您所在的位置: 上海有色 > 有色金属产品库 > 石墨烯锂离子电池

石墨烯锂离子电池

抱歉!您想要的信息未找到。

石墨烯锂离子电池百科

更多

锂离子电池

2018-05-11 19:18:46

锂离子电池锂离子二次电池作为新型高电压、高能量密度的可充电电池,其独特的物理和电化学性能,具有广泛的民用和国防应用的前景。其突出的特点是:重量轻、储能大、无污染、无记忆效应、使用寿命长。在同体积重量情况下,锂电池的蓄电能力是镍氢电池的1.6倍,是镍镉电池的4倍,并且目前人类只开发利用了其理论电量的20%~30%,开发前景非常光明。同时它是一种真正的绿色环保电池,不会对环境造成污染,是目前最佳的能应用到电动车上的电池。我国从二十世纪九十年代开始开发和利用锂离子电池,至今已取得突破性进展,研制出了完全拥有自主知识产权的锂离子电池。

石墨烯在柔性锂离子电池中的应用及前景

2019-03-07 10:03:00

为了满意日益增长的对电子产品小型化、多样性和可变性的需求, 柔性可穿戴的便携式电子产品成为未来开展的趋势。近年来,可卷绕式显示屏的面世及电子衬衫和卷屏手机等柔性电子产品概念的提出,引发了科研作业者对柔性电子技能的研讨热潮。柔性电子技能行将带来新一轮电子技能,并将对社会生活方式及习气发生性影响。柔性电化学储能材料不只需求接受电池、电容器材料自身在电化学过程中引起的体积改变,一起还需求器材在机械变形条件下也可以正常作业。 石墨烯基柔性锂离子 电池材料开展现状 柔性锂离子电池是锂离子电池范畴的新式研讨方向之一, 现在仍处于试验室研讨阶段。开展柔性锂离子电池的首要困难在于怎么取得高功用的柔性电极极片。 石墨烯也具有很高的电导率和热导率、优异的电化学功用以及易功用化的表面, 一起简单加工构成柔性薄膜。因而,石墨烯被认为是一种极具潜力的先进柔性电化学储能材料。 石墨烯在可弯折柔性锂离子电池中的运用首要包含2个方面: 石墨烯作为导电增强相, 凭借高分子、纸、纺织布供给柔性骨架, 以进步柔性极片的电子导电特性, 取得复合导电基体, 并担载活性物质; 石墨烯或其复合材料直接作为柔性基体或柔性电极。石墨烯/柔性基体复合结构 石墨烯具有很高的电子电导率, 可选用喷涂、滋润、涂覆等不同办法, 将石墨烯附着于各类柔性基底上, 运用基底供给柔性支撑,供给力学功用,石墨烯供给导电网络, 构成了石墨烯/柔性基体复合结构。常见的基体材料, 如高分子、纸、纺织布等, 都可制备这种类型的电极。 Cheng研讨组运用大孔径和高孔隙率的滤纸作为过滤介质, 选用真空抽滤法, 以石墨烯涣散液作为滤液, 得到了石墨烯/纤维素复合纸。在抽滤过程中,石墨烯进入滤纸内部, 受纤维素纤维的毛细效果力和表面官能团的一起效果而结实结合在其表面, 而且持续堆积填充在由纤维素纤维构成的三维网状孔隙内,终究构成一种具有石墨烯和纤维素双相三维交错结构的石墨烯/纤维素复合结构。在这种双相三维交错结构中, 纤维素纤维作为柔性三维骨架,为复合结构供给了杰出的力学功用和离子传输通道。 石墨烯薄膜及复合材料的柔性基体 为了进步活性物质在柔性电极中的份额, 石墨烯薄膜也可直接充任负极运用。选用真空抽滤等办法, 已可很多制备石墨烯薄膜。另一方面,石墨烯具有特殊的二维层状结构和丰厚的表面官能团, 也使得石墨烯薄膜具有高的可弯折和力学特性。石墨烯柔性电极的功用表征 电化学测验首要包含半电池的电化学功用和动态条件下的全电池电化学功用测验等. 现在大部分柔性电极都是拼装成扣子式半电池进行电化学功用的研讨,一起在静态条件下对其拉伸、剪切、弯折强度进行测验。 Ruoff研讨组具体研讨了GO薄膜的制造及拉伸、曲折等力学行为。Kim等人用气相化学堆积法制备了高品质石墨烯薄膜, 将石墨烯转移到PET基底上并包覆一层聚二甲基硅氧烷(PDMS)进行力学功用测验,Cheng研讨组对石墨烯薄膜及石墨烯/纤维素复合纸进行了拉伸测验和重复弯折的试验。Cheng研讨组用泡沫Ni模板定向化学气相堆积制备了三维石墨烯泡沫,互连的网络状结构使其具有高的比表面积、高电导率和柔性。因石墨烯泡沫内存在褶皱和波纹。开展趋势猜测 综上所述, 柔性仍处于试验室研讨阶段, 现在首要会集在可弯折的柔性锂离子电池范畴。 得益于杰出的二维结构和力学特性,石墨烯有望作为柔性电极的中心材料得到广泛运用。虽然如此, 柔性电池依然处于开展的初期, 间隔实践运用仍有适当长的间隔。针对石墨烯柔性电极存在的首要问题,未来的开展方向可能会会集在以下几个方面: 柔性电极的力学功用增强及高可变形性,进步现有石墨烯复合柔性电极拉伸强度和抗弯折功用,解决方案可能将会集在:与碳纳米管复合、与聚合物或柔性基体复合、选用新式的电极结构规划。 具有自我修正才能的柔性电池; 快速充电才能的进步; 柔性电极制备新工艺的开发; 柔性锂离子电池器材拼装及规划。现在存在的问题首要包含: (1) 电解质的优化改善;(2) 柔性封装材料的开展;(3) 极耳与石墨烯柔性极片的衔接。极耳是锂离子电池极片与外电路衔接的重要组成部分,传统锂离子电池中一般选用金属铝和镍作为极耳。因为柔性锂离子电池一般选用碳基极片。 总结 跟着柔性电子产品的开展, 柔性锂离子电池作为其要害部件之一也备受瞩目。虽然近年来, 柔性锂离子电池用电极材料制备技能现已取得了巨大发展,但柔性锂离子电池的功用仍远远达不到传统锂离子电池的水平, 远不能满意实践运用的需求。得益于杰出的二维结构和力学特性,石墨烯有望作为柔性电极的中心材料得到广泛运用石墨烯薄膜直接作为柔性基体可以下降电极的质量, 进步电池的全体能量密度, 因而将具有更宽广的开展前景。

