您所在的位置: 上海有色 > 有色金属产品库 > 氮化钛靶材

氮化钛靶材

抱歉!您想要的信息未找到。

氮化钛靶材专区

更多
抱歉!您想要的信息未找到。

氮化钛靶材百科

更多

稀土靶材

2017-06-06 17:50:12

稀土靶材  对溅射类镀膜,可以简单理解为利用电子或高能激光轰击靶材,并使表面组分以原子团或离子形式被溅射出来,并且最终沉积在基片表面,经历成膜过程,最终形成薄膜。   溅射镀膜又分为很多种,总体看,与蒸发镀膜的不同点在于溅射速率将成为主要参数之一。   溅射镀膜中的激光溅射镀膜pld,组分均匀性容易保持,而原子尺度的厚度均匀性相对较差(因为是脉冲溅射),晶向(外沿)生长的控制也比较一般。以pld为例,因素主要有:   靶材与基片的晶格匹配程度   镀膜氛围(低压气体氛围)   基片温度   激光器功率   脉冲频率   溅射时间   对于不同的溅射材料和基片,最佳参数需要实验确定,是各不相同的,镀膜设备的好坏主要在于能否精确控温,能否保证好的真空度,能否保证好的真空腔清洁度。   供应真空溅射稀土靶材: 金属 靶材:钛靶Ti、铝靶Al、锡靶Su、铪靶Hf、铅靶Pb、镍靶Ni、银靶Ag、硒靶Se、铍靶Be、碲靶Te、碳靶C、钒靶V、锑靶Sb、铟靶In、硼靶B、钨靶W、锰靶Mn、铋靶Bi、铜靶Cu、硅靶Si、钽靶Ta、锌靶Zn、镁靶Mg、锆靶Zr、铬靶Cr、不锈钢靶材S-S、铌靶Nb、钼靶Mo、钴靶Co、铁靶Fe、锗靶Ge等……   稀土合金靶材:铁钴靶FeCo、铝硅靶AlSi、钛硅靶TiSi、铬硅靶CrSi、锌铝靶ZnAl、钛锌靶材TiZn、钛铝靶TiAl、钛锆靶TiZr、钛硅靶TiSi、 钛镍靶TiNi、镍铬靶NiCr、镍铝靶NiAl、镍钒靶NiV、镍铁靶NiFe等……   稀土陶瓷靶材:ITO靶,一氧化硅靶SiO、二氧化硅靶SiO2、二氧化钛靶TiO2,三氧化二钇靶Y2O3、五氧化二钒靶V2O5、五氧化二钽靶Ta2O5,五氧化二铌靶Nb2O5,氧化锌靶ZnO、氧化锆靶ZrO、氧化镁靶MgO、单晶硅靶、多晶硅靶.、氟化镁靶MgF2、氟化钙靶CaF2、氟化锂靶LiF、氟化钡靶BaF3,碳化硼靶B4C,氮化硼靶BN、碳化硅靶SiC,硫化锌靶ZnS、硫化钼靶MoS、氧化铝靶Al2O3、钛酸锶靶SrTiO3、硒化锌靶ZnSe、砷化镓靶、磷化镓靶、锰酸锂靶,镍钴酸锂靶,钽酸锂靶,铌酸锂靶,氧化锌镓靶,氧化锌硼靶等… 纯度:《99.9%—99.9999%》根据客户要求加工成各种规格尺寸的靶材更多有关稀土靶材的内容请查阅上海 有色 网

