您所在的位置: 上海有色 > 有色金属产品库 > 氧化镁是碱性氧化物吗

氧化镁是碱性氧化物吗

抱歉!您想要的信息未找到。

氧化镁是碱性氧化物吗专区

更多
抱歉!您想要的信息未找到。

氧化镁是碱性氧化物吗百科

更多

氧化镁

2019-01-25 15:49:17

MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。    MgO的制备方法:   (1)金属镁在高温下燃烧。                              2Mg  +  O2  ==  2MgO    (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。                             MgCO3  ====  MgO  +  CO2                                Mg(OH)2  ==== MgO  +  H2O    煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。    MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。

稀土氧化物

2017-06-06 17:50:02

稀土氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc) 和钇(Y)共17 种元素的氧化物。稀土氧化物在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。稀土氧化物的原子结构可以用4fx5d16s2 表示,x 从0→14。稀土元素从 金属 变成离子后,4f 轨道的外侧仍包围着5s25p6的电子云,失去6s2 电子及5d1 或4f 失去一个电子,形成4fx5s25p6的电子结构。在稀土 金属 中,6s 电子和5d 电子形成导带,4f 电子则在原子中定域,这种4f 电子的定域化和不完全填充都将反映在它们的种种物性之中。目前来说,稀土氧化物有多种,如LnO,Ln2O3 和LnO2,其中Ln2O3较常见。 

钴的氧化物及氢氧化物

2019-01-31 11:06:04

一、钴的氧化物 钴能生成三种氧化物:CoO,Co3O4,Co2O3。前两种安稳,后者只能在低于3oO℃下存在。而CoO2只能在阳极氧化法中制得,常呈含水的氢氧化物呈现。 (一) CoO:它是钴的碳酸盐或钴的其它氧化物或Co(OH)3在中性或微复原性气氛中煅烧的终究产品。纯CoO在室温下易于吸收氧而生成高价的氧化物Co2O3,Co3O4,煅烧温度越高,吸收的氧越少。如要获得适当纯的CoO,煅烧温度有必要高于1050℃,且煅烧后须在慵懒气氛或弱复原性气氛中冷却。高于850℃时CoO是安稳的,1000℃时离解压为3.36×10-12大气压。随制取办法不同,CoO呈灰绿色至暗灰色,CoO分子量为94.97,理论上含钴为78.65%,用于冶金和化学方面的多为灰色CoO,一般含Co76%,常含有少数Co3O4。 CoO晶体为面心立方体,晶格参数为4.2sA,比重6.2~6.6,生成热为55.6~57.5千卡/摩尔分子,熔点为1810℃。钴氧化成CoO在不同的温度规模内的自由焓改变式分别为:   当温度在120~200℃时,高价氧化钴开端被H2和CO复原。CoO复原反响的平衡常数跟着温度的改变如下:     CoO水化物的分子式为Co(OH)2,溶度积约为1.6×10-18,它极易溶解于热酸中。 (二)Co2O3:分子量为165.88,理论含钴量为71.03%。许多人在氧压为100大气压下氧化CoO或低温从Co(N3O)3,CoCl3中制得含氧量挨近或等于Co2O3计量式中的含氧量再经结构分析依然不是Co2O3。但只在阳极氧化法中制得含水的Co2O3,在低于200℃时脱水得到Co2O3。 (三)Co3O4:理论含钴量为73.43%,分子量为240.82,黑色。在400~900℃的空气中或在300~400℃的氧气中氧化CoO时生成Co3O4。Co3O4于250~400℃的氧气中,因为接连氧化或或许因为化学吸附,而变为Co2O3,但仍坚持Co3O4的尖晶石结构。当高于450℃时离解或脱吸,氧化物的成分可回复或Co3O4。 当CoCO3或含水三氧化二钴在空气中加热到高于265℃而不超越800℃时,构成Co3O4。 因为钴的氧化物相互间易于生成固溶体,因此,难于测定各自的离解压及安稳温度规模,一般以为Co2O3·nH2O在250~280℃彻底分解为Co3O4。Co3O4的离解压可按lg Po2=- +13.3636算出,故知空气中Co3O4在910~920℃内大部分离解为CoO,至980℃可按下式离解彻底,生成的CoO仍具有原Co3O4的尖晶石结构。  Co3O4极难溶干稀硫酸中。 图1是600℃~1490℃间氧在固体金属钴中的溶解度。875℃时氧的溶解度急剧下降是因为钴发生了晶形改变。当溶解O20.26%(适当于CoO1%)时则呈现共晶,其温度为1446℃。与含CoO3.3%和CoO14.6%相对应的凝结温度为1600℃和1700℃。图1  Co-O系状态图 二、钴的氢氧化物 (一)Co(OH)2:它是弱的化合物,极易溶解于酸,而难溶于水。  溶度积为1.6×10-18。当NaOH参加钴盐溶液中,则生成Co(OH)2,因颗粒、吸附离子、时刻、温度和碱度等要素的不同,可呈蓝色、绿色和赤色。pH=6~7和室温时,开始分出的蓝色沉淀物为α-Co(OH)2。老化变为安稳的玫瑰色β-Co(OH)2,两者的溶度积均约为10-12.8。 Co(OH)2在常温下易被空气中的氧部分地氧化成Co(OH)3:Co(OH)2在无机酸和有机酸中能很好溶解并生成相应的盐。多种氧化剂在有碱存在的情况下,能将Co(OH)2和二价钴盐的溶液氧化成Co(OH)3。 (二)Co(OH)3:这是一种易吸水的不安稳化合物,难溶于水,溶度积为2.5×10-43。较易溶于和中,难溶于硫酸中。