锂离子电池价值何在

2019-03-08 09:05:26

纵观人类前史,咱们现已阅历了两次工业革新,第一次是蒸汽机,第2次是电力。现在,咱们正在阅历第三次工业革新,即关于动力互联网与再生性动力的革新。 第三次工业革新有五大支柱 一、向不行再生动力转型; 二、将每一大洲的建筑转化为微型发电厂,以便就地搜集可再生动力; 三、在每一栋建筑物以及基础设施中运用氢和其他存储技能,以存储间歇式源; 四、运用互联网技能将每大洲的电力网转化为动力同享网络,调剂余缺,合理装备运用; 五、运输工具转向插电式以及燃料电池动力车,所需电源来自上述电网。 动力存储技能发展至今,针对不同的范畴、不同的需求,人们已提出和开发了多种储能技能来满意运用。全球储能技能主要有物理储能、化学储能(如钠硫电池、全钒液流电池、铅酸电池、锂离子电池、超级电容器等)、电磁储能和相变储能等几类。 锂离子电池原理 锂离子电池一般是运用锂合金金属氧化物为正极材料、石墨为负极材料、运用非水电解质的电池。 充电时,正极的锂离子和电子分隔,锂离子在电池内部,穿过隔阂进入负极材料,电子经过充电机外部电路进入负极,和锂离子结合,停留在负极材料。 正极 正极材料:可选的正极材料许多,干流产品多选用锂铁磷酸盐。 正极反响:放电时锂离子嵌入,充电时锂离子脱嵌。 负极 负极材料:多选用石墨。新的研讨发现钛酸盐可能是更好的材料。 负极反响:放电时锂离子脱嵌,充电时锂离子嵌入。 简略来说,锂离子电池就是由正极材料、负极材料、电解液、隔阂和外壳组成的能量贮存设备。相比较而言,锂离子电池储能则是现在储能产品开发中最可行的技能道路。锂离子电池具有能量密度大、自放电小、没有回忆效应、工作温度规模宽、可快速充放电、运用寿命长、没有环境污染等长处,被称为绿色电池。此外,它的均匀输出电压高(约3.6V),为Ni-Cd、Ni-MH电池的3倍,输出功率大,充电效率高,第1次循环后基本上为100%。当下,在特斯拉、比亚迪、银隆等厂商推进下,锂离子电池成为储能干流电池技能的趋势越来越显着。 现在,在新动力范畴得到广泛运用的锂离子电池主要有三元锂电池、磷酸铁锂电池和钛酸锂电池。