氮化铝

2019-03-11 09:56:47

中文名称:氮化铝。英文名称:aluminum nitride 界说:由ⅢA族元素Al和ⅤA族元素N化合而成的半导体材料。分子式为AlN。室温下禁带宽度为6.42eV,属直接跃迁型能带结构。 使用学科:材料科学技术(一级学科);半导体材料(二级学科);化合物半导体材料(二级学科) 以上内容由全国科学技术名词审定委员会审定发布目录   阐明:AlN是原子晶体,属类金刚石氮化物,最高可安稳到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是杰出的耐热冲击材料。抗熔融金属腐蚀的才能强,是熔铸纯铁、铝或铝合金抱负的坩埚材料。氮化铝仍是电绝缘体,介电功能杰出,用作电器元件也很有期望。表面的氮化铝涂层,能维护它在退火时免受离子的注入。   氮化铝仍是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反响.可由铝粉在或氮气氛中800~1000℃组成,产品为白色到灰蓝色粉末。或由Al2O3-C-N2系统在1600~1750℃反响组成,产品为灰白色粉末。或与经气相反响制得.涂层可由AlCl3-NH3系统经过气相堆积法组成。AlN+3H2O==催化剂===Al(OH)3↓+NH3↑   氮化铝是一种陶瓷绝缘体(聚晶体物料为 70-210 W?m?1?K?1,而单晶体更可高达 275 W?m?1?K?1 ),使氮化铝有较高的传热才能,至使氮化铝被很多使用于微电子学。与不同的是氮化铝无毒。氮化铝用金属处理,能替代矾土及用于很多电子仪器。氮化铝可经过氧化铝和碳的还原作用或直接氮化金属铝来制备。氮化铝是一种以共价键相连的物质,它有六角晶体结构,与硫化锌、纤维锌矿同形。此结构的空间组为P63mc。要以热压及焊接式才可制造出工业级的物料。物质在慵懒的高温环境中十分安稳。在空气中,温度高于700℃时,物质表面会发作氧化作用。在室温下,物质表面仍能探测到5-10纳米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可维护物质。但当温度高于1370℃时,便会发作很多氧化作用。直至980℃,氮化铝在及二氧化碳中仍适当安稳。矿藏酸经过侵袭粒状物质的边界使它渐渐溶解,而强碱则经过侵袭粒状氮化铝使它溶解。物质在水中会渐渐水解。氮化铝能够反抗大部分融解的盐的侵袭,包含氯化物及冰晶石〔即六氟铝酸钠〕。

铜合金靶材

2017-06-06 17:50:06

铜合金靶材的微观结构对溅射沉积性能的影响   磁控溅射中高沉积速率有利于获得高纯度薄膜,节省镀膜时间;高沉积效率的靶材可制备出更多数目的晶圆。通过建立平面靶的溅射模型研究了Al-Cu合金靶的晶粒取向和晶粒尺寸对溅射速率、沉积速率和沉积效率的影响。实验结果显示,溅射速率与靶材的原子密排度成正比关系,靶材的原子密排度受晶粒取向和晶粒尺寸的影响,有特定的变化范围,因此溅射速率也只在一个范围内变化。沉积速率和沉积效率受靶材表面空间内原子密排方向分布的影响,原子密排方向分布则由靶材的晶粒取向和晶粒尺寸决定。   钬铜合金是优质的高性能铜材,添入稀土钬Holmium有助于促进铜细化、净化及合金化,提高其强度、硬度和导电性,被广泛应用于各种高端机械制造,深受国内外用户的好评,欢迎广大新老朋友来电洽谈。   钬铜合金描述如下:【化学式】Ho-Cu;【英文名称】alloy of Cuprum- Holmium;【学名】铜钬中间合金,又称铜钬合金;【品种属性】铜稀土合金;【物理性状】淡红色 金属 光泽, 金属 铸锭块状或溅射靶材;【含量比例】Ho-Cu≥99%,Ho含量根据需要;【参考标准】GB/T 18115.5-2006;【主要用途】高性能铜材,用于各种高端机械制造;【包装】25kg/桶;【贮存】室温干燥处密封保存,尽可能在氩气中贮存,以延长保质期;【安全说明】非放射性 金属 ;【注意事项】避免钬铜合金长时间或反复暴露   一种铜合金靶材的制造方法,其包括:形成一靶材初坯;以及将靶材初坯在500-850℃区间进行热机处理或热退火处理,以令所制成的靶材中化合物相小于整体靶材面积的25%。本发明涉及一种铜合金靶材;本发明还涉及一种薄膜,其是使用如上所述的铜合金靶材经由溅镀所形成的;本发明另关于一种太阳能电池,其包含如上所述的薄膜。通过本发明(近)单相组织的铜合金靶材,使其应用于溅镀过程中不会诱发微电弧现象,而且也因着靶材(近)单相组织,使得靶材表面各处的溅镀速度相等,促使形成的薄膜成分均匀,故能提升薄膜质量及良率。     新铜合金靶材的特点   这次,三菱Materials公司和ULVAC公司共同开发出了使用耐抗性能良好的Cu-Ca合金以及Cu-Mg合金材料制造而成的新铜合金靶材以及该靶材的特殊制作工艺。使用重新开发的Cu-Ca以及Cu-Mg合金材料而形成的氧混合溅射膜,是将不需要通过氢等离子进行还原的稳定复合氧化层与底层结合形成界面,其具有良好的紧贴性和屏障性。   运用新技术的铜配线制作工艺的特点   采用ULVAC公司的氧混合溅射技术,将三菱Materials公司开发的新铜合金材料制成铜合金靶材。使用该铜合金靶材的铜配线制作工艺有以下特点∶① 低成本② 低电阻③ 与玻璃基板或底层的紧贴性能良好④ 硅底层的屏障性能良好⑤ 便于湿刻⑥ 和ITO(铟氧化锡)的电接触性能良好⑦ 后道工程的氢等离子耐受性能良好 