稀土氧化物

2017-06-06 17:50:03

稀土氧化物稀土元素氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc) 和钇(Y)共17 种元素的氧化物。稀土元素在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。                                                                            氧化铷(Rb2O),是铷的氧化物之一,呈黄色,有很强的潮解性。   铷在空气中燃烧时,主要生成的是过氧化铷,只有少量的氧化铷和超氧化铷生成。当 金属 铷被露置于空气中时,它会很快氧化,失去 金属 光泽,并产生一系列有颜色的氧化产物。其中生成了铷的低氧化物,例如青铜色的Rb6O和红棕色的Rb9O2。铷最终的氧化产物主要是过氧化铷。Ln 系稀土元素的原子结构  稀土元素的原子结构可以用4fx5d16s2 表示,x 从0→14。稀土元素从 金属 变成离子后,4f 轨道的外侧仍包围着5s25p6的电子云,失去6s2 电子及5d1 或4f 失去一个电子,形成4fx5s25p6的电子结构。在稀土 金属 中,6s 电子和5d 电子形成导带,4f 电子则在原子中定域,这种4f 电子的定域化和不完全填充都将反映在它们的种种物性之中。   4f 电子位于原子内层轨道,5s25p6 电子云对其有屏蔽作用,4f 轨道伸展的空间很小,所以受结晶场、配位体场等的影响很小;与此相反,其自旋(MS)与轨道(ML)的相互作用都很大,使得f- f 电子轨道L 与自旋S 相互耦合作用,E4f 分裂成许多能级有微小差别的能级亚层,每一个亚层对映一个光谱项2s+1L。   稀土元素化合价有多种价态,并存在变价作用。铈、钐、铕等在一些化合物中,其原子价为3 价、4 价或2 价和3 价共存,而且这种原子价的变化有的极快,有的极慢,十分引人注目。稀土离子电价高,半径大,易受极化,极化强度愈高折射率愈大,在陶瓷颜料中利用稀土离子的高折射率,使装饰画面色泽鲜艳。与普通釉彩颜料相比,加入稀土的颜料色泽加深。   从La 到Lu 的稀土元素都容易失掉2 个6s 电子,1 个5d电子或4f 电子,形成三价正离子(4fx5s25p6),因此稀土元素的氧化物大多是Ln2O3。此外镧系元素的4f0、4f7、4f14(全空、半充满、全充满)电子排列较稳定,一般具有该结构型的离子都是无色的。  稀土氧化物有多种,如LnO,Ln2O3 和LnO2,其中Ln2O3较常见。随着原子序数的递增,电子被填充在4f 轨道上,其电子结构、离子的价态及三价离子的颜色详见附表1。   稀土离子的4f 亚层被外层(5s2)(5p6)电子壳层所屏蔽,致使4f 亚层受邻近其它离子的势场(结晶场)影响很小,其线状谱线基本保持自由离子的线状光谱特征,这与过渡元素的d- d 跃迁不同,d 亚层处于过渡 金属 离子的最外层,没有屏蔽层的保护,受配位场或晶体场影响较大,谱线不稳定,容易造成同一元素在不同化合物中的吸收光谱出现差别,导致颜色不稳定。稀土元素的电子能级和谱线比其它元素丰富多样,它们在从紫外光、可见光到红外光区都有吸收或发射现象,是非常好的色谱较广的 有色 物质。              以上是稀土氧化物的介绍,更多信息请详见上海 有色金属 网。 

