的25%以上,其功能直接影响了电池的各项功能指标,在锂离子电池中占有中心方位。 现在已产业化的锂离子电池用正极材料首要有钴酸锂、改性锰酸锂、三元材料、磷酸铁锂。研讨发现,以LiNi1/3Co1/3Mn1/3O2为代表的层状氧化镍钴锰系列材料(简称三元材料)较好地兼备了上述材料的长处,并在必定程度上补偿其缺乏,具有高比容量、循环功能安稳、本钱相对较低、安全功能较好等特色,被认为是用于混合型动力电源的抱负挑选,以及能替代LiCoO2的最佳正极材料。 三元材料的组成结构和特性 三元材料有着与LiCoO2类似的α-NaFeO2单相层状结构,其间,Li原子在3a方位,金属原子Ni、Co和Mn自在散布在金属层的3b方位,而O原子坐落6c位。 Ni是材料的首要活性物质之一,在充放电进程中,首要是Ni2+和Ni4+发作彼此转化。经过引进Ni,可进步材料的容量。 Co也是材料的首要活性物质之一,能很好地安稳材料的层状结构,一同Co3+的掺入能够按捺Ni2+进入Li+的3a方位,便于材料深度放电,然后进步了材料的放电容量。 Mn4+有着杰出的电化学慵懒,不同于Mn3+。Mn3+在材料充放电进程中会参加电极的氧化-复原反响,Mn4+在循环进程中不参加氧化-复原反响,使材料一直坚持着安稳的结构。 因而,层状结构的三元材料归纳了单一组分材料的长处,其功能优于单一组分,具有显着的三元协同效应。其根本物性和充放电渠道与LiCoO2附近,却又具有报价和环境友好优势,具有很好的市场前景。 三元材料的制备 三元材料中各元素的化学计量等到散布均匀程度是影响材料功能的要害因素,偏离了化学计量比或组成元素散布不均匀,都会导致材料中杂相的呈现。不同的制备办法对材料的功能影响较大。现在组成三元材料的办法首要有高温固相法、共沉积法、喷雾干燥法、水热法、溶胶凝胶法等。其间水热法和溶胶凝胶法因为受制备办法的约束,不适合于工业化出产。下面介绍完成产业化的几种制备办法。 高温固相法 高温固相法一般先将金属盐和锂盐按化学计量比以各种方式混合均匀,然后高温烧结直接得到产品。常用金属盐首要有金属氧化物、金属氢氧化物等。 共沉积法 共沉积法以沉积反响为根底,研讨证明,共沉积法是制备球形三元材料的最佳办法,也是现在工业化遍及选用的制备工艺。依据运用沉积剂的不同能够分为氢氧化物共沉积法、碳酸盐共沉积法。 喷雾干燥法 喷雾干燥法也是现在材料工业化制备比较看好的一种办法。该法制备的材料非常均匀,颗粒纤细,在材料的化学计量组成、描摹和粒径散布上具有优势,并且能够自动化操控,可连续出产,制备能力强。 三元材料的研讨现状 在曩昔的十几年间,镍钴锰三元材料已得到较为深入细致的研讨,功能水平不断进步。现在的研讨除了对镍钴锰三元材料动力电池的功能进行测验外,更多的是对镍钴锰三元材料进行改性,进一步进步材料的循环寿数和安全性。 不同组分的三元材料 除了LiNi1/3Co1/3Mn1/3O2正极材料的研讨外,该系统其他计量比的正极材料也有必定的研讨成果。国海鹏等[5]制备了正极材料LiNi1/2Co1/6Mn1/3O2并研讨了其功能,选用固相法得出了具有Co含量梯度的层状LiNi1/2Co1/6Mn1/3O2。 三元材料与其他材料的混粉 三元材料和LiMn2O4混合用于锂离子动力电池正极,在商业上已有使用。混合材料不只能够满意动力电池安全性的需求,并且碱性较强的三元材料还能按捺电解液中微量对LiMn2O4的溶解效果,改进正极材料的高温功能。 核 - 壳结构的三元材料 LiNi0.8Co0.1Mn0.1O2具有较高的比容量,而LiNi0.5Mn0.5O2具有很好的热安稳性。将两种材料掺合到一同,构成一种核(Li-Ni0.8Co0.1Mn0.1O2)-壳(LiNi0.5Mn0.5O2)结构的三元材料,归纳了两种材料的长处,能有效地按捺材料中Co的溶解,进步循环安稳性。该材料在1C、3.0~4.3V、600次充放电后容量坚持率为96%,一同具有杰出的热安稳性。 结语 现有产业化的钴酸锂、改性锰酸锂和磷酸铁锂在根底研讨方面现已没有技能打破,其能量密度和各种首要技能指标现已挨近其使用极限,三元材料是未来研制和产业化的干流,依据其使用范畴的不同,分别向高密度化和高电压化开展。未来的开展方针是将三元材料的压实密度进步到3.9g/cm3以上,充电电压到达4.5V,可逆比容量到达200 mAh/g,电极能量密度比钴酸锂高25%,然后全面替代钴酸锂,成为小型通讯和小型动力范畴使用的干流正极材料。

用混合溶剂萃取体系从废锂离子电池浸出液中回收金属

2019-01-24 09:37:09

Y.Pranolo等研发出一种从废锂离子电池浸出液中分离和纯化Co和Li的混合溶剂萃取剂体系,用于。将Acorga M5640加入到Ionquest 801有机溶液中,Cu和pH等温线移动明显,△pH50=3.45。所以,在此混合萃取剂体系中,很容易实现Fe(Ⅲ)、Cu、Al与Co、Ni、Li的分离。 在水相与有机相的体系比=2∶1,pH=4条件下的McCabe-Thiele相图表明:Fe、Cu、Al的萃取需要3个阶段。Fe(Ⅲ)和Cu的萃取动力学很快,而Al的萃取动力学较慢。随温度从室温长高到40℃,Al的萃取动力学增加明显,所以金属萃取应在40℃进行,Al和Cu的反萃取动力学很快,但Fe不能被有效反萃取,因此,反萃取时应用高酸除去Fe。在温合有机体系中,对于铜的萃取,Ionquest 801为萃取剂,Acorga M5640起协同作用。 推荐了一种从废锂离子电池浸出液中回收Co和Li的流程:第1个溶剂萃取流程中采用混合Ionquest 801和Acorga M5640体系,第2个流程中采用Cyanex 272。此流程的优势是可获得较纯的Co和Lu产品。

“石墨烯+”电池问世,电池续航两倍不是梦!

