您所在的位置: 上海有色 > 有色金属产品库 > 氧化镁熔点 > 氧化镁熔点百科

氧化镁熔点百科

氧化镁

2019-01-25 15:49:17

MgO俗称苦土,是一种白色粉末状固体。熔点3125K,沸点3873K,密度3.58g/cm3(298K),硬度6.50。MgO对水呈一定惰性,特别是高温煅烧后的MgO难溶于水。MgO溶于酸。    MgO的制备方法:   (1)金属镁在高温下燃烧。                              2Mg  +  O2  ==  2MgO    (2)工业上一般通过煅烧碳酸镁或氢氧化镁来生产氧化镁。                             MgCO3  ====  MgO  +  CO2                                Mg(OH)2  ==== MgO  +  H2O    煅烧温度在923K左右制成的为轻质MgO,煅烧温度在1923K以上时制成的为MgO。    MgO大量用于耐火材料、金属陶瓷、电绝缘材料,轻质MgO与MgCl2或MgSO4溶液混合后可制成镁质水泥。医疗上用MgO作抗酸药和轻泻药。常与易致便秘的CaCO3配合应用。在水处理、人造纤维织物加工、造纸、催化剂生产等方面MgO都有重要应用。

氢氧化镁简单介绍

2019-02-14 10:39:59

碱土金属的氢氧化物都是白色固体,置于空气中就吸水潮解。其间Ca(OH)2就是常用的干燥剂。碱土金属氢氧化物在水中的溶解度比碱金属氢氧化物要小得多,从表中数据看,从Be到Mg,氢氧化物的溶解度顺次递加,它们的碱性也顺次递加。Be(OH)2和Mg (OH)2是难溶的氢氧化物。Be(OH)2是氢氧化物,Mg (OH)2归于中强碱,其他均归于强碱。表1  碱土金属氢氧化物的某些性质物质Be(OH)2Mg(OH)2Ca(OH)2Sr(OH)2Ba(OH)2性质色彩白白白白白熔点/K脱水分化脱水分化脱水分化脱水分化脱水分化水中溶解度/mol-dm-3(293K)8×10-1S×10-11.8×10-26.7×10-22×10-1酸碱性中强碱强碱强碱强碱 碱金属和部分碱土金属的焰色离子Li+Na-K+Rb+Cs+Ca2+Sr2+Ba2+焰色红黄紫紫红紫红紫红洋红黄绿波长/nm670.8589.6404.7629.8459.3616.2707553.6     Mg(OH)2的密度为2.36g/cm3,加热至623K即脱水分化:                                   Mg(OH)2  ====  MgO  +  H2O    Mg(OH)2易溶于酸或铵盐溶液:                               Mg(OH)2  +  2HCl  ====  MgCl2 +2H2O    这一反响可应用于分析化学中。    将海水和廉价的石灰乳反响,能够得到Mg(OH)2沉积,亦称氧化镁乳:                             Mg2+   +  Ca(OH)2  ==  Mg(OH)2  +  Ca2+    Mg(OH)2的乳状悬浊液在医药上用作抗酸药弛缓泻剂。