锑的氧化物

2019-02-18 15:19:33

锑与氧可构成一系列氧化物,其中有Sb2O3、Sb2O4、Sb2O5、Sb6O13、Sb2O及气态的SbO,但只要前三种在工业上具有含义,其他氧化物多为锑的不同出产过程中的过渡产品,氧化锑的物理和化学性质列于下表。 表  氧化锑的物理和化学性质品种物理性质化学性质三氧化二锑 Sb2O3在常温下为白色粉末,受热时为黄色,有立方和斜方两种晶系,立方转变为斜方的温度为570℃。立方晶系为Sb4O6分子组成,密度为5.28g∕cm3,斜方晶体为5.67g∕cm3,熔点656℃,蒸发热36.33~37.29kJ∕mol,沸点依据不同材料为1327℃或1435℃; 蒸气压(Pa)与温度的关系式为: 立方晶形Sb2O3lgp=14.320~10357∕T 斜方晶形Sb2O3lgp=13.433~9625∕T 液体Sb2O3lgp=7.443-3900/T锑或硫化锑在空气中加热蒸发出来的Sb2O3,主要为立方晶系;由SbCl3水解生成的Sb2O3为斜方晶体。Sb2O3为氧化物,在水中的溶解度仅0.01g∕L,也难溶于稀硫酸和稀硝酸,浓硝酸可使其氧化为高价氧化物。易溶于碱性金属硫化物构成硫代亚锑酸盐,能彻底溶于 酒石酸,如溶于酒石酸钾,构成,即吐酒石。Sb2O3易被C或CO还原为金属锑四氧化二锑 Sb2O4白色结晶属立方晶系,密度为6.59~7.5g∕cm3,生成热-895.811kJ∕mol具有不熔化和不蒸发的特色。最适合时生成温度为500~900℃,超越900℃即开端离解,达1030℃能够彻底离解。微溶于水,溶于,不溶于其他酸类,但溶于碱溶液。分子式可写为SbO2,其组成可认为是Sb2O3和Sb2O5的混晶Sb2O5棕黄色粉末,分子式为Sb2O5·nH2O,大约相当于Sb2O5·3.5H2O,可由SbCl4水解取得,加热至700℃,即变为白色粉末一般认为是一种水合物的胶体,稍溶于水,不溶于硝酸,可溶于碱性溶液

氢氧化镁简单介绍

2019-02-14 10:39:59

碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1  碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6     Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化:                                   Mg(OH)2  ====  MgO  +  H2O    Mg(OH)2易溶于酸或铵盐溶液:                               Mg(OH)2  +  2HCl  ====  MgCl2 +2H2O    这一反响可应用于分析化学中。    将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳:                             Mg2+   +  Ca(OH)2  ==  Mg(OH)2  +  Ca2+    Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。