2019-01-03 14:43:39

自电动汽车问世以来,电池的续航能力一直是人们所关注的焦点,近日,中科院宁波材料所利用石墨烯研制出了一种千瓦级铝空气电池,其能量密度相当于一般商业电池的4倍乃至更高,能量密度的高低直接决定了动力汽车的续航能力,研发项目的成功使得电动汽车行业有了进一步的提升。 自电动汽车问世以来,电池的续航能力一直是人们所关注的焦点,近日,中科院宁波材料所利用石墨烯研制出了一种千瓦级铝空气电池,其能量密度相当于一般商业电池的4倍乃至更高,能量密度的高低直接决定了动力汽车的续航能力,研发项目的成功使得电动汽车行业有了进一步的提升。这一“续航魔咒”正在被打破,新的研究技术有望解决电动汽车的“里程焦虑”。 该电池系统能量密度高达510Wh/kg、容量20kWh、输出功率1000W,该能量密度比一般电池系统有了显著的提高,验证该系统的发电能力发现,该系统可同时为一台电视、电脑、电风扇以及10个60瓦照明灯泡供电。图为浙江省石墨烯应用研究重点实验室主任刘兆平  浙江省石墨烯应用研究重点实验室主任刘兆平介绍,如果将该电池系统用于新能源汽车上的话,可多方面提高汽车的性能,车身更加轻盈,大大提高了续航里程;如果用于手机充电宝上,则可大大提高输出电量。此外,传统通讯基站酸铅蓄电池3—4年更换一次,而宁波材料所研发的铝空气电池储存时间约15年,电池寿命要长得多。“正是拥有能量密度高、价格低廉、资源丰富、绿色无污染、放电寿命长等优势,铝空气电池在通讯基站备用电源与电动汽车增程器应用方面具有诱人的市场前景。”刘兆平说。

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。

为何石墨软石墨烯“硬”

2019-01-04 15:47:49

导读 为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。  再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

为何石墨软,石墨烯“硬”?

2019-01-03 09:37:04

为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。 材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。 再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

漫画简介石墨烯!

2019-03-08 09:05:26

石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。 石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。

石墨烯真神奇

2019-03-07 10:03:00

近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。 日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。 人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露 和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。 科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。 这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。 据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。 石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。 一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。 石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。 “人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。 未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢 因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。 高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。 石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。 可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热…… 石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。 我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。 此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。 高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。 国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业 石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。 据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。 高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。 高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。 例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。 受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。 不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。

石墨烯基锂电池有了新突破

2019-03-08 09:05:26

深圳市来历新材料科技有限公司、秦皇岛市太极环纳米制品有限公司选用智能制作新技能,干法机械剥离石墨烯。并以机械石墨烯为首要新材料制成正极,以涂层金属锂为负极,组成锂烯电池,通过一千屡次循环,成果证明,比容量初始最高可达1800mAh/g,100次时稳定在1200mAh/g以上,约等于一般锂电池的4~5倍,至200次时稳定在1100mAh/g,400次一向到600次也一向稳定在1000mAh/g以上,至700至800次,都是在900mAh/g以上,至1100次时,也还有700mAh/g以上的比容量,也还比一般的锂电池高出两三倍。是行业界石墨烯基锂电池研制以来最好的数据。 “千呼万唤始出来”的石墨烯锂电池,是怎么面世的呢?原因是中国人自己的一个科学发现导致了一个范畴的技能。这就是落地发作的多边应力连动的二次加力,这一力学原理带来了智能制作的创意,发作了Gpa级的超高能冲击式球磨纳米技能,见图2,原因是选用原创的干法机械剥离石墨烯(以下简称机械烯)技能。 干法机械烯的特点是:石墨层间的碱金属不丢失、密度大、表面缺点多、与金属片可衔接成千层饼结构,多层层叠后微孔大增,所以容量高、效率高、寿命长。从图能够看出石墨烯的层厚散布在0.224-0.952纳米之间,其间40%微片进入量子点尺度,石墨烯外观体现极不规矩。 最大的长处是高性价比。大型机可宏量出产,出产成本仅几毛钱1克,使石墨烯天价落地。 锂烯电池是以石墨烯复合纳米材料制成正极,以涂层金属锂为负极,再运用陶瓷纤维隔阂,滴防燃爆电解液组成,涂层的锂片按捺了锂枝晶的成长,陶瓷纤维隔阂可防止意外的枝晶穿透、防燃爆电解液按捺了起火,爆破的意外发作。 以上是2016年研究成果,本年又有了明显发展,在比容量提升至2700mAh/g以上的一起,也感触到了锂烯电池的能量还有很大的上升空间。 新能源要害是新材料,谁能把握新材料,谁就能执锂电商场之盟主,而机械石墨烯及纳米合金新材料最急需是制备要害技能及要害设备的智能制作渠道。 石墨烯剥离机、纳米磨天磨及机械制备石墨烯全纳米材料电池的量产项目是彻底自主立异的新科学发现、新科学理念、新工艺、新技能、新要害制作设备,推翻人们观念的方法学打破,机器的力学规划合理,多边连动,动能巨大,又节约资源,可将石墨烯剥离,可宏量制作石墨烯,确保新材料的宏量。是配备制作与新能源纳米新材料聚合发力的制作渠道。 此外,咱们在秦皇岛一起启动了收回废物废品制成石墨烯负极,成本可低至几分钱1克,比容量是碳负极的两倍,是环保、新能源、新材料的好项目。希有志同路成为合作伙伴。

科学家研发铝-石墨烯-氧合成电池

2019-01-09 11:26:51

据报道,总部位于布里斯班的能源技术公司LWP Technologies Limited宣布将投资于具有开创意义的铝-石墨烯合成与电池制造技术,收购三项“准专利”,准备推动新技术的营销、专利授权与商业化。俄籍澳洲科学家及发明家VictorVolkov发明的颠覆性电池技术已经完成国际实验室测试,这种名为“铝-石墨烯-氧”合成电池较锂电池的性能更是优越。石墨烯产品将较早在电池领域迎来产业化曙光,国内石墨烯相关公司将迎来产业化良机。    新技术将首先应用在电池制造领域。电动汽车制造商与电池供应商正投资数亿用于锂电池研发,希望获得更高储能表现,并减少充电时间,但锂电子技术进步十分有限。并且,尽管锂电池需求前景广阔,锂电池表现不稳定且存易燃爆风险是共识。相比之下,石墨烯技术的能源密度要高于锂电池,且应用范围更广。

石墨烯+锂电池可行性有多大?