多晶硅靶材

2017-06-06 17:50:11

    洛阳晶晨半导体材料有限公司是专业从事半导体材料硅单晶、硅片的生产企业,公司成立以来,一直致力于半导体硅单晶和多晶的研究和生产。目前已经形成了单晶硅片、靶材类硅单晶和多晶、太阳能级单晶三大优势产品系列。产品远销国外。公司拥有先进的生产设备和一支精干的技术队伍,为生产高质量的产品提供了有力保障。硅靶材类产品可根据客户需要,加工任何形状和尺寸的单晶硅靶材和多晶硅靶材。  CF-81XXITO靶材系列:应用于薄膜太阳能电池ITOFilm和ITOGlass;  CF-83XX ZAO/ZTO/ZnO靶材:应用于薄膜太阳能电池(CIGS、CdTe、a-Si:H),建筑节能玻璃(LOW-Eglass)等;太阳能材料:一、非晶硅薄膜、微晶硅薄膜、铜铟镓硒薄膜、碲化镉薄膜太阳能电池1、铜铟镓硒(CIGS)系薄膜太阳能电池2、硒铟铜(CIS)系薄膜太阳能电池3、碲化镉/硫化镉(CdTe/CdS)系薄膜太阳能电池4、非晶硅薄膜(a-Sithinfilm)、非晶硅/非晶硅双叠层太阳电池、非晶硅/非晶硅锗三叠层太阳电池、非晶 硅/微晶硅叠层、非晶硅/非晶硅锗/微晶硅三叠层太阳电池、半透明硅基薄膜电池(BIPV)太阳能电池5、多晶硅薄膜(poly-仁不带兵 义不行贾Sithinfilm)太阳能电池、微晶薄膜太阳能电池、纳米晶化学太阳能电池、二、聚光太阳能电池(CPV):砷化镓(GaAs)太阳能电池、高效聚光硅类太阳能电池三、有机和染料敏化太阳能电池:染料敏化二氧化钛(DSSC色素增感)型太阳能电池、光电化学太阳能电池、有机和塑料太阳能电池四、集热太阳能电池系统(STC)10g尼龙丝试验:五、光热镜场太阳能电池(CSP)六、聚合物多层修饰电极型太阳能电池:Si,化合物,聚合物七、荧光光波导等效聚焦太阳能电池八、多带隙太阳电池九、热载流子太阳电池除此以外,上海常祥实业可以提供太阳能电池材料的整体解决方案,如:3MBBF,3MEPE,3MEVA,3M导电胶带,3M密封胶,3M氟橡胶,3M美观胶带,3MVHB胶带,3M测试胶带等系列材料。  太阳能概念,曾几何时是那样的炙手可热。新能源、高科技、巨额利润的旗号吸引着无数企业投身其中,而十余家企业先后在海外上市,更是为太阳能争足了面子。然而物极必反,过度灼热的太阳能 产业 终于在金融危机的肆虐之下,迎来了与世纪初的互联网泡沫相同的洗牌命运。 但中国乃至世界范围的光伏从业者似乎并不愿看到,属于他们的辉煌时代就这样一夜之间化为乌有。于是薄膜太阳能 被狂热吹捧,而光伏泡沫也找到了新的“代言人”。 在目前光伏 产业 链上游硅料供应持续吃紧的局面下,众多光伏电池生产厂家已经加大了在薄膜太阳能 电池研发方面的投入,这使得未来薄膜太阳能 电池的转换效率会进一步提升,加之来薄膜电池大面积生产的成本优势,其 市场 占有率有望进一步提升。欧洲能源协会 预测 ,到2010年薄膜太阳能 电池将占据光伏 市场 20%份额。这便是众多分析人士为薄膜太阳能 描写的光明前景。 在此推动之下,全球薄膜太阳能 电池的 产量 增幅惊人。据中投顾问能源 行业 研究部数据分析显示,2008年全球薄膜太阳能 电池 产量 达892MW,同比增长123%,而在2007年全球薄膜太阳能 电池 产量 达到400MW,也较2006年的181MW增长120%。 产能大幅增长,并不代表薄膜太阳能 电池的前景一片光明。中投顾问能源 行业 分析师姜谦表示,当初很多厂家之所以选择入主薄膜太阳能 领域,最主要的原因是多晶硅原料缺乏, 价格 居高不下,而随着近期多晶硅 价格 的一泻千里,这些企业的如意算盘落空,日子可想而知。 行业 龙头赛维LDK将2009年1GW的薄膜太阳能 产能缩减80%,已经是最好的证明。         