浅析鳞片石墨在锂离子电池中的应用

2019-01-04 15:16:49

鳞片石墨是一种非金属矿物质,结晶完整,片薄且韧性好,物化性能优异,具有耐高温、耐氧化、抗腐蚀、导热、导电性能强等特有的物理、化学性能。 鳞片石墨的导电性比一般非金属矿高100倍,是运用范围极为广范的导电材料。其中,锂离子电池就是利用鳞片石墨粉的导电性进行工作的。 在锂离子电池材料中,负极材料是决定电池性能的关键。作为一种高结晶度的石墨材料,鳞片石墨的粒度直接影响电极比表面积和边缘碳原子所占的比例,这与首次充电时的不可逆比容量有很大的影响,所以鳞片石墨在电池中起到至关重要的作用。 一、鳞片石墨具有电子导电率高、锂离子扩散系数大、嵌埋容量高和嵌埋电位低等诸多优点,所以鳞片石墨是锂电池最重要的材料之一。 二、鳞片石墨可以使锂电池电压平稳,减小锂电池中的内阻,可以使电池中电量储存时间长。增加电池的利用时间。 三、鳞片石墨可以减少锂电池中鳞片石墨粉的用量,使电池成本大大降低。 综上所述,鳞片石墨对锂离子电池来说,不仅能够延长电池使用时间,促使电压平稳,增强导电率,还可降低电池成本。

不会爆炸的水基锂离子电池

2019-01-04 09:45:37

9月10日物理学家组织网报道称,美国华人科学家团队研制出一款基于水基电解液的新型锂离子电池,不仅电压首次达到笔记本电脑等家用电子产品所需的4伏标准,且能完全避免现有商用锂电池存在的着火和爆炸危险。尽管当前它的续航还不如传统材料,但研究人员希望可为进一步的研究奠定基础。市面上最常见的电池,仍然采用了两侧都有电极的锂离子方案。在充放电的过程中,粒子可在两极间来回移动。位于中间的电解质,可以帮助粒子的移动。然而大多数情况下,电解质都是由易燃的有机化学物质构成。马里兰大学工程师、兼研究合著者ChunshengWang表示:虽然有防火的水基电解质存在,但水并不是很活泼,因此这种安全电池通常也并不强劲。现有电子产品中,锂离子电池都使用非水性电解液。工作时,电池电压必须满足4伏标准,而在这个工作电压下水容易分解,所以锂电池常用有机溶剂作为电解液,但这类电解液易燃易爆,可能导致电子产品着火爆炸,存在极大安全隐患。 马里兰大学王春生团队联合美陆军研究实验室许康等科学家,合作开发出了这款升级版水基锂电池。研究人员设计出一种新型聚合物凝胶涂层,因其特殊的排水性,涂在电极上后,水分子无法靠近电极表面;首次充电后,凝胶分解形成稳定界面,将电极和电解液隔离,阻止水分子在工作电压下分解。该技术不仅提高了电池的储能和充放电性能,还完全规避了有机溶剂电解质易爆炸的危险。 虽然新电池的工作电压已达到商用水平,但与现有锂离子电池相比,还有很大的提升空间。比如,新电池的材料成本较高,且只能充放电50次到100次,要想具有商业竞争优势,充放电周期必须达到500次以上。 但不可否认的是,新电池背后的电化学处理方法,对钠离子电池、锂硫电池、锌镁多离子电池等电池技术,以及电镀和电化学合成等领域,具有重要借鉴意义。