2019-01-03 09:36:39

众所周知石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用。 锂离子电池是迄今为止能量比最高的二次电池,但是应用于如新能源汽车时需要进一步提高其能量比。石墨烯的出现为锂离子电池高性能的突破带来了可能,从而为高容量、高倍率、长寿命的锂离子电池材料的研究掀起新一轮的研究热潮。 目前石墨烯在锂电池方面的研究主要分两块 一是在传统锂电池上进行应用,目的是改进、提升锂电池的性能,这类电池不会产生颠覆性的影响; 二是依据石墨烯制造一个新体系的电池,它是一个崭新系列的,在性能上是颠覆性的,称作“超级电池”。 石墨烯在正极材料中的应用 锂电池的正极材料例如常用LiCoO2、LiMn2O4和LiFePO4都是不良的电子导体,它们的电导率分别为10-4、10-6和10-9Scm-1。在目前现有的锂离子电池体系中,电池使用的正负极材料本身具有较低的离子与电子电导率,这是影响和限制锂电池充放电循环和倍率性能的主要因素。所以为了充放电过程中充分有效利用正极材料同时能提高电池的倍率性能,要在正极材料中加入导电剂,传统的导电剂一般是石墨。而石墨烯本身具有非常高的电子传导率,用石墨烯作为导电添加剂是其在锂电池中最直接,也是最广泛的应用。 石墨烯作为导电剂的问题 对于石墨烯导电剂的实际应用,需要综合考虑石墨烯对电子电导的“面-点”促进作用和对离子传导的“位阻效应”;针对导电剂用量和最终电池的能量/功率密度综合考虑设计电极的厚度。对于LFP体系的锂离子电池,由于石墨烯对锂离子传输的影响非常强,所以需要特别注意电极的厚度。 石墨烯在负极材料中的应用 目前锂电池常用的负极材料是石墨,用石墨烯作负极材料的优势有: 石墨烯导电性能好,耐腐蚀,用作负极材料可以增强活性物质与集流体的导电性; 石墨烯片层作为单层二维结构,原则上不存在体积膨胀,所以结构稳定,充放电快,循环性能好; 纳米颗粒原位法合成于石墨烯表面形成基复合材料,通过控制其生长颗粒的尺寸,从而缩短锂离子和电子扩散距离,改善材料的倍率性能; 纳米颗粒均匀覆盖在石墨烯表面,一定程度能够防止石墨烯片层的聚合和电解质浸入石墨烯片层,导致电极材料失效。 石墨烯直接用作负极材料存在的问题 石墨烯由于尺寸小并且具有很高的比表面积,容易与电解液发生反应生成大量的SEI膜,造成大量不可逆容量的损失。 石墨烯在电极循环中容易发生团聚,并且由于范德华力导致团聚不可逆,导致嵌锂困难,电池容量衰减。 石墨烯在制备过程中容易发生再堆叠,对分散和干燥条件要求苛刻,导致成本增加。 石墨烯材料在电池负极材料的应用中表现为首次效率低,循环性能差等问题还未能解决。 当前石墨烯复合材料在锂电池的应用成为研究热门,如何完善高质量石墨烯的制备技术,寻找出一种可控、大规模的石墨烯制备方法,并制备出性能优异的石墨烯基复合材料,是当前研究的重点。若石墨烯基电极材料在高能量密度、高功率密度要求的动力锂离子电池领域获得应用,必将大大提升动力电池的综合性能,推动电动车、电动工具等领域的发展。

宁波材料所在石墨烯基新型长寿命铝离子电池研究中获进展

2019-01-09 09:34:01

电化学储能技术是解决电动汽车与可再生能源并网发电的关键。以有机溶剂为电解液的锂离子电池在能量密度上具有优势,但存在安全隐患和锂资源有限的问题。与之相比,水系非锂离子(如钠离子、钾离子、锌离子、镁离子等)电池具有高安全和低成本等优点,在储能领域中具有重要应用前景。自2013年以来,中国科学院宁波材料技术与工程研究所动力锂电池工程实验室前瞻布局了非锂离子电池的新概念电池研究,在水系离子新概念电池基础研究上取得了系列进展 (Scientific Reports 2013, 3, 1946; ChemSusChem 2014, 7, 2295;Advanced Energy Materials 2015, 5, 1400930; Scientific Reports 2015, 5, 18263; Nature Communications 2016, 7, 11982)。但水系离子电池的循环寿命比较有限,一般小于1000次,难以满足规模储能的需要。2015年美国斯坦福大学教授戴宏杰在Nature (2015, 520, 324) 报道了一种新型铝离子电池,因其耐用、低可燃性及成本等特点,而引起学界和工业界的广泛关注。 受该工作启发,宁波材料所动力锂电池工程实验室开展了以石墨烯为电极的铝离子电池研究,近期研究工作以Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery 为题在线发表于《先进能源材料》(Advanced Energy Materials,DOI: 10.1002/aenm.201700034)。在该工作中,科研人员采用量产的多层石墨烯(由宁波墨西科技有限公司生产提供)为柔性正极、金属铝为负极、离子液体为电解液,构建出具有超长循环寿命和超高倍率性能的2 V铝离子电池。研究发现二维片状石墨类负极材料的厚度(层数)和横向尺寸均对AlCl4-离子的嵌入行为有重要影响。相对于层数达千层的鳞片石墨,多层石墨烯的层数极少(10层以下),可以显著降低AlCl4-离子嵌入和扩散的活化能,使得该电池具有超高的倍率性能,因此可在1分钟内完成充放电。另一方面,由更大尺寸的多层石墨烯制作的电极,由于具有更好的柔韧性和石墨化度,对AlCl4-离子的重复嵌入和脱出具有更强的耐受能力,从而让电池表现超长的循环寿命,充放电循环10000次后容量几乎无衰减。此外,该研究工作通过一系列的精细表征还进一步揭示了AlCl4-离子在多层石墨烯、石墨等二维石墨类正极材料的插层化学机制,即插层离子诱导的四阶和五阶结构变化机制。该研究工作不仅对铝离子电池中石墨类正极材料的选择具有重要指导意义,还对于发展实用化石墨烯基新型长寿命储能电池具有较大的学术价值。 上述研究工作得到了中科院重点部署项目(KGZD-EW-T08-2)、中科院青促会项目(2017341)、国家自然科学基金(51404233)和浙江省自然科学基金(LY15B030004)的资助。 该研究工作靠前作者张乐园目前正在美国德克萨斯大学奥斯汀分校攻读博士学位。

石墨烯不仅用于电池还将用于混凝土设计

2019-01-03 09:36:46

我们都知道石墨烯这个材质是用于新材料电池的研发当中,不过目前国外科学家却利用石墨烯材质打造世界最强人造材料。现在,科学家已经用它来创造一种比过去更坚固、更防水和更环保的新型混凝土。为了制造出这种混凝土,英国埃克塞特大学的一个团队设计了一种技术,将石墨烯片悬浮在水中,然后将水与传统混凝土成分混合。据报道该工艺价格低廉,并且符合现代大规模生产要求。石墨烯不仅用于电池还将用于混凝土设计 经测试,加入石墨烯的混凝土与普通混凝土相比,抗压强度提高了146%,抗弯拉强度提高了79.5%,渗水率降低了近400%。这种材料符合英国和欧洲建筑标准。增加的强度和耐水性应该允许用混凝土制造的结构持续更长的时间。这意味着它们不需要经常更换-混凝土中使用的水泥的生产是二氧化碳排放的主要来源。 另外,据报道在混凝土中掺入石墨烯可以减少约50%的其他材料,包括水泥。科学家们表示,这个因素应该导致在生产每吨混凝土时二氧化碳排放量减少446千克。

石墨烯基础科研现状

2019-01-04 09:45:43

石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。 下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。 一、专利分布 目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。 从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。 总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布 从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。 从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布 从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。 中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。 四、最新研究成果 在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。 在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。 在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。

蛇纹石比石墨烯还牛?无毒环保天然矿电池问世!