氮化锰铁

2017-06-06 17:50:07

  什么是氮化锰铁什么是氮化锰铁?氮化锰铁就是氮化锰铁主要用作炼钢生产中氮的添加剂,能提高钢的强度等机械性能,细化晶粒,稳定奥氏体。  氮化锰铁的用途是氮化锰铁作为氮和锰的合金添加剂主要用于生产用于生产高强度钢、合金钢、不锈钢以及汽车、造船、航空工业材料。  氮化锰铁的主要特点是氮化锰铁主要元素含量高、磷等危害性杂质含量低、加入熔体后氮的利用率高、加入量少。氮能提高钢的强度和塑性,扩大奥氏体区,细化晶粒,改善其加工性能。氮化 金属 锰能代替部分镍从而降低成本。氮化锰铁化学成分  氮化锰铁的技术条件,目前尚无国家标准,生产企业自行制定的标准中化学成分牌号 化学成分/%汉字 代号 Mn N C Si P S不小于 不大于氮锰1 Nmn1 75 4 0.5 3.5 0.3 0.02氮锰2 NMn2 73 4 1.0 3.5 0.3 0.02氮化锰铁中氮、锰的鉴定方法 氮化锰铁中氮可用强碱蒸馏分离-氨磺酸滴定法测定。该方法操作简便,分析结果可靠。氮化锰铁中锰可有电位滴定法、硝酸铵氧化滴定法及高氯酸氧化滴定法测定。影响硅锰合金中锰含量测定的各因素的主次关系是:加热温度>冒烟时间>高氯酸的用量>磷酸的用量.氮化锰铁的制作方法 氮化锰铁有两种制取方法:(1)液态氮化法:它是在密闭的容器中向液态的中、低碳锰铁中鼓入氮气,使合金被气态或固态含氮组分所饱和。所得的氮化锰铁具有密度大、强度高、用于炼钢时氮的利用率高等优点。但由于含氮较低,往往满足不了炼钢的要求。   (2)固态氮化法:它是在密闭的容器中加热处于固态的中、低碳锰铁粉末,并与氮气充分接触渗氮。固态粉末的中、低碳锰铁与氮气或氨气分解出来的氮,互相作用会生成一系列含氮的化合物,且这些氮化物的稳定性随温度的升高而降低直至分解,故此法应控制合适的氮化温度,一股情况下把60目以下的中、低碳锰铁粉末在密闭容器内,在氮气和650℃-1120℃的温度下氮化4h-8h,可得含氮4-6%的氮化锰铁。由干其含氮量随含锰量的增加而增加,随碳化锰含量的减少而增加,故含Mn高的低碳锰铁比含Mn低的中碳锰铁的氮含量略高。所得的氮化铁产品密度小,若将其熔化密度增加,但会使产品含氮量明显降低。现该专业人才比较多集中在钢铁英才网。制取1t氮化锰铁约需1t中、低碳锰铁和1500kwh的电。  更多氮化锰铁信息请详见于上海 有色 网