废旧锂离子电池有价金属回收技术

2019-02-21 15:27:24

一、干法技能     干法是经过复原焙烧别离钴、铝,浸出别离钴和黑的一种锂离子电池收回处理办法。该办法将电池坚持在阻隔水分与空气的环境中,一般是在氮气或气环境中进行,将锂离子电池在高温下进行燃烧,别离出各种金属。温豪杰,等提出了高温焙烧收回金属钴的工艺。先对锂离子废旧电池进行放电处理,剥离外壳,收回金属材料;将电芯与焦炭、石灰石混合,投入焙烧中进行复原焙烧。有机物燃烧生成二氧化碳及其他气体,钴酸锂被复原为金属钴和氧化锂,氟和磷元素被沉渣固定,铝被氧化为Al2O3炉渣。大部分氧化锂以蒸气方式逸出,将其用水吸收,金属铜、锂、镍、等构成含碳合金,再用惯例湿法冶金技能进行深加工处理。干法工艺流程较短,进程中考虑了氟污染的防治,而且锂元素得以收回。     在国外,日本索尼和住友金属矿山公司合作开发出了从废旧锂离子电池中收回钴等元素的技能。先将电池燃烧,去除有机物,再挑选去除铁、铜后,将剩下粉末加热并溶于酸中,用有机溶媒提取氧化钴。     Churl Kyoung Lee,等先把废旧锂离子电池破碎,并在不同温度范围内进行热处理,将碳粉和粘合剂等可燃材料变为气体,留下LiCoO2。在恒温水浴(75℃)、液固体积质量比20L/g、硝酸浓度1mol/L、1.7%H2O2溶液中溶解LiCoO2,Co和Li的浸出率均到达85%。     干法工艺相对简略,不足之处是能耗较高,电解质溶液和电极中其他成分经过燃烧转变为CO2或其他有害成分,如P2O5等。燃烧除掉有机物的办法易引起大气污染,合金纯度较低,后续湿法冶金进程仍需一系列净化除杂进程。     二、湿法技能     湿法是以无机酸溶液将废旧电池中的各有价成分浸出后,再以络合交换法、碱煮-酸溶法、酸溶-萃取-沉积法等加以收回。     Zhang Pingwei,等用4mol/L溶液在80℃下浸出锂离子二次电池正极废料,Co、Li的浸出率均大于99%,之后用0.9mol/L的PC-88A(2-乙基已基磷酸-单-2乙基已基醚)萃取Co,反萃取后以硫酸钴方式收回钴。溶液中的锂经过参加饱满碳酸钠溶液,在100℃下沉积为碳酸锂得以收回,收回率挨近80%。Kudo Mistuhiko,等用酸浸出锂离子电池正极废料,往浸出液中参加金属,使Co2+变成Co,然后加碱去除金属,获得金属Co。Hayashi,等用硫酸或浸出,在浸出液中参加碱金属碳酸盐,沉积物质经焙烧获得更纯的正极活性物质。Supasan,等用HNO3溶液浸出锂离子电池正极废料,往混合浸出液参加LiOH,使各金属生成氢氧化物沉积,沉积物经过滤并焙烧,得金属氧化物的混合物。     王晓峰,等先将电极材料在80℃的稀中溶解,滤去不溶物质后用调理pH=4,挑选性沉积出铝的氢氧化物,然后参加含NH4Cl的,调理pH至10左右,使钴、镍生成的合作物,再通入纯氧气把CO2+、Ni2+氧化为三价离子,并将溶液重复经过弱酸性阳离子交换树脂,对饱满树脂用不同浓度的硫酸铵溶液洗脱钴和镍,再用草酸盐从洗脱液中沉积钴和镍。申勇峰选用硫酸浸出-电解工艺收回钴。用10mol/L硫酸溶液,在70℃下浸出钴、锂,调理溶液pH至2.0~3.0,90℃鼓风拌和,中和水解脱除其间的杂质,再在55~60℃下以钛板作阳极,以钴片作阴极,以235A/m2电流密度电解,得到契合国家标准的电钴。钟海云,等从锂离子二次电池正极废料-铝钴膜中收回钴选用的是碱浸-酸溶-净化-沉钴的全湿法流程。先用100g/L的NaOH溶液浸出铝钴膜废料,制备氢氧化铝,再向剩下废猜中参加稀H2SO4和H2O2,酸溶后的溶液调pH至5.0净化除杂,然后参加草酸铵溶液淀钴,终究制得草酸钴产品。吴芳选用碱溶解电池材料,预先除掉约90%的铝,然后选用H2SO4+H2O2系统浸出滤渣,浸出后的滤液中含有Fe2+、Ca2+、Mn2+等杂质,用P2O4溶剂萃获得到钴和锂的混合液,然后用P507溶剂萃取别离钴、锂,反萃取后得到硫酸钴,萃液沉积收回碳酸锂,得到的碳酸锂到达零级产品要求,锂的一次收回率为76.5%。专利“从含钻下脚猜中高效提取钴化合物的新工艺”供给了另一条思路。将钴锰料在反响釜顶用工业硫酸溶解,去除不溶的有机物残渣后得到弄清的CoSO4、MnSO4混合溶液。