2019-01-04 15:47:49

据台湾媒体的最新报道,台湾研究团队在经过三年努力之后终于发现了一种完全取自自然的无毒无害电池。报道称,成功大学材料系洪飞义和吕传盛两名教授所带领的团队经过三年研发,终于利用蛇纹石制成了“天然矿电池”。天然矿电池实际上以蛇纹石硅酸盐矿物群为主要材料(内含有镁、铁、硅等成份),其本身就带有少许电容量15mAh/g,然而研发团队将天然蛇纹石磨成粉末进一步硫化处理,改质获得硫化硅酸镁粉末,粉体经电池组装后确认具有正极材料充放电特性,且电池性能大幅提高4倍达到60mAh/g。洪飞义教授还特别指出,蛇纹石硫化后不仅可做为电池正极,也可以碳化导入电池负极。团队将蛇纹石磨成粉与果糖搅拌,再高温氧化烧结制成碳化硅酸镁粉,较现今常态使用的石墨负极还优异。 蛇纹石藏量多,价格亲民,既使经过硫化处理也无毒性,废电池回收没有环保问题。碳化后用于负极也比目前全球采用石油提炼的石墨负极更具环保,矿电池成本将远比石墨烯电池来得更低、性能更好,而且还环保,如果真的如洪教授所言,小编感觉这新型电池要是不火也没啥道理了。

石墨烯在水性涂料中应用

2019-03-07 09:03:45

水性涂料是国家发起开展的环境友好型涂料,但某些功用尚不及相应的溶剂型涂料,影响其开展。石墨烯具有共同功用,可改善水性涂料功用,促进其开展,给涂料作业者带来新的等待。石墨烯在涂猜中运用首先是改性溶剂型涂料,但用于改性水性涂料也有显着开展。改性办法可用共混法复合改性,也可用原位聚合和溶胶-凝胶技能复合法改性,还可用偶联剂润饰,一同实施不同的功用改性。 1 用钛酸酯偶联剂润饰水涣散改性石墨烯 按通用办法将石墨制成氧化石墨烯,向氧化石墨烯涣散液内分别参加钛酸酯和,在水浴加热法下发作反响,使氧化石墨烯复原并一同嫁接上钛酸酯偶联剂分子。将取得的混合液进行后处理和真空枯燥,得到粉末状改性石墨烯。 因为钛酸酯偶联剂对氧化石墨烯进行了表面润饰,不再发生聚会,故石墨烯水涣散体稳定性高,可长期储存,合适用于复合材料及涂层材料的制备。制备工艺简洁,出产效率高,出产进程和产品均能契合环保要求。 2 石墨烯与基体树脂共混复合水性涂料 2.1 水性导电涂料 石墨烯/聚酯树脂复合水性导电涂料。用Hummers法制备氧化石墨烯,经两步化学复原法得到有机分子润饰的石墨烯水溶液,参加聚酯、助剂和交联剂、催化剂,经液态共混,制备得到水性导墨烯涂料。该涂料具有高导电功用和力学功用,可运用于电磁屏蔽、抗静电、防腐、散热、耐磨及电子线路等范畴,具有广泛的运用价值。 2.2 石墨烯改性水性环氧树脂耐磨玻璃涂料 石墨烯改性的耐磨水性玻璃涂料由两组分组成,榜首组分为基体成膜物,第二组分为固化剂。其间榜首组分包含改性环氧树脂20%~40%、助剂0.5%~7%、氧化石墨烯0.1%~5%、偶联剂1%~2%,其他为水(均为质量分数);第二组分是胺类固化剂。在运用前将两组分混合,其间第二组分占混合物质量分数的3%~30%。该涂料具有硬度高、耐磨性好、与玻璃基底亲和力与附着力强、耐水、耐乙醇性好,且契合环保要求。别的制备办法简洁,具有重要的商业化运用价值。 2.3 石墨烯改性酸酯聚合物水泥防水涂料 用Hummers法制备的氧化石墨烯参加酸酯类聚合物乳液中,参加选用的助剂,按份额参加水泥,拌和涣散,制成氧化石墨烯改性的聚合物水泥防水涂料。该涂料显着增加了酸酯类聚合物乳液成膜的抗拉强度;进步了耐水性;此外,氧化石墨烯丰厚的含氧官能团能够调理水泥水化产品晶体的成长,进步其抗拉强度和耐性。故氧化石墨烯改性的聚合物水泥防水涂料具有杰出的耐久性、抗渗性以及物理力学功用,运用远景宽广。 2.4 石墨烯改性聚酯树脂复合水性涂料 2.4.1 石墨烯/水性聚酯纳米复合乳液 将真空脱水的聚醚多元醇(N210)和TDI反响制得聚酯预聚体,参加二羟甲基引进亲水羧基,加中和盐基化,参加氧化石墨烯水溶液、去离子水和乙二胺进行乳化反响,减压蒸馏出后,滴加维生素C溶液进行原位复原反响,得到石墨烯/水性聚酯纳米复合乳胶树脂。该乳胶树脂可运用于静电防护、防腐涂层、建筑涂料等范畴,本发明工艺简洁、环保、合适大规模出产。 2.4.2 石墨烯/TiO2复合材料改性水性聚酯抗菌涂料 纳米TiO2作为光催化纳米材料的一种,有抗菌灭菌效果,但它关于可见光吸收率较低,纳米粒子趋向于集合,大大降低了其灭菌效果。在含纳米TiO2抗菌涂猜中,引进5%以下的石墨烯,显着进步涂料对可见光吸收率,并加强纳米TiO2的光催化活性和抗菌、灭菌才能,使改性后的水性聚酯在抗菌灭菌归纳功用方面有很大进步。而且具有杰出的表面功用、耐水性和力学功用。 3 石墨烯/聚酯原位聚合的水性导电涂料 石墨烯比较传统的碳系导电填料(炭黑、石墨、碳纳米管、碳纤维等)具有愈加优异的导电性及机械功用。 用二元胺对氧化石墨烯进行基化改性,后用化学复原康复石墨烯的共导电系统,使用石墨烯表面的—NH与—NCO封端的水性聚酯原位聚合,制得含石墨烯的水性聚酯导电涂料。 该导电涂料具有防辐射、抗静电、防腐蚀、耐磨等特性,可用于高分子材料、金属材料、纺织材料表面等方面。 4 用溶胶-凝胶技能制备改性石墨烯/水性聚酯纳米复合涂料 中国科技大学Xin Wang等于2012年在《Surface& CoatingsTechnology》上宣布了他们的研讨论文:用溶胶-凝胶技能制备改性石墨烯/水性聚酯复合纳米涂料,分3部分: (1)硅烷改性石墨烯纳米薄膜制备。用Hummers法制备氧化石墨烯(GO),然后对GO水涣散体用化学复原成GNS,再用DCC(N,N'-二环己基碳化二亚胺)和3-基丙基三乙氧基硅烷(APTES)功用改性,用超声波涣散1h,在70 ℃下拌和反响24 h,经后处理得到APTES功用改性的石墨烯纳米膜f-GNS。 (2)硅烷APTES封端的水性聚酯(WPU)制备。用异佛尔酮二异酸酯(IPDI)、聚氧化丙二醇、一缩二乙二醇和三羟甲基混合多元醇组成PU预聚物,再和二羟甲基反响,然后加APTES反响,得到APTES封端的水性聚酯(WPU),产率86.3%,数均分子量28600(GPC测定)。 (3)溶胶-凝胶技能制备f-GNS/WPU纳米复合涂料。凭借超声波将f-GNS粉末涣散在去离子水中制成悬浮液,将APTES封端的WPU参加其间一同混合,用调理pH值,制成f-GNS/WPU纳米复合涂料。 用1H-NMR、FTIR、XPS、GPC、AFM、HRTEM等表征了GO、f-GNS的结构,根本验证了图1所示的分子结构式与反响进程,及f-GNS/WPU纳米复合涂料产品结构和组成。纳米复合物中的T1、T2和T3代表了单、二和三替代的硅烷键合,证真实APTES封端的WPU和f-GNS相邻的硅氧烷分子之间缩聚反响,构成共价键。 5 结 语 5.1 石墨烯具有共同功用,研制热潮在全球突起 石墨烯是当今世界发现的“至薄”的晶体材料,厚度只要1个碳原子,也是“至坚”材料之一,并具有高导电性、高导热性。猜测在航空航天、世界勘探、海洋开发、国防工业、国民经济各方面具有不可估量的运用远景,研讨热潮在全球突起,国内也起步不俗,开展较快。 5.2 石墨烯在改性涂料功用方面展现了新的远景 对石墨烯在导电、防腐、阻燃、导热和高强度等功用涂猜中都具有十分诱人的潜在远景。 石墨烯与各种涂料树脂经过物理共混、原位聚合和溶胶-凝胶技能等法复合;或用偶联剂润饰,或选用原位聚合等工艺。这些工艺在改性水性涂猜中均证明可行,且功用改善显着。水性涂料经石墨烯改性,其功用有望“更上一层楼”,其进一步开展可期。 5.3 石墨烯改性涂料研制脚步初迈,要正确促进石墨烯出产及运用的开发热潮继续升温,但应镇定对待。 对出产厂商而言,石墨烯出产技能是否到达世界最先进,是否契合清洁文明出产工艺要求,本钱是否合理,有许多技能作业要做。石墨烯在涂猜中的运用,国内有不少研讨作业和专利宣布,开展势头较好,但不能说“已入胜境”。石墨烯和涂料树脂复合办法、助剂挑选、功用性改善,研制的空间都很大。国内宣布石墨烯改性水性涂料的作业和专利多是实验室效果,要到达有用并产业化,要更多投入,有许多研制作业要做。