钽铌五氧化物制取

2019-03-05 12:01:05

铌钽氧化物能够用在空气中加热金属、碳化物氧化、氮化物氧化等办法制取,生产上一般选用中和沉积法和晶体热分化法制取。此外还有氯化物水解法。制备办法不同,氧化物的一些物理化学性质不尽相同。例如,氧化铌的密度可在4.3~5.2g/cm3之间改变;中和法和水解法氧化物残留有F或Cl,简略受潮;晶体分化法产品无F或Cl污染问题,粒度细,不受潮。       一、中和沉积法   中和沉积法是工业上使用最多的办法。质料主要是含钽或铌的反萃取液,用作沉积剂,反应为:   H2NbF7+7NH3+5H2O=Nb(OH)5↓+7NH4F H2NbOF5+5NH3+4H2O=Nb(OH)5↓+5NH4F H2TaF7+7NH3+5H2O=Ta(OH)5↓+7NH4F       中和为放热反应,沉积结尾pH=8~9,中和时沉积物易吸附F-、SO4-等,为下降氟等杂质的吸附,操控沉积温度为80℃,沉积物过滤也用80~90℃的纯水洗刷,至滤液中含F-<0.1g/L。所得滤饼先烘干,然后进行热解,氢氧化物热解进程分别为:       此办法的缺点在于:过滤难度大;所得的氢氧化物沉积吸附性强,难于彻底脱除F-;沉积、过滤、洗刷、枯燥、煅烧需求很多设备。       二、晶体分化法       晶体分化法的质料为草酸铌晶体。该晶体由溶剂萃取的反萃取液蒸腾浓缩或将氢氧化铌溶于草酸溶液中取得。工艺上选用工业氧化铌和工业草酸,溶解温度70~75℃,溶解后趁热过滤除掉固体杂质,随之冷却结晶,离心过滤后的晶体再重结晶一次即可取得合格晶体。最终将晶体进行热分化。分化时晶体在100℃下脱去结晶水,180℃开端分化(焚烧),350℃氧化铌开端向嫩黄色(氧化铌晶格氧缺点引起)改变,500℃时分化结束。分化反应为:   2(NH4)3[NbO(C2H4)3]+21O2→Nb2O5+6NH3↑+12CO2+15H2O       该办法的工艺、设备和设备原料、操作等都很简略。产品不含氟,纯度高(>99.99%),有利于使用。       我国工业级和高纯级氧化铌和氧化钽国家标准见表1~表4。   表1  五氧化二铌国标(GB3627-83)(不大于)     (%)元  素FNb2O5-1FNb2O5-2FNbO-3元  素FNb2O5-1FNb2O5-2FNbO-3Ta0.050.10.3Cu0.0030.0050.005Ti0.0010.0040.01Al0.0030.0050.05F0.0030.010.03Si0.0050.020.04Mo0.0020.005-As,Sb,Pb--0.005Cr0.0020.005-S,P--0.01Mn0.0020.005-F---0.15Fe0.0050.020.04粒度/目-60-60-60Ni0.0050.020.04       表2  五氧化二钽世界(GB3626-83)(不大于)     (%)元  素FTa2O5-1FTa2O5-2FTa2O5-3元  素FTa2O5-1FTa2O5-2FTa2O5-3Nb0.0030.050.3Ni0.0040.01-Ti0.0010.0050.03Cu0.0040.01-F0.0010.006-Al0.0020.0040.015Mo0.0010.0030.005Si0.0040.020.05Cr0.0010.004-F-0.100.150.15Mn0.0010.0040.005粒度/目-80-80-80Fe0.0040.020.003       表3  高纯氧化铌国标(GB10578-89)(不大于)    (10-4%)杂质元素特级 FNb2O5-045一级 FNb2O5-04二级 FNb2O5-035杂质元素特级 FNb2O5-045一级 FNb2O5-04二级 FNb2O5-035Ta1530100Mo3510Al3510Ni2310B2--Pb3--Bi1--Si71350Cr2310Sn135Cu3510Ti135F5090150F-3510Fe3510粒度/目-60-60-60Mn135       表4  高纯氧化铌国标(GB10577-89)(不大于)    (10-4%)杂质元素特级 FTa2O5-045一级 FTa2O5-04二级 FTa2O5-035杂质元素特级 FTa2O5-045一级 FTa2O5-04二级 FTa2O5-035Nb153080Mo3510Al3510Ni1310B1--Pb3--Bi1--Si71350Cr1310Sn135Cu3510Ti135F3070150F-3510Fe3510粒度/目-60-60-60Mn135