氮化锰铁

2017-06-06 17:50:00

氮化锰铁主要用作炼钢生产中氮的添加剂,能提高钢的强度等机械性能,细化晶粒,稳定奥氏体。氮化锰铁是生产特殊合金钢、不锈钢、耐热钢必不可缺的合金剂, 通常都是以中、低碳锰铁充氮而获得的。氮化锰铁特点:氮化锰铁主元素含量高、磷等危害性杂质含量低、加入熔体后氮的利用率高、加入量少。氮能提高钢的强度和塑性,扩大奥氏体区,细化晶粒,改善其加工性能。氮化金属锰能代替部分镍从而降低成本。氮化锰用途氮化锰铁作为氮和锰的合金添加剂主要用于生产高强度钢、合金钢、不锈钢以及汽车、造船、航空工业材料。氮化锰铁有两种制取方法:(1)液态氮化法:它是在密闭的容器中向液态的中、低碳锰铁中鼓入氮气,使合金被气态或固态含氮组分所饱和。所得的氮化锰铁具有密度大、强度高、用于炼钢时氮的利用率高等优点。但由于含氮较低,往往满足不了炼钢的要求。   (2)固态氮化法:它是在密闭的容器中加热处于固态的中、低碳锰铁粉末,并与氮气充分接触渗氮。固态粉末的中、低碳锰铁与氮气或氨气分解出来的氮,互相作用会生成一系列含氮的化合物,且这些氮化物的稳定性随温度的升高而降低直至分解,故此法应控制合适的氮化温度,一股情况下把60目以下的中、低碳锰铁粉末在密闭容器内,在氮气和650℃-1120℃的温度下氮化4h-8h,可得含氮4-6%的氮化锰铁。由干其含氮量随含锰量的增加而增加,随碳化锰含量的减少而增加,故含Mn高的低碳锰铁比含Mn低的中碳锰铁的氮含量略高。所得的氮化铁产品密度小,若将其熔化密度增加,但会使产品含氮量明显降低。现该专业人才比较多集中在钢铁英才网。制取1t氮化锰铁约需1t中、低碳锰铁和1500kwh的电。 