新型铝-石墨双离子电池技术研究取得新进展

2019-01-08 17:02:10

近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心唐永炳研究员及其研究团队在低成本、高效储能电池方面的研究取得突破性进展。相关研究成果"Carbon-Coated Porous Aluminum Foil Anode for High-Rate,Long-Term Cycling Stability and High Energy Density Dual-Ion Batteries(基于碳包覆多孔铝箔负极的高倍率、长循环、高能量密度双离子电池)"已在线发表于著名材料期刊Advanced Materials上,并申请1项国际发明专利。 该团队于今年3月在著名能源材料期刊Advanced Energy Materials上发布了一项全新的铝-石墨双离子电池技术,该技术一经报道立刻受到了国际、国内媒体及同行的广泛关注。其工作原理有别于现有传统锂电,且以廉价的石墨作为正极,以铝箔同时作为负极和集流体。与常规锂电相比,该新型电池技术具有成本低、工作电压高、安全性好、能量密度高等明显优势。然而该电池技术的循环稳定性仍有待提升,尤其需要改善铝箔负极在充放电过程中的体积变化问题。 基于上述考虑,唐永炳研究员及其团队成员仝雪峰、张帆等人通过一种简单、可控的方法构筑了一种新型碳包覆多孔铝的复合负极材料。测试证明:这种新型多孔铝箔/碳复合负极能显著提高铝-石墨双离子电池的综合性能,特别是循环稳定性获得了大幅度提升。循环性能测试发现:电池在2C高倍率下(充电/放电时间约为30分钟)充放电循环1000次后容量保持率高达——90%,远高于目前国家标准(GB/T 18287-2013)对移动电话蓄电池循环寿命的指标要求;并且发现电池同时还具有优异的倍率特性,在3分钟内充满电时,其质量能量密度高达——200Wh/kg,是传统锂离子电池的2倍左右。实验证实:这种新型多孔铝箔/碳复合负极由于具有三维多孔导电网络,能有效缓解铝箔和锂离子合金化过程中产生的体积膨胀效应,并且能显著提高锂离子的迁移率,从而使电池具有快充快放的特点;而碳包覆层在缓解体积变化效应的同时还有助于形成稳定的固态电解质(SEI)膜,从而进一步提升了电池的循环寿命。该研究成果将有利推动新型铝-石墨双离子电池技术在新能源汽车、便携式电子产品等领域的应用。 该项研究得到了广东省创新科研团队、广东省科技计划项目、深圳市科技计划项目和国家自然科学基金等项目的资助。

锂电池的铜箔可用于制作石墨烯,成本可降低100倍

2019-03-07 10:03:00

现在,比较更传统的电子材料,石墨烯制作进程十分缓慢,意味着本钱更高。现在,格拉斯哥大学研讨人员发现,用于制作锂离子电池的铜材料能够快速批量出产大片石墨烯。 现在,比较更传统的电子材料,石墨烯制作进程十分缓慢,意味着本钱更高。现在,格拉斯哥大学研讨人员发现,用于制作锂离子电池的铜材料能够快速批量出产大片石墨烯。作为碳原子的二维晶体,石墨烯是比如零维富勒烯,一维碳纳米管和三维石墨许多碳衍生物的根本构建材料。这些碳纳米材料都被用于制作各种电子产品。从太阳能电池到灯泡和超活络气体传感器。可是出产大面积高品质的石墨烯,其出产本钱远高于硅。 这种出产本钱傍边很大一部分是出产石墨烯的基板。经过运用化学气相堆积(CVD)的办法,铂,镍或钛的碳化物在高温环境中暴露在乙烯或傍边,来发生单层(一层一个原子厚)石墨烯。最近的出产办法现已下降这些本钱,这种办法经过掺入铜作为基体,但即使是这种办法出产本钱依然贵重。 为了协助极大地下降这些本钱,研讨人员运用一般用于制作超薄阴极(负电极)的锂离子电池的廉价铜箔,在其表面上堆积高品质的石墨烯。事实证明,这种廉价铜箔是优秀基材,铜表面彻底润滑,十分合适构成石墨烯,每平方米本钱一美元,之前贵重办法的每平方米本钱为115美元。 该研讨小组以为,大规模廉价组成办法能完成石墨烯基柔性光电体系,包含比如手机曲折显示器,电子纸,无线射频辨认(RFID)的高质量石墨烯薄膜标签,医疗通道以供给药物或监测生命体征,为机器人和假肢打造的电子皮肤等等。