利用硼泥制备氢氧化镁

2019-02-18 15:19:33

硼泥是、硼砂出产过程中构成的固体废弃物。硼泥中含有氧化镁、氧化钙、等碱性物质,对环境造成了极大污染。截止到2006年仅辽宁省内的硼泥就已达1700万t,并正以每年130万t的速度添加。       现在,国内外对硼泥归纳利用的研讨有诸多方面,已取得了许多科研成果,但硼泥污染的现象依然存在,这首要是因为各类硼泥归纳利用技术落后,工业化程度较低。硼泥中含有镁等有价元素,极具开发利用价值。因而,开发利用这种二次资源,出产氢氧化镁,对进步经济效益、削减环境污染、促进资源再生都有重要意义。氢氧化镁作为典型的无卤阻燃剂,具有阻燃、消烟、阻滴、高热稳定性、高效的促基材成碳效果和强除酸才能等特性。       现在,出产氢氧化镁的首要办法有:合成法、白云石的挑选煅烧法和电解卤水法。合成法需以含有氯化镁的卤水为质料,白云石的挑选煅烧法和电解卤水法的能耗皆较高。本文选用高温下煅烧工业浓硫酸与硼泥混合物的办法收回氢氧化镁,此办法能耗低且易于完成工业化,不只能够处理硼泥对环境的污染问题,也为氢氧化镁的出产拓荒了一条新途径。       一、试验       (一)试验质料       硼泥取自辽宁省某地,首要化学组成见表1。硫酸为工业级,浓度98%,、及其它检测所用药品均为分析纯,试验用水为二次蒸馏水。   表1  硼泥的成分(质量分数)/%MgOCO2SiO2Fe2O3Al2O3CaOMnO其它39.030.219.74.562.991.840.0821.628       (二)试验内容       将硼泥与工业硫酸的混合泥浆在高温炉中煅烧必定时刻,取出后加水溶解、加热、过滤,得到母液。用0.01mol/L的EDTA滴定Mg2+,核算浸出率。重复加热、过滤母液至用(NH4)2C2O4溶液体会不到Ca2+。向滤液中参加将溶液中的Fe2+、Mn2+氧化成高价的Fe3+、Mn4+有利于完全除杂,加至用K3[Fe(CN)6]溶液查验不到Fe2+,用硝酸和NaBiO3查验不到Mn2+。在必定温度下加10%NaOH溶液将母液调理至pH=9.0,过滤,除掉杂质,得到镁精液。再向镁精液中参加5mol/L的NaOH溶液调理,pH=12.0,过滤、洗刷,然后将产品恒温烘干,得到氢氧化镁产品。产品的检测按标准HG/T3607—2000履行。       (三)工艺流程       工艺流程见图1。图1  硼泥制备氢氧化镁工艺流程       二、成果与评论       (一)煅烧温度对镁浸出率的影响       在煅烧时刻为1h,硫酸与硼泥液固比为1∶1的条件下,调查不同煅烧温度下镁的浸出率,试验成果如图2所示。由图2可知,在烧烧温度为300℃时,镁的浸出率最高,尔后跟着煅烧温度的升高镁的浸出率反而快速下降。这是因为浓硫酸在350℃时开端发作分化反响,温度过高时,生成的SO3烟气和氧气会快速逸出,使反响不能充沛进行,故镁的浸出率下降。一起高温效果黏结生成不溶于水的硅酸盐类也会使得镁的浸出率下降。图2  煅烧温度对镁浸出率的影响       (二)煅烧时刻对镁浸出率的影响       在硫酸与硼泥液固比为1∶1、煅烧温度为300℃条件下,别离调查不同煅烧时刻下镁的浸出率,试验成果如图3所示。