氮化铝价格

2017-06-06 17:50:06

氮化铝 价格 一般在 市场 上均为 市场 价,但一般而言,本身氮化铝就是比较少的,其本身性质不够稳定,所以氮化铝 价格 比较贵的,厂家直接供应的话,一般在164000元/吨左右。接下来简单介绍一下氮化铝。中文名称:氮化铝。分子式:AlN 。分子量:40.99。密度:3.235g/cm3。AlN是原子晶体,属类金刚石氮化物,最高可稳定到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融 金属 侵蚀的能力强,是熔铸纯铁、铝或铝合金理想的坩埚材料。氮化铝还是电绝缘体,介电性能良好,用作电器元件也很有希望。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。氮化铝还是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。或由Al2O3-C-N2体系在1600~1750℃反应合成,产物为灰白色粉末。或氯化铝与氨经气相反应制得.涂层可由AlCl3-NH3体系通过气相沉积法合成。有报告指现今大部分研究都在开发一种以半导体(氮化镓或合金铝氮化镓)为基础且运行於紫外线的发光二极管,而光的波长为250纳米。在2006年5月有报告指一个无效率的二极管可发出波长为210纳米的光波。以真空紫外线反射率量出单一的氮化铝晶体上有6.2eV的能隙。理论上,能隙允许一些波长为大约200纳米的波通过。但在商业上实行时,需克服不少困难。氮化铝应用於光电工程,包括在光学储存介面及电子基质作诱电层,在高的导热性下作晶片载体,以及作军事用途。由于氮化铝压电效应的特性,氮化铝晶体的外延性伸展也用於表面声学波的探测器。而探测器则会放置於矽晶圆上。只有非常少的地方能可靠地制造这些细的薄膜。氮化铝于1877年首次合成。至1980年代,因氮化铝是一种陶瓷绝缘体(聚晶体物料为70-210,而单晶体更可高达275 ,使氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。与氧化铍不同的是氮化铝无毒。氮化铝用 金属 处理,能取代矾土及氧化铍用于大量电子仪器。氮化铝可通过氧化铝和碳的还原作用或直接氮化 金属 铝来制备。氮化铝是一种以共价键相连的物质,它有六角晶体结构,与硫化锌、纤维锌矿同形。此结构的空间组为P63mc。要以热压及焊接式才可制造出工业级的物料。物质在惰性的高温环境中非常稳定。在空气中,温度高于700℃时,物质表面会发生氧化作用。在室温下,物质表面仍能探测到5-10纳米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可保护物质。但当温度高于1370℃时,便会发生大量氧化作用。直至980℃,氮化铝在氢气及二氧化碳中仍相当稳定。矿物酸通过侵袭粒状物质的界限使它慢慢溶解,而强碱则通过侵袭粒状氮化铝使它溶解。物质在水中会慢慢水解。氮化铝可以抵抗大部分融解的盐的侵袭,包括氯化物及冰晶石〔即六氟铝酸钠〕。更多关于氮化铝 价格 以及其相关的信息都可以登陆上海 有色 网查询!

氮化铬铁基础知识介绍

2018-12-07 13:58:01

9月14日消息:氮化铬铁基础知识介绍  一、自然属性:高氮铬铁以块状交货,每块重量不得大于5kg,尺寸小于23cm×11.5cm×6cm的高氮铬铁块数量不得超过总重量的2.5%,高氮铬铁的内部及表面不得带有显著的非金属夹杂物,如需方有特殊要求,可由供需双方另行商定。   二、包装:根据需方要求,可以采用散装、吨袋包装。   三、氮化铬的应用领域   氮化铬广泛用于不锈钢、耐热钢、耐腐蚀钢、合金钢等特种钢冶炼生产,氮扩大奥氏体区的作用是镍的30倍左右,可部分代替贵重金属镍,降低生产成本。氮化铬铁广泛地用于电炉和氧气转炉冶炼含氮钢。氮是奥氏体形成元素,它作为成分加入铬锰和铬锰镍不锈钢来代替短缺的镍。   四、生产工艺设备情况   我国氮化铬铁产品标准规定的含氮量为3.0%~5.0%,用于含氮钢的生产,采用真空电阻炉固态渗氮生产工艺。   氮化铬铁按冶炼方法和碳含量的不同,分为六个牌号,其化学成分应符合表中的规定。   氮化铬铁的牌号及化学成分