将溶液参加到含有工业的化器中,坚持pH在9以上,反响必定时刻后用离心机将沉积别离,滤液送反响釜。向反响釜中参加NaOH溶液并加热至欢腾坚持5min。热沉的悬浮液冷却到60℃后用离心机别离出钴化合物。将钴化合物在反响釜顶用浓硫酸溶解并稀释、过滤得到硫酸钴弄清液。此弄清液送沉积槽,参加碳酸钠溶液调pH至8.0,使生成紫红色沉积,对此沉积拌和水洗数次,然后晒干得碱式碳酸钴产品。金泳勋,等研讨了选用浮选法从废旧锂离子电池中收回锂钴氧化物,但收回的锂钴氧化物含有石墨等杂质,不能用来制造锂离子电池。温豪杰,等选用碱浸-酸溶-净化-沉钻工艺收回锂离子电池正极废猜中的铝和钻,得到化学纯氢氧化铝,收回率为94.89%,以草酸钴方式收回钴,直收率为94.23%。     以湿法处理废旧锂离子电池,浸出液需求严厉净化,耗费许多电能,有机试剂也会对环境和人体健康有晦气影响,而且工艺流程长,对设备要求高,本钱高。现行的湿法工艺都较杂乱,资源收回率低,存在二次污染等问题。有研讨者提出的AEA工艺,虽有工艺简略、二次污染程度低、资源收回率高级优势,但其经济可行性还需进一步研讨。     McLaughlin提出,选用Toxco法(火法与湿法相结合),首先将抛弃材料在液氮中冷却,机械破碎后,参加去离子水,使锂与水反响生成氢氧化锂,并以此作为首要产品,但该法未述及对钴等其他元素的收回。     Kim,等对电极材料的直接修正进行了实验探究,但其处理功率还不能得到确保,而且修正之后的电极材料是否具有杰出的充放电和安全功能、是否可以直接用作锂离子电池的电极材料,还有待进一步考证。     总归,各国对抛弃锂离子电池的收回再生工艺研讨起步都较晚,而且因为锂离子电池对环境的污染相对其他电池品种较小、收回处理本钱高,所以一向没有高效、经济、环保的收回工艺,所以有必要寻求一种合理、有用、清洁的金属收回和资源使用途径。     三、生物浸出工艺     所谓微生物浸出就是用微生物将系统的有用组分转化为可溶化合物并挑选性地溶解出来,得到含金属的溶液,完成目标组分与杂质组分别离,得到含金属的溶液,完成目标组分与杂质组分别离,终究收回有用金属。生物浸出技能是生物、冶金、化学等多学科穿插技能,是一个杂乱的进程,包含细菌成长代谢的生物学、细菌与矿藏表面相互效果的表面化学、动力学等,化学氧化、生物氧化与原电池反响往往同时发生。其间微生物对细菌浸出的特殊效果一般认为有3种氧化机理:直接氧化反响、Fe3+氧化硫化物的化学氧化反响、原电池反响。在这3种浸出机理中,微生物都起着至关重要的效果。生物浸出中的首要菌种有氧化硫杆菌、氧化铁杆菌、氧化铁硫杆菌和聚硫杆菌等,它们都归于自养菌,能成长在普通微生物难以生计的较强的酸性介质里,经过对S、Fe、N等无机化合物的氧化获得能量,从CO2中获得碳,从铵盐中获得氮来构成本身细胞。在许多酸性水域中都有这类杆菌成长,只需取回某各水来加以驯化、培育,即可接种于所要浸出的废渣中进行细菌浸出。这种办法具有低本钱、低能耗、无污染等长处,已在采矿工业中广泛使用。     生物浸出技能已成功使用于从低档次,难处理矿石中提取金属,使用于废水处理及从各种抛弃物如抛弃线路板、干电池、镍-镉电池等中收回金属,也是一个十分抢手的研讨课题。学习生物冶金技能,使微生物直接或直接参加废旧电池粉末中的二氧化锰的复原收回,二氧化锰的终究浸出率可达93%。与传统电池收回技能比较,其特殊优势在于环境友好,并可完成有机废物与废旧电池的综合治理。使用生物浸出技能处理抛弃锂离子电池的研讨才刚刚起步。辛宝平,等研讨了选用生物淋滤溶出法从抛弃锂离子电池中收回钴。先把废旧电池拆分并挑选,用含有微生物的溶液淋滤溶出废旧锂离子电池中的钴,调查了培育条件、质量浓度、开始pH值和电极材料参加量等对生物淋滤钴溶出的影响,并探讨了进步钴离子生物溶出功率的办法及工艺条件。选用氧化亚铁硫杆菌和氧化硫硫杆菌的混合菌液进行实验,关于锂离子电池中的钴,生物淋滤较之比化学浸出具有更高的溶出功率。国外最近也报导了选用嗜酸氧化铁硫杆菌浸出抛弃锂离子电池中的钴和锂的实验研讨结果。因为选用单一菌种,浸出率很低,未对其他金属的收回进行研讨,也未进行浸出机理及动力学方面的研讨。