由图3可知,跟着煅烧时刻添加,镁的浸出率逐步增大。反响时刻为2h时硫酸与硼泥的反响根本完毕,此刻镁的浸出率到达最大。图3  煅烧时刻对镁浸出率的影响       (三)硫酸与硼泥份额对镁浸出率的影响       在煅烧时刻为1h,煅烧温度为300℃条件下,调查不同液固比时镁的浸出率,试验成果如图4所示。由图4可知,跟着硫酸与硼泥液固比的增大,硫酸过量增多,硼泥能充沛与硫酸反响,镁浸出率趋于增大,但耗酸量增大。若硫酸与硼泥的份额太小,则硼泥中的矿藏不能与硫酸充沛反响,导致镁的浸出率不高。依据试验成果,硫酸与硼泥的液固比以2∶1为宜。图4  硫酸与硼泥份额对镁浸出率的影响       (四)归纳条件试验       依据试验成果及归纳考虑能耗、药品用量和硫酸分化温度对浸出率的影响,断定工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的液固比为2∶1,在此工艺条件下镁的浸出率为88%。将此条件下所制样品按1.2所述办法制备氢氧化镁,经测定镁精液中镁的收回率为91.17%。因而,硼泥中镁的归纳收回率可达80%左右。       (五)氢氧化镁的检测与分析       1、氢氧化镁的XRD分析  选用X射线衍射仪分析了产品物相组成,其成果见图5。由图5可知,该产品的峰方位和强度均与JDPDS卡上标准Mg(OH)2的衍射峰数据完全一致,且峰值规整,无杂峰出现,可知粉体为Mg(OH)2。图5  Mg(OH)2样品XRD图       2、氢氧化镁的检测  对氢氧化镁产品进行成分分析,检测成果如表2所示。   表2  氢氧化镁成分(质量分数)/%Mg(OH)2FeAlCaOMn99.540.0190.0150.4300.008       由表2可知,氢氧化镁的纯度为99.54%,换算成氧化镁纯度为68.64%,高于标准HG/T3607—2000的规则,其他杂质的含量也契合此标准。       3、氢氧化镁的SEM分析  用SEM对氢氧化镁粉末的表面描摹微观结构进行分析,其成果见图6。由图6能够看出,未烘干的Mg(OH)2颗粒出现聚会状况,晶体微粒十分小,颗粒直径不到1μm。将样品烘干后Mg(OH)2晶体微粒逐步长大,颗粒呈不规则球状,颗粒直径大约70~90μm。图6  氢氧化镁SEM相片                     (a)未烘干;(b)烘干后       三、定论       (一)依据单要素条件试验断定高温煅烧工业硫酸与硼泥混合物的工艺条件为:煅烧温度为300℃、煅烧时刻为2h、硫酸与硼泥的份额为2∶1。此刻镁的浸出率为88%。       (二)以为沉积剂制备氢氧化镁可使镁精液中镁的收回率到达91.17%,硼泥中镁的归纳收回率可达80%。经XRD检测断定沉积产品为氢氧化镁,产品质量契合标准HG/T3607—2000。       (三)由SEM检测能够看出,未烘干的Mg(OH)2晶体微粒十分小,颗粒直径不到1μm。氢氧化镁经烘干后晶粒长大,颗粒呈不规则球状,颗粒直径大约70~90μm。