锑的氧化物及其水合物

2019-02-11 14:05:30

一、三氧化二锑及亚锑酸    Sb4O6为白色立方晶体,熔点929K,沸点1698K。和磷的氧化物相同,三氧化二锑也是以Sb4四面体为结构根底的,以Sb4O6方式存在的分子晶体,其结构和P4O6类似。 Sb4O6是偏碱性的氧化物,难溶于水,易溶于酸和碱。                              Sb2O3+3H2SO4Sb2(SO4)3+3H2O                                Sb2O3+2NaOH2NaSbO2+H2O    亚锑酸盐在碱性介质中是一个较强的还原剂: [H3SbO6]4-+H2O+2eSbO2-+5OH-         ψBθ=-0.4V 二、及锑酸 为淡黄色粉末,是偏酸性氧化物,难溶于水,不溶于硝酸溶液,但溶于碱生成锑酸盐。如溶于KOH溶液生成锑酸钾K[Sb(OH)6],锑酸钾是判定Na+的试剂。锑酸   H[Sb(OH)6]是一元酸(K=4.0×10-6),它与同周期的H6TeO6、H5IO6有相同的结构,都是六配位八面体结构,并且它们互为等电子体。锑酸及其盐最杰出的性质是氧化性,且从As、Sb到Bi,其+Ⅴ氧化态的氧化性顺次增强。 H[Sb(OH)6]+2HClH[Sb(OH)4]+Cl2+2H2O

利用硼泥制备氢氧化镁

2019-02-18 15:19:33

硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。       现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。       现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。       一、试验       (一)试验质料       硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。   表1  硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628       (二)试验内容       将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。       (三)工艺流程       工艺流程见图1。图1  硼泥制备氢氧化镁工艺流程       二、成果与评论       (一)煅烧温度对镁浸出率的影响       在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2  煅烧温度对镁浸出率的影响       (二)煅烧时刻对镁浸出率的影响       在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3  煅烧时刻对镁浸出率的影响       (三)硫酸与硼泥份额对镁浸出率的影响       在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4  硫酸与硼泥份额对镁浸出率的影响       (四)归纳条件试验       依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。       (五)氢氧化镁的检测与分析       1、氢氧化镁的XRD分析  选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5  Mg(OH)2样品XRD图       2、氢氧化镁的检测  对氢氧化镁产品进行成分分析,检测成果如表2所示。   表2  氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008       由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。       3、氢氧化镁的SEM分析  用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6  氢氧化镁SEM相片                     (a)未烘干;(b)烘干后       三、定论       (一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。       (二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。       (三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。

镍精矿降低氧化镁工艺技术

2019-01-21 18:04:33

一、概述     金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。     目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。     本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。     二、矿石性质及主要矿物选矿工艺特性     (一)龙首混合矿石中主要金属矿物及选矿工艺特性     龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。     一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。     研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。     (二)含镁脉石矿物的浮选工艺性质     金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。     1、主要脉石矿物的结构     蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。     绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。     2、脉石矿物的可浮性     蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。     绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。     滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。     三、降镁现状分析     (一)工艺流程及其特点     90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:       1、通过改变工艺流程降镁;       2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;       3、采用改变工艺流程和添加新药剂相结合的方式降镁。       通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。    图1  一造厂磨浮原则流程     (二)生产指标分类统计分析     对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。     1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。     2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。     3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。     四、降镁问题分析     (一)矿石性质对降镁的影响     1、MgO赋存矿物的自然可浮性     大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。     2、矿石硬度     矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。     3、矿石品位     矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。     (二)降镁方案的局限性     针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。     五、降镁工作的研究方向     (一)工艺矿物学研究     一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。     (二)选矿新工艺研究     金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。     澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。     (三)浮选新药剂研究     在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。     (四)应注意整体指标的优化     各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。     六、结语     金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。