你能分清锂电池、锂离子电池、锂聚合物电池吗?

2019-01-04 15:16:49

12345678

锂离子电池磷酸铁锂正极材料的研究进展

2019-01-04 13:39:36

锂离子电池因其具有能量密度高、自放电流小、安全性高、可大电流充放电、循环次数多、寿命长等优点,越来越多地应用于手机、笔记本电脑、数码相机、电动汽车、航空航天、军事装备等多个领域。锂电池产业已经成为国民经济发展的重要产业方向之一。目前,锂离子电池正极材料分为以下几类:①具有层状结构的钴酸锂、镍酸锂正极材料;②具有尖晶石结构的锰酸锂正极材料;③具有橄榄石结构的磷酸铁锂正极材料;此外还有三元材料。磷酸铁锂正极材料的理论比容量为170mA/g,电压平台为3.7V,在全充电状态下具有良好的热稳定性、较小的吸湿性和优良的充放电循环性能,因此成为现今动力、储能锂离子电池领域研究和生产开发的重点。LiFePO4基本性能LiFePO4基本结构磷酸铁锂正极材料具有正交的橄榄石结构,pnma空间群,如图1所示。在晶体结构中,氧原子以稍微扭曲的六方紧密堆积的方式排列。Fe与Li分别位于氧原子八面体中心4c和4a位置,形成了FeO6和LiO6八面体。LiFePO4充放电原理磷酸铁锂电池充放电的过程是在LiFePO4与FePO4两相之间进行的,如图2所示,其具体机理为:在充放电过程中,Li+在两个电极之间往返嵌入和脱出。充电时,Li+从正极脱出,迁移到晶体表面,在电场力的作用下,经过电解液,然后穿过隔膜,经电解液迁移到负极晶体表面进而嵌入负极晶格,负极处于富锂状态。与此同时,电子经正极导电体流向正极电极,经外电路流向负极的集流体,再经负极导电体流到负极,使负极的电荷达到平衡。锂离子从正极脱出后,磷酸铁锂转化为磷酸铁;而放电过程则相反。其充放电反应式可表示成式(1)和式(2)充电时放电时LiFePO4改性由于磷酸铁锂正极材料本身较差的导电率和较低的锂离子扩散系数,国内外研究者在这些方面进行了大量的研究,也取得了一些很好的效果。其改性研究主要在3个方面:掺杂法、包覆法和材料纳米化。掺杂法掺杂法主要是指在磷酸铁锂晶格中的阳离子位置掺杂一些导电性好的金属离子,改变晶粒的大小,造成材料的晶格缺陷,从而提高晶粒内电子的导电率以及锂离子的扩散速率,进而达到提高LiFeP04材料性能的目的。目前,掺杂的金属离子主要有T14+、CO2+、Zn2+、Mn2+、La2+、V3+、Mg2+。包覆法在LiFeP04材料表面包覆碳是提高电子电导率的一种有效方法,碳可以起到以下几个方面的作用:①抑制LiFeP04晶粒的长大,增大比表面积;②增强粒子间和表面电子的导电率,减少电池极化的发生;③起到还原剂的作用,避免Fe的生成,提高产品纯度;④充当成核剂,减小产物的粒径;⑤吸附并保持电解液的稳定。材料纳米化相较在导电性方面的限制,锂离子在磷酸铁锂材料中的扩散是电池放电的最主要也是决定性的控制步骤。由于LiFeP04的橄榄石结构,决定了锂离子的扩散通道是一维的,因此可以减小颗粒的粒径来缩短锂离子扩散路径,从而达到改善锂离子扩散速率的问题。