浅析石墨烯应用于锂电池中的可能性

2019-03-08 09:05:26

事物的开展方向尽管路途弯曲迂回,但终归是行进的和上升的。石墨烯的功能与其层数休戚相关,倘若有一天能完成高质量单层石墨烯的量产,或许全部又会不一样。 我国粉体网讯近年来,跟着新能源轿车和移动通讯设备的开展,运用石墨烯改进、进步动力、储能电池材料的功能,正成为业界重视的焦点。不管是出于炒作的意图仍是科研成果的发布,一时间石墨烯电池新闻“漫山遍野”! 第一款产品是东旭光电于2016年推出了世界首款石墨烯基锂离子电池产品——“烯王”。第二款产品是2016年12月华为推出的业界首个高温长寿命石墨烯助力的锂电池。第三款产品是东旭光电和贝斯特将石墨烯用在隔阂上做出的“国产石墨烯电池”。 …… 尽管“石墨烯电池”的新闻许多,但精确的来讲,现在市面上还没有一款真实意义上的“石墨烯电池”,根本上都是在材料中参加一点石墨烯,以进步锂电池的部分功能的石墨烯基锂离子电池。详细咱们就来分析一下石墨烯在锂电池中究竟能起什么作用。 据了解,石墨烯在电池范畴的运用方式主要有这么几种:1、石墨烯独自用于正/负极材料;2、与其它新式负极材料,比方硅基和锡基材料以及过渡金属化合物构成复合材料;3、作为集流体或集流体涂层,用于进步电池功率特性。 经过以上资料来看,石墨烯在锂电池中的运用还真不少,现在咱们就来分析一下可行性究竟有多大。 1、石墨烯直接作为正/负极材料 研讨标明,纯石墨烯的充放电曲线跟高比表面积硬碳和活性炭材料十分类似,都具有高比表面无序碳材料的根本电化学特征,即初次循环库仑功率极低、充放电渠道过高、电位滞后严峻以及循环稳定性较差的缺陷。 结构上来看,石墨烯的片状结构按捺锂离子的涣散,简单构成电池极化严峻,这也导致了石墨烯的振实和压实密度都十分低,再加上石墨烯本钱极端贵重。归纳来讲,不存在替代传统电极材料直接用作锂离子电池的或许性。 2、石墨烯复合材料电极 石墨烯与硅基和锡基材料以及过渡金属化合物构成复合材料电极。一方面来看,运用石墨烯的纳米空隙能够很好地处理硅和锡材料的胀大碎裂,另一方面,彼此协同作用可有用缓解聚会现象进步额定的储锂空间。 归纳来讲,石墨烯复合材料做电极的确能改进复合材料的电化学功能,但考量材料本钱、生产工艺、量产化或许,石墨烯复合材料电极做不到“鹤立鸡群”,究竟花了大力气做出的材料性价比不高,也就没有完成产业化的必要。 3、石墨烯作为导电剂 其他方面来看,参加到导电剂能进步材料的循环功能和高倍率功能,作用显着高于天然石墨和黑,一起能将电芯内阻减小至最小,有用地处理了阻止锂电池产品快速充电的技能瓶颈,一起大大延长了电池运用寿命,但高倍率功能不抱负,难以广泛运用。 尽管抱负很饱满,但实际总是很骨感,片层结构的石墨烯很难完成均匀涣散,除此之外,石墨烯表面具有丰厚的官能团,添加过多不只会下降电池能量密度,并且会添加电解液吸液量,一起还会添加与电解液的副反应而影响循环性,甚至有或许带来安全性问题。 4、石墨烯运用于正极材料 研讨标明,石墨烯作为辅料添加到正极材料中,可改进倍率和低温功能。可是此类研讨的重复性不高,笔者查阅相关资料,有研讨标明,石墨烯包覆磷酸铁锂只能弱小进步充电功能,作用还不如碳纳米管;而石墨烯包覆三元材料会使材料功能下降,若运用氧化石墨烯功能会稍微改进。归纳来讲,并不是特别抱负。 总结 尽管石墨烯在锂电池中的运用现在并不可观,但今日的石墨烯并不等同于未来的石墨烯,马克思曾在其唯物辩证的哲学思想中提出:“新事物的开展阅历着由小变大,由不完善到完善的进程,人们对新事物的认可也有必定进程,事物的开展方向尽管路途弯曲迂回,但终归是行进的和上升的。”石墨烯的功能与其层数休戚相关,倘若有一天能完成高质量单层石墨烯的量产,或许全部又会不一样。

石墨烯的时代,还远没有到来

2019-03-06 10:10:51

导读前不久,任正非在承受媒体采访时宣称,未来10至20年内会迸发一场技能,“我以为这个年代将来最大的推翻,是石墨烯年代推翻硅年代”,“现在芯片有极限宽度,硅的极限是七纳米,现已接近鸿沟了,石墨是技能前沿”。这儿说到的石墨烯,终究是何方神圣?它真的能带来推翻吗?扫描电镜下的石墨烯,显现出其碳原子组成的六边形结构。图片来历:Lawrence Berkley National Laboratory石墨烯——一种只需一个原子厚的二维碳膜——确实是种令人惊奇的材料。尽管姓名里带有石墨二字,但它既不依靠石墨储量也彻底不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来奇特材料的风仪。假如再把它的潜在用处开个清单——维护涂层,通明可弯折电子元件,超大容量电容器,等等——那简直是改动国际的发明。连2010年诺贝尔物理学奖都颁发了它呢!其实就在2012年,因石墨烯而取得诺贝尔奖的康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)和他的搭档曾经在《天然》上发表文章评论石墨烯的未来,两年来的开展也根本证明了他们的猜测。他以为作为一种材料,石墨烯“出路是光亮的、路途是曲折的”,尽管将来它或许能发挥严重效果,可是在战胜几个严重困难之前,这一场景还不会到来。更重要的是,考虑到工业更新的巨大本钱,石墨烯的优点或许不足以让它简略地代替现有的设备——它的真实远景,或许在于为它的共同特性量身定做的全新运用场合。 石墨烯终究是什么? 石墨烯是人们发现的第一种由单层原子构成的材料。碳原子之间彼此连接成六角网格。铅笔里用的石墨就适当于许多层石墨烯叠在一起,而碳纳米管就是石墨烯卷成了筒状。石墨、石墨烯、碳纳米管和球烯之间的联系。图片来历:enago.com由于碳原子之间化学键的特性,石墨烯很坚强:能够曲折到很大视点而不开裂,还能反抗很高的压力。而由于只需一层原子,电子的运动被约束在一个平面上,为它带来了全新的电学特点。石墨烯在可见光下通明,但不透气。这些特征使得它十分合适作为维护层和通明电子产品的质料。 可是合适归合适,真的做出来还没那么快。 问题之一:制备方法。       许多项研讨向咱们展示了石墨烯的惊人特征,但有一个圈套。这些美好的特性对样品质量要求十分高。要想取得电学和机械功能都最佳的石墨烯样品,需求最费时吃力费钱的手法:机械剥离法——用胶带粘到石墨上,手艺把石墨烯剥下来。诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带。胶带上的签名“Andre Geim”就是和诺沃肖洛夫一起取得诺贝尔奖的人。图片来历:wikipedia尽管所需的设备和技能含量看起来都很低,但问题是成功率更低,弄点儿样品做研讨还能够,工业化出产?恶作剧。要论工业化,这手法毫无用处。哪怕你把握了全国际的石墨矿,一天又能剥下来几片……        当然现在咱们有了许多其他方法,能增加产值、降低本钱——费事是这些方法的产品质量又掉下去了。咱们有液相剥离法:把石墨或许相似的含碳材料放进表面张力超高的液体里,然后超声轰炸把石墨烯雪花炸下来。咱们有化学气相堆积法:让含碳的气体在铜表面上冷凝,构成的石墨烯薄层再剥下来。咱们还有直接成长法,在两层硅中间直接设法长出一层石墨烯来。还有化学氧化还原法,靠氧原子的刺进把石墨片层别离,如此等等。方法有许多,也各自有各自的适用范围,可是迄今为止还没有真的能合适工业化大规模推行出产的技能。        这些方法为什么做不出高质量的石墨烯?举个比如。尽管一片石墨烯的中心部分是完美的六元环,但在边际部分往往会被打乱,成为五元或七元环。这看起来没啥大不了的,可是化学气相堆积法发生的“一片”石墨烯并不真的是完好的、从一点上成长出来的一片。它其实是多个点一起成长发生的“多晶”,而没有方法能确保这多个点长出来的小片都能完好对齐。所以,这些变形环不光散布在边际,还存在于每“一片”这样做出来的石墨烯内部,成为结构缺点、简略开裂。更糟糕的是,石墨烯的这种开裂点不像多晶金属那样会自我愈合,而很或许要一向延伸下去。成果是整个石墨烯的强度要折半。材料是个费事的范畴,想鱼与熊掌兼得不是不或许,但必定没有那么快。显微镜下的一块石墨烯,伪色符号。每一“色块”代表一片石墨烯“单晶”。图片来历:Cornell.edu 问题之二:电学功能。       石墨烯一个有远景的方向是显现设备——触屏,电子纸,等等。可是现在而言石墨烯和金属电极的接触点电阻很难抵挡。诺沃肖洛夫估量这个问题能在十年之内处理。       可是为啥咱们不能爽性扔掉金属,全用石墨烯呢?这就是它在电子产品范畴里最丧命的问题。现代电子产品全部是建筑在半导体晶体管之上,而它有一个要害特点称为“带隙”:电子导电能带和非导电能带之间的区间。正由于有了这个区间,电流的活动才干有非对称性,电路才干有开和关两种状况——可是,石墨烯的导电功能真实太好了,它没有这个带隙,只能开不能关。只需电线没有逻辑电路是毫无用处的。所以要想靠石墨烯发明未来电子产品,代替硅基的晶体管,咱们有必要人工植入一个带隙——可是简略植入又会使石墨烯损失它的共同特点。现在针对这个范畴的研讨确实不少:多层复合材料,增加其他元素,改动结构等等;可是诺沃肖洛夫等人以为这个问题要真实处理,还要至少十年。 问题之三:环境危险。       石墨烯工业还有一个意想不到的费事:污染。石墨烯工业现在最老练的产品之一或许是所谓“氧化石墨烯纳米颗粒”,它很廉价,虽不能用来做电池、可弯折触屏等高端范畴,作为电子纸等用处却是适当不错;可是这东西对人体很或许是有毒的。有毒没关系,只需它老老实实呆在电子产品里,那就没有任何问题;可是前不久研讨者刚发现它在地表水里十分安稳、极易分散。尽管现在对它的 环境影响下断语还为时太早,但这确实是个潜在问题。 所以,石墨烯的命运终究怎么?       鉴于曩昔几个月里学界并无新的突破性发展,近来它的这波突发性“炽热”,恐怕本质上仍是本钱运转的炒作成果,应审慎对待。作为工业技能,石墨烯看起来还有许多未能战胜的困难。诺沃肖洛夫指出,现在石墨烯的运用仍是受限于材料出产,所以那些运用最初级最廉价石墨烯的产品(比如氧化石墨烯纳米颗粒),会最早问世,或许只需几年;可是那些依靠于高纯度石墨烯的产品或许还要数十年才干开发出来。关于它能否代替现有的产品线,诺沃肖洛夫仍然心存疑虑。 另一方面,假如商业范畴过度夸张其奇特之处,或许会导致石墨烯工业变成泡沫;一旦决裂,那么或许技能和工业的发展也无法解救它。科学作者菲利普·巴尔曾经在《卫报》上撰文《不要希望石墨烯带来奇观》,指出一切的材料都有其适用范围:钢坚固而沉重,木头简便但易腐,就算看似“全能”的塑料其实也是种种截然不同的高分子各显神通。石墨烯一定会发挥巨大的效果,可是没有理由以为它能成为奇观材料、改动整个国际。或许,用诺沃肖洛夫自己的话说:“石墨烯的真实潜能只需在全新的运用范畴里才干充沛展示:那些设计时就充沛考虑了这一材料特性的产品,而不是用来代替现有产品里的其他材料。” 至于眼下的可打印、可折叠电子产品,可折叠太阳能电池,和超级电容器等等新范畴能否发挥它的潜能,就让咱们平心静气拭目而待吧。