五氧化二钒的提取和氮化

2019-03-04 11:11:26

含钒黑色页岩(也称石煤)是我国首要的钒矿资源之一。一般以为,钒档次到达0.7%以上就具有工业挖掘价值。从黑色岩中提取钒的研讨较多,但多选用平窑焙烧、静态浸出、清液离子交换及精钒制取等工艺,生产流程比较简单,出资少,但也存在许多缺乏:(1)有害气体较多,且无序排放不方便会集处理,对环境污染严峻;(2)焙烧转化率仅50%~60%,归纳利用率40%~50%;(3)只能间歇操作,无法完成机械化、接连化及规模化;(4)产品质量不稳定。 依据广西某石煤钒矿勘探成果和选冶实验材料,对钒的赋存状况、浸出、萃取、沉钒等办法进行了较为系统的研讨,取得了较好的实验成果。一起结合当时五氧化二钒报价跌落,进一步用微波加工制备了氮化钒,它与传统的电阻炉加热方法比较,微波加热缩短了反响和冷却时刻,节省了能耗,简化了工艺,下降了本钱。 一、矿石性质与化学成分 石煤矿样经XRF(X荧光)分析,其首要成分列于表1。由表1可以看出,石煤中钒含量为0.703%,相当于含V2O51.27%。为了了解钒在矿样中的赋存状况,进行了钒的价态分析,成果列于表2。从表2可以看出石煤钒矿首要是3价钒,其次是5价钒和4价钒。 表1  石煤矿首要成分XRF分析成果元素VFeMgAlSiPSCaK含量∕%0.7035.8012.4016.01223.1200.3210.7655.9301.752 表2  实验矿样钒价态分析钒价态V3+V4+V5+总钒量钒含量∕%0.580.080.300.96占有率∕%60.428.3331.20100.00 二、五氧化二钒的提取 (一)样品的制备与焙烧 取2kg钒矿石经烘干、破碎、细磨并筛分至悉数经过100目标准筛。焙烧在马弗炉内进行,焙烧温度为850℃左右。考虑了焙烧时刻对矿藏的影响,焙烧成果列于表3。 表3  不同焙烧时刻实验矿样钒价态分析(焙烧温度均为850~900℃)试样称号V3+V4+V5+总钒量焙烧1h钒含量∕%0.0800.550.421.05占有率∕%7.6252.3840.00100.00焙烧2h钒含量∕%0.0700.550.451.07占有率∕%6.5451.4042.06100.00焙烧3h钒含量∕%0.0500.520.471.04占有率∕%4.8150.0045.19100.00 表3成果标明,跟着时刻的延伸,3价钒逐步变为4价或5价,如焙烧3h,4价的钒占有率到达50%,而5价钒到达40%,这对后续浸出是有利的。但许多研讨者发现,焙烧时刻超越3h后,云母类矿藏的结构逐步被损坏,硅铝酸盐、碱金属盐、二氧化硅构成低共熔玻璃相结构,反而不利于后边的浸出。 (二)浸出 含钒石煤矿焙烧后进行H2SO4浸出。该实验进行了浸出温度、浸出时刻、酸浓度、氧化剂类型及浓度、助浸剂类型及浓度以及与酸的配比等实验。成果标明,在温度、时刻一守时,仅靠加酸,浸出率最高只也有60%,氧化剂的参加,可将浸出率进步到70%。参加复合助浸剂能使浸出率到达80%以上。实验标明,影响浸出率的关键是损坏云母的结构。得到的最佳浸出条件是:硫酸浓度≥30%,固液比为1∶1,浸出温度80~90℃,浸出时刻12h,复合助浸剂浓度10%~15%。在此条件下,钒的浸出率到达83%。 (三)萃取和反萃 1、萃取实验 溶剂萃取具有别离作用好、选择性强、回收率高、本钱低、易于接连操作和完成自动化、节省水资源等长处,近半个世纪来在冶金和石油化工等范畴已得到广泛应用。实验选用P2O4+TBP+火油的萃取系统富集纯化V2O5浸出液。用2 NH2SO4作为反萃剂。 萃取的条件是pH=2~2.5(用铁粉复原,NH3调理pH),O/A=1,混合时刻10min。料液钒浓度为3.31g/L。 选用六级逆流萃取。实验成果标明:六级逆流萃取实验的萃余水相中V2O5浓度为0.15g/L,萃取率为95.47%。 2、反萃实验 对钒浓度为4.043g/L的负载有机相溶液进行反萃。反萃操作条件是:反萃剂:2N H2SO4;反萃级数:5级;比较O/A=10/1;温度:室温;混合时刻:7min。实验成果标明:经五级反萃后贫有机相中V2O5浓度为0.036g/L,反萃率为99.11%。 (四)沉钒 将反萃液加热到60℃,参加必定量的NaClO3,拌和30min,溶液由蓝色当即转变为浓黄色,再用将pH值调至2左右,在95℃下,拌和3h后将溶液过滤,所得滤饼枯燥后在550℃下,于马弗炉内煅烧3h,得到黄色V2O5。实验成果标明,沉钒率为99.39%。五氧化二钒产品质量分析成果列于表4,已达国家GB3283-87化工和冶金一级标准。 表4  五氧化二钒产品质量分析组成V2O5Na2OCl-FeSiPbPSAs含量∕%99.3%<0.3<0.050.020.036<0.01<0.0150.021<0.01 三、五氧化二钒的氮化 将上述五氧化二钒和碳按必定份额均匀混合,参加30mL含4%聚乙烯醇的水溶液,然后用金属液压机限制成圆柱型,压强为20MPa。将限制好的样品放入微波高温炉中,抽真空至20Pa,通入氮气并坚持炉内微正压后,中止通氮气。复原温度到达933K,时刻为60min后,进步微波功率,当温度到达1273K时,通入氮气,氮化一守时刻后,冷却至温度为373K以下出炉。在此过程中,探讨了混合物的配碳比、氮化温度、氮化时刻、氮气的流量等要素对产品氮含量的影响,成果如图1~图4所示。图1  碳配比对产品氮含量的影响  图2  氮化温度对产品氮含量的影响图3  氮化时刻对产品氮含量的影响图4  氮气流量对产品氮含量的影响 成果标明:配碳比为35%,混合物压型的压强为20MPa,复原最高温度为933K,复原时刻为60min,氮化温度为1723K,氮化时刻为120min,氮气流量为2L/min。产品经过XRD分析为纯相氮化钒,如图5所示。其间的氮含量为12.6%,钒含量79.2%,碳含量4.6%,体积密度为4.5g/cm3。产品可以契合V-N12A钒氮合金国家标准。图5  产品XRD 四、定论 (一)选用氧化焙烧→硫酸浸出→溶剂萃取→铵盐沉钒→枯燥煅烧工艺从石煤中提钒取得了满足的成果。V2O5浸出率>80%,萃取率>95%,反萃率>99%,取得V2O5产品的纯度为99.3%,契合国家GB3283-87化工和冶金一级标准。可是,该工艺也存在酸耗较高、杂质较多等缺陷,往后应该在下降酸耗,操控杂质方面进行更深化的作业。 (二)一起,为了进一步进步产品性价比,把上述提取的五氧化二钒与碳在微波炉中经烧结氮化,调查了一些反响要素,产品成果经过XRD分析为纯相氮化钒。其间的氮含量为12.6%,钒含量79.2%,碳含量4.6%,体积密度为4.5g/cm3。产品可以契合V-N12A钒氮合金国家标准。