纳米材料的优点主要有:①纳米材料具有高比表面积,增大了反应界面并可以提供更多的扩散通道;②材料的缺陷和微孔多,理论储锂容量高;③因纳米离子的小尺寸效应,减少了锂离子嵌入脱出深度和行程;④聚集的纳米粒子的间隙缓解了锂离子在脱嵌时的应力,提高了循环寿命;⑤纳米材料的超塑性和蠕变性,使其具有较强的体积变化承受能力,而且可以降低聚合物电解质的玻璃化转变温度。Ren等对纳米化的磷酸铁锂制备进行了详细的研究,他们利用亲水性的碳纳米颗粒作为模型制备出介孔磷酸铁锂正极材料。发现其具有亚微米大小的颗粒中心在2.9nm和30nm的双峰孔分布,介孔的引入也有利于电解质的流动和锂离子的扩散。在1C倍率下,放电比容量为137mA·h/g。在30C高倍率充放电后,材料的容量仍能恢复到160mA·h/g。可以看出纳米化的磷酸铁锂电化学性能得到了显著地提升。从长杰等利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形磷酸铁锂正极材料。经分析检验结果表明,材料的首次放电比容量达161.8mA·h/g,库仑效率为98.3%,室温下在0.2℃、0.5℃,1℃, 2℃及5℃倍率充放电其首次放电比容量分别为156.5mA·h/g, 144mA·h/g,138.9mA·h/g,125.6mA·h/g和105.7mA·h/g,材料具有较好的电化学性能。Chen等以偏磷酸亚铁和石墨的纳米层状模板,通过水热法制备出拥有纳米层状形态的LiFeP04颗粒。通过SEM分析,尽管原纳米层模板LiFeP04纳米层模板之间存在差异,但最终得到的LiFeP04模板的纳米层状态保存完好。拉曼光谱表明,原纳米有机基团的分层模板成功地转换成细小的具有有序石墨结构的碳颗粒,并很好地分散在层状LiFeP04颗粒之间。经使用循环伏安法和电阻抗法评估,锂离子扩散系数分别是1.5X10-11cm2/s和3.1X10-13cm2/s,而电子电导率为3.28mS/cm,远远高于普LiFeP04的电导率(结语采用离子掺杂、包覆、材料纳米化3种改性方法对磷酸铁锂正极材料在电导率低、锂离子扩散速率慢、低温放电性能差等方面的不足有很大的改进。其中离子掺杂通过掺杂导电性好的离子,改变了颗粒大小,造成材料的晶格缺陷,从而提高了材料电子的电导率和锂离子的扩散率;包覆主要以碳包覆为主,抑制LiFeP04晶粒的长大,增大了比表面积,从而增强粒子间和表面电子的导电率;材料的纳米化一方面增大了材料的比表面积,为界面反应提供更多的扩散通道,另一方面,缩短了离子扩散的距离,减小了锂离子在脱嵌时的应力,提高循环寿命。此外,磷酸铁锂正极材料改性方面仍存在一些不足,如离子掺杂改进材料的导电率和锂离子扩散速率方面仍存在分歧;纳米材料的制备工艺、生产成本要求较高;此外,除了考虑实验室条件下的可行性研究外,还要考虑大规模工业化的生产要求,这些都有待于进一步研究。因此,通过以上方法来全面提高磷酸铁锂的综合性能仍然是当前和今后该领域研究和应用的主要发展方向之一。文章选自:《化工进展》 作者:张克宇,姚耀春