石墨烯应用领域及前景浅析

2019-01-03 09:36:46

石墨烯是一种二维晶体,石墨烯独特的结构使它具有优异的电学、力学、热学和光学等特性,例如石墨烯具有100倍于硅的超高载流子迁移率、高达130GPa的强度、很好的柔韧性和近20%的伸展率、超高热导率、高达2600m2/g的比表面积,并且几近透明,在很宽的波段内光吸收只有2.3%。这些优异的物理性质使石墨烯在射频晶体管、超灵敏传感器、柔性透明导电薄膜、超强和高导复合材料、高性能锂离子电池和超级电容器等方面展现出巨大的应用潜力。 尽管石墨烯还没有实现大规模的产业化,但是,市场对于石墨烯的应用十分看好,就目前的研发成果显示,未来石墨烯将广泛应用于以下四大领域。 1.电子材料领域 作为电极材料,石墨烯是绝佳的负极材料,被认为是可以替代硅的芯片材料。另外,石墨烯在柔性屏幕、可穿戴设备、太阳能充电等领域的应用还有待挖掘。 据悉,英国曼彻斯特大型已经开发出仅有10至40个原子厚度的石墨烯LED屏幕,拥有超薄、可弯曲的特性。这意味着未来,电子设备的屏幕可以进一步降低厚度、更为灵活,甚至实现整体柔性化。 石墨烯在可穿戴设备领域也具有一定应用空间。例如,爱尔兰科学家正在开发基于石墨烯的灵活可穿戴传感器,并发现该传感器能够检测到用户最细微的动作,包括跟踪呼吸和脉搏。另外,该传感器还能实现自供电,也许未来能够应用在智能服装中。 2.散热材料领域 金属材料在散热应用方面存在难于加工、耗费能源、密度过大、导电、易变形以及废料难回收等诸多问题,几乎没有太大的降价空间。而纳米石墨烯导热塑料如应用在LED灯具等产品的散热上,其系统成本至少可以降低30%。石墨烯是一种由碳原子构成的单层片状结构的纳米新材料,是目前人类所发现的几乎完美的平面原子结构,其出色的导电、导热以及散热性能让各行各业均对其寄予厚望。 石墨烯是二维的单层碳原子晶体,与三维材料相比,其低维结构可显著削减晶界处声子的边界散射,并赋予其特殊的声子扩散模式。石墨烯所具有的快速导热与散热特性使得石墨烯成为极佳的散热材料,可用于智能手机、平板电脑、大功率节能led照明、卫星电路、激光武器等的散热。 3.生物医学领域 石墨烯具有突出的力学性能和生物相容性,将其作为增强填料可显著提高生物材料的力学性能。 生物传感器是生命分析化学及生物医学领域中的重要研究方向,已广泛应用于临床疾病诊断和治疗研究。石墨烯制成的生物传感器对生命分析领域的快速发展具有重要现实意义。在基因组测序技术领域,最近成功开发出来的DNA感测器,是一种以石墨烯为基础的场效应类晶体管设备,能探测DNA链的旋转和位置结构。该感测器利用石墨烯的电学性质,成功实现检测DNA序列的微观功能。 4.军工领域 从中国石墨烯产业技术创新战略联盟(简称联盟)获悉,为促进石墨烯在军工领域的推广应用,2015年1月16日,联盟将举行军工应用委员会成立授牌仪式。 我国政府和国防军工方面的领导和专家对石墨烯在军工领域的应用前景十分关注。据悉,今年年初,在哈尔滨召开的“石墨烯军工应用技术研讨会”上,总装备部、国防科工局、各军工集团相关领导、专家,以及石墨烯产业领域专家与企业家、军工及民口配套单位代表共同研讨石墨烯在军工方面的应用前景。 由于石墨烯具有高导电性、高韧度、高强度、超大比表面积等特点,业内人士认为,石墨烯在航天军工等领域有广泛应用。据悉,我国科学家发现石墨烯可做太空动力源。通过对石墨烯在光作用下的运动现象的研究表明,石墨烯材料可将光能直接转化为动能,这标志着石墨烯材料将成为一种新的动力来源,这种动力源将远高于光压现象所产生的动力源。未来,石墨烯可能为星际探索、卫星变轨等提供无尽的动力。 结语 石墨烯由于优越的特性,业内预计未来5至10年,全球石墨烯产业规模会超过1000亿美元。更有乐观者认为,石墨烯的市场潜在规模至少在万亿元以上。就目前情况来讲,石墨烯市场化的最大阻碍是市场需求和价格,石墨烯未来产业化之路遥遥,需要政府的支持,和研发人员的开拓创新,相信通过共同努力,石墨烯将在更多的领域大放异彩。