钢的氮化及碳氮共渗

2019-03-12 11:03:26

钢的氮化及碳氮共渗  钢的氮化(气体氮化)概念:氮化是向钢的表面层进入氮原子的进程,其意图是进步表面硬度和耐磨性,以及进步疲劳强度和抗腐蚀性。它是使用气在加热时分解出活性氮原子,被钢吸收后在其表面构成氮化层,一起向心部分散。氮化一般使用专门设备或井式渗碳炉来进行。适用于各种高速传动精细齿轮、机床主轴(如镗杆、磨床主轴),高速柴油机曲轴、阀门等。氮化工件工艺道路:铸造-退火-粗加工-调质-精加工-除应力-粗磨-氮化-精磨或研磨。因为氮化层薄,而且较脆,因而要求有较高强度的心部安排,所以要先进行调质热处理,取得回火索氏体,进步心部机械性能和氮化层质量。钢在氮化后,不再需求进行淬火便具有很高的表面硬度大于HV850)及耐磨性。氮化处理温度低,变形很小,它与渗碳、感应表面淬火比较,变形小得多钢的碳氮共渗:碳氮共渗是向钢的表层一起进入碳和氮的进程,习惯上碳氮共渗又称作化。现在以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)使用较是广。中温气体碳氮共渗的首要意图是进步钢的硬度,耐磨性和疲劳强度,低温气体碳氮共渗以渗氮为主,其首要意图是进步钢的耐磨性和抗咬合性。