锂离子电池正极三元材料的研究进展及应用

2019-03-08 09:05:26

锂离子电池是20世纪90年代敏捷开展起来的新一代二次电池,广泛用于小型便携式电子通讯产品和电动交通工具。电池材料分为正极材料、负极材料、隔阂、电解液等。正极材料是制作锂离子电池的要害材料之一,占有电池本钱的25%以上,其功能直接影响了电池的各项功能指标,在锂离子电池中占有中心方位。 现在已产业化的锂离子电池用正极材料首要有钴酸锂、改性锰酸锂、三元材料、磷酸铁锂。研讨发现,以LiNi1/3Co1/3Mn1/3O2为代表的层状氧化镍钴锰系列材料(简称三元材料)较好地兼备了上述材料的长处,并在必定程度上补偿其缺乏,具有高比容量、循环功能安稳、本钱相对较低、安全功能较好等特色,被认为是用于混合型动力电源的抱负挑选,以及能替代LiCoO2的最佳正极材料。 三元材料的组成结构和特性 三元材料有着与LiCoO2类似的α-NaFeO2单相层状结构,其间,Li原子在3a方位,金属原子Ni、Co和Mn自在散布在金属层的3b方位,而O原子坐落6c位。 Ni是材料的首要活性物质之一,在充放电进程中,首要是Ni2+和Ni4+发作彼此转化。经过引进Ni,可进步材料的容量。 Co也是材料的首要活性物质之一,能很好地安稳材料的层状结构,一同Co3+的掺入能够按捺Ni2+进入Li+的3a方位,便于材料深度放电,然后进步了材料的放电容量。 Mn4+有着杰出的电化学慵懒,不同于Mn3+。Mn3+在材料充放电进程中会参加电极的氧化-复原反响,Mn4+在循环进程中不参加氧化-复原反响,使材料一直坚持着安稳的结构。 因而,层状结构的三元材料归纳了单一组分材料的长处,其功能优于单一组分,具有显着的三元协同效应。其根本物性和充放电渠道与LiCoO2附近,却又具有报价和环境友好优势,具有很好的市场前景。 三元材料的制备 三元材料中各元素的化学计量等到散布均匀程度是影响材料功能的要害因素,偏离了化学计量比或组成元素散布不均匀,都会导致材料中杂相的呈现。不同的制备办法对材料的功能影响较大。现在组成三元材料的办法首要有高温固相法、共沉积法、喷雾干燥法、水热法、溶胶凝胶法等。其间水热法和溶胶凝胶法因为受制备办法的约束,不适合于工业化出产。下面介绍完成产业化的几种制备办法。 高温固相法 高温固相法一般先将金属盐和锂盐按化学计量比以各种方式混合均匀,然后高温烧结直接得到产品。常用金属盐首要有金属氧化物、金属氢氧化物等。 共沉积法 共沉积法以沉积反响为根底,研讨证明,共沉积法是制备球形三元材料的最佳办法,也是现在工业化遍及选用的制备工艺。依据运用沉积剂的不同能够分为氢氧化物共沉积法、碳酸盐共沉积法。 喷雾干燥法 喷雾干燥法也是现在材料工业化制备比较看好的一种办法。该法制备的材料非常均匀,颗粒纤细,在材料的化学计量组成、描摹和粒径散布上具有优势,并且能够自动化操控,可连续出产,制备能力强。 三元材料的研讨现状 在曩昔的十几年间,镍钴锰三元材料已得到较为深入细致的研讨,功能水平不断进步。现在的研讨除了对镍钴锰三元材料动力电池的功能进行测验外,更多的是对镍钴锰三元材料进行改性,进一步进步材料的循环寿数和安全性。 不同组分的三元材料 除了LiNi1/3Co1/3Mn1/3O2正极材料的研讨外,该系统其他计量比的正极材料也有必定的研讨成果。国海鹏等[5]制备了正极材料LiNi1/2Co1/6Mn1/3O2并研讨了其功能,选用固相法得出了具有Co含量梯度的层状LiNi1/2Co1/6Mn1/3O2。 三元材料与其他材料的混粉 三元材料和LiMn2O4混合用于锂离子动力电池正极,在商业上已有使用。混合材料不只能够满意动力电池安全性的需求,并且碱性较强的三元材料还能按捺电解液中微量对LiMn2O4的溶解效果,改进正极材料的高温功能。 核 - 壳结构的三元材料 LiNi0.8Co0.1Mn0.1O2具有较高的比容量,而LiNi0.5Mn0.5O2具有很好的热安稳性。将两种材料掺合到一同,构成一种核(Li-Ni0.8Co0.1Mn0.1O2)-壳(LiNi0.5Mn0.5O2)结构的三元材料,归纳了两种材料的长处,能有效地按捺材料中Co的溶解,进步循环安稳性。该材料在1C、3.0~4.3V、600次充放电后容量坚持率为96%,一同具有杰出的热安稳性。 结语 现有产业化的钴酸锂、改性锰酸锂和磷酸铁锂在根底研讨方面现已没有技能打破,其能量密度和各种首要技能指标现已挨近其使用极限,三元材料是未来研制和产业化的干流,依据其使用范畴的不同,分别向高密度化和高电压化开展。未来的开展方针是将三元材料的压实密度进步到3.9g/cm3以上,充电电压到达4.5V,可逆比容量到达200 mAh/g,电极能量密度比钴酸锂高25%,然后全面替代钴酸锂,成为小型通讯和小型动力范畴使用的干流正极材料。

用混合溶剂萃取体系从废锂离子电池浸出液中回收金属

2019-01-24 09:37:09

Y.Pranolo等研发出一种从废锂离子电池浸出液中分离和纯化Co和Li的混合溶剂萃取剂体系,用于。将Acorga M5640加入到Ionquest 801有机溶液中,Cu和pH等温线移动明显,△pH50=3.45。所以,在此混合萃取剂体系中,很容易实现Fe(Ⅲ)、Cu、Al与Co、Ni、Li的分离。 在水相与有机相的体系比=2∶1,pH=4条件下的McCabe-Thiele相图表明:Fe、Cu、Al的萃取需要3个阶段。Fe(Ⅲ)和Cu的萃取动力学很快,而Al的萃取动力学较慢。随温度从室温长高到40℃,Al的萃取动力学增加明显,所以金属萃取应在40℃进行,Al和Cu的反萃取动力学很快,但Fe不能被有效反萃取,因此,反萃取时应用高酸除去Fe。在温合有机体系中,对于铜的萃取,Ionquest 801为萃取剂,Acorga M5640起协同作用。 推荐了一种从废锂离子电池浸出液中回收Co和Li的流程:第1个溶剂萃取流程中采用混合Ionquest 801和Acorga M5640体系,第2个流程中采用Cyanex 272。此流程的优势是可获得较纯的Co和Lu产品。