超重力法制备石墨烯材料研究

2019-02-28 11:46:07

石墨烯(Graphenes):是一种二维纳米碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的总称。石墨烯具有完美的二维晶体结构,它的晶格是由六个碳原子围成的六边形,厚度为一个原子层。碳原子之间由s键衔接,结合办法为sp2杂化,这些s键赋予了石墨烯极端优异的力学性质和结构刚性。 1、石墨烯的根本特性和制备办法 石墨烯(Graphenes):是一种二维纳米碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的总称。石墨烯具有完美的二维晶体结构,它的晶格是由六个碳原子围成的六边形,厚度为一个原子层。碳原子之间由s键衔接,结合办法为sp2杂化,这些s键赋予了石墨烯极端优异的力学性质和结构刚性。 石墨烯是已知的世上最薄、最坚固的纳米材料,它几乎是彻底通明的,只吸收2.3%的光;导热系数高达5300W/m·K,高于碳纳米管和金刚石,常温下其电子搬迁率超越15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约1Ω·m,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子搬迁的速度极快,因而被等待可用来开展更薄、导电速度更快的新一代电子元件或晶体管。因为石墨烯实质上是一种通明、杰出的导体,也合适用来制作通明触控屏幕、光板、乃至是太阳能电池。图1 石墨烯的结构示意图 石墨烯首要制备办法图2 石墨烯制备办法优缺点比较 制备石墨烯常见的办法为液相剥离法、氧化复原法、SiC外延生长法和化学气相堆积法(CVD)。液相剥离法是在溶液中首要依托机械力的作用,战胜石墨层间的范德华力,将体相石墨剥离成单层或少层石墨烯的办法。现在最常用的剥离设备是超声发生器,存在扩大难、功率低及石墨烯层数较厚等问题。 氧化复原法是经过将石墨氧化,增大石墨层之间的距离,再经过物理办法将其别离,最终经过化学法复原,得到石墨烯的办法。这种办法操作简略,产值高,可是产品质量稍差。一般运用的剥离设备是超声发生器,氧化复原设备是反应釜,导致扩大难及氧化复原功率低一级问题。 SiC外延法是经过在超高真空的高温环境下,使硅原子提高脱离材料,剩余的C原子经过自组方式重构,然后得到根据SiC衬底的石墨烯。这种办法能够获得高质量的石墨烯,可是这种办法对设备要求较高。 CVD法是现在最有或许完成工业化制备高质量、大面积石墨烯的办法。这种办法制备的石墨烯具有面积大和质量高的特色,但现阶段本钱较高,工艺条件还需进一步完善。这些办法中最有或许规模化的低本钱制备办法是液相剥离法和氧化复原法。 2、超重力氧化复原法制备石墨烯 2.1 超重力技能介绍: 超重力技能是使用旋转填充床(RPB)发生的比地球重力大得多的超重力环境,强化物质的传递、混合、传热及化学反应的技能。 自世纪面世以来,在国内外遭到广泛的注重,因为它的广泛适用性以及具有传统设备所不具有的体积小、重量轻、能耗低、易工作、易修理、安全、牢靠、灵敏以及更能适应环境等长处,使得超重力技能在化工、环保、材料等工业领域中较广泛应用。 超重力工程技能的特色:具有微观混合特性;具有极大的强化传质特性;能发生均匀而有梯度的剪切作用;扩大作用不明显等。图3 年产1万吨超重力法纳米碳酸钙出产线 2.2 超重力氧化复原法制备石墨烯:图4 超重力氧化复原法制备石墨烯研讨布景图5 超重力氧化复原法制备石墨烯根本工艺 2.3 超重力法氧化石墨剥离技能 (1)剥离时刻对氧化石墨烯功能影响:图6 不同剥离时刻制备的氧化石墨烯对MB染料吸附曲线图7 不同剥离时刻制备的氧化石墨烯TEM相片 (2)氧化石墨溶液浓度对氧化石墨烯功能的影响图8 不同氧化石墨溶液浓度制备的氧化石墨烯对MB染料吸附曲线图9 不同溶液不同氧化石墨溶液浓度制备的氧化石墨烯层数示意图 由图9标明:G峰的波数越高,层数越少,G’峰的波数越低,层数越少。D峰和G峰的强度比ID/IG数值越大,缺点程度越高 (3)旋转床办法和超声法制备氧化石墨烯功能比照图10石墨烯循环伏安曲线图(a)经旋转床剥离后制备石墨烯CV曲线;(b)经超声剥离后制备石墨烯CV曲线;(c)两种办法制备石墨烯在10mV/s下CV曲线 成果显现:旋转床办法制备的石墨烯比电容量为225F/g,而超声办法制备为175 F/g。图11 两种办法制备的石墨烯沟通阻抗值比较 旋转床制备的石墨烯沟通阻抗值约为7.5Ω,超声反应釜制备的石墨烯沟通阻抗值约为14Ω,阻抗值更小,导电率更大,选用四探针法测定的石墨烯均匀电导率,RPB剥离的为312.8S/m,超声反应釜的为278.1 S/m 。 2.4 超重力复原技能 (1)温度对超重力复原法制备石墨烯的影响图12 不同复原温度下制备石墨烯的CV曲线图13 不同复原温度下制备石墨烯的EIS曲线 (2)不同复原剂品种对制备石墨烯功能的影响不同复原剂制备石墨烯TEM相片不同复原剂制备石墨烯红外光谱相片 图14不同复原剂品种对制备石墨烯功能的影响 由图14能够看出,VC(抗坏血酸)和复原作用较好,复原程度较高,含氧基团特征峰强度低 。 (3)超重力法和惯例办法复原氧化石墨烯的作用比照图15 超重力法和惯例法制备石墨烯XPS成果比照 小结:3、超重力液相剥离法制备石墨烯图16 超重力液相剥离法制备石墨烯设备图17 超重力液相剥离法制备石墨成果 横向尺度150nm, 厚度3-9层,浓度:0.3mg/ml; 产率:3%; 溶剂为水 4、总结 (1)超重力氧化复原法制备石墨烯具有产品质量高,出产功率高,易产业化的特色。 (2)超重力直接剥离法具有本钱低,产品质量好,易产业化的特色。 (3)这种技能也有望用于其它层状材料,如:高岭土、蒙脱土、云母等的剥离及深加工,欢迎合作开发。