镍精矿降低氧化镁工艺技术

2019-01-21 18:04:33

一、概述     金川公司选矿厂一选矿车间处理龙首混合矿石,设计处理能力为1200t/d,有破矿、磨浮、精矿输送三道工序。其中,磨浮采用三段磨矿、三段浮选的阶段磨选流程。经80年代后期和90年代初期的系列改造,形成了1500t/d的生产能力。90年后期,经过不断挖潜改造,特别是2000年和2001年连续两次150t/d的扩能改造,现已形成2000t/d的生产能力。     目前所指的龙首混合矿石,是指龙首矿东、中、西部三个不同采区的矿石混合,而不是矿石工业类型上所所义的硫化率为45%~60%的混合矿石。其中一部分较富混合矿石(含Ni1.3%以上)由一选矿进行处理,另一部分较贫混合矿石(含Ni1.122%左右)由二选磨浮车间处理。     本文所探讨的就是Ni品位在1.30 %以上的由一选处理的龙首混合矿。     二、矿石性质及主要矿物选矿工艺特性     (一)龙首混合矿石中主要金属矿物及选矿工艺特性     龙首混合矿石中主要金属矿物有紫硫镍铁矿、镍黄铁矿、黄铁矿、磁黄铁矿、黄铜矿、方铜矿等;脉石矿物有蛇纹石、绿泥石、滑石及碳酸盐。紫硫镍铁矿被认为是最易浮选的硫化镍矿物。镍黄铁矿属比较好选的镍矿物,其选别效果仅次于紫硫镍铁矿,主要原因是其原生粒度比紫镍铁矿小,由于中细粒贫矿石中的镍黄铁矿和磁铁矿紧密共生呈网络状结构,磨矿过程中绝大部分不能单体解离,造成镍黄铁矿可浮性稍差。氧化会使紫硫镍铁矿的可浮性变差,因此对于以紫硫镍铁矿为主的硫化镍矿石要求快采、快运、快选,矿石存放越久越不利于选别。     一般的蛇纹石化矿石,用黄药做捕收剂,镍回收率和硫化率接近或比较接近,是比较好选的硫化镍矿石,使用调整剂可提高精矿品位,回收率无明显改善。蛇纹石具有一定的可浮性,所以精矿中30%左右脉石矿物中有相当部分是蛇纹石,致使精矿中金属品位降低,氧化镁含量高。强蚀变矿石中蛇纹石含量较少,在一般的浮选生产中,硫化物损失严重。     研究证明:各类厂矿中的硫化镍矿物可选性无明显差异,但矿石中脉石矿物对选别生产显著影响,因此,提高镍矿物选别指标或降低精矿中氧化镁的研究工作中,必须重视脉石矿物的抑制。     (二)含镁脉石矿物的浮选工艺性质     金川硫化铜、镍矿床中主要脉石矿物为含镁硅酸盐,由于地质蚀变作用,这些硅酸盐主要以蛇纹石、绿泥石、滑石的形式存在,这些脉石矿物对铜、镍的浮选影响较大。     1、主要脉石矿物的结构     蛇纹石是层状碳酸盐矿物中最简单的矿物,结构式为[Mg3Si2O3(OH)],在它的没一层结构中都含有一层硅氧四面体,水镁石层获得额外电荷,所以和另外一个硅氧四面体六方网成夹层结构,一旦在滑石层上没有净电荷而只有范德华力时,这个夹层就裂开,滑石也很软。     绿泥石也是层状硅酸盐矿物,结构式为(Mg·Al·Fe)12[(SiAl)8O22](OH12),它是在双层云母之间夹上一层水镁石而形成的,如果水镁石层价键遭到破坏,这个矿物就裂开。和前两种矿物比,它最松软。     2、脉石矿物的可浮性     蛇纹石大量存在于镍精矿中而影响精矿质量。在镍矿的生产实践中发现蛇纹石大量进入镍精矿而难以脱除,原因是蛇纹石在形成过程中具有较强的磁性,具有磁性的蛇纹石吸附与同样具有磁性的硫化物表面一起进入精矿;另外,带正电的蛇纹石易吸附与带负电的镍矿物表面而上浮。     绿泥石在镍矿物浮选中易浮难抑,另外,绿泥石疏松易碎,在磨矿过程中易泥化。绿泥石矿泥在镍矿物浮选中其行为与蛇纹石细泥基本一致。     滑石具有非极性表面,疏水性好,具有较强的天然可浮性,仅用起泡剂就能很好使之浮游,镍矿物浮选中,滑石极易进入精矿中。     三、降镁现状分析     (一)工艺流程及其特点     90年代,为了给闪速炉提供低镁合格精矿,弥补二矿区富矿精矿量的不足,金川公司选矿厂、金川镍钴研究设计院、中南工业大学、西北矿冶研究院等单位,针对龙首混合矿石低精矿中氧化镁进行了大量的试验研究,这些试验研究概括起来有三种:       1、通过改变工艺流程降镁;       2、通过新药剂达到活化有用矿物,抑制脉石矿物的药剂降镁;       3、采用改变工艺流程和添加新药剂相结合的方式降镁。       通过大量的试验研究,一选车间于1998年6月9月分别对2#系统和1#系统进行了流程改造,形成了目前的降镁工艺,产出的低镁精矿送闪速炉处理,新的降镁工艺主要是强化了精选作业,增加了粗选次数,通过提高精矿品位达到降镁的目的。现场生产实践证明三段磨矿、三段浮选的阶段磨选流程是选别金川龙首混合矿石的成功经验,既可使有用矿物达到充分单体解离得到有效回收,又可减少过磨和矿物表面污染。生产实践还证明,该流程适应性比较好,既可组织降镁生产,为二期闪速炉提供低镁精矿(精矿中氧化镁含量≤7%);又可以组织低精矿品位生产,为一期电炉生产提供原料,并且在这两种情况下,回收率都基本不受损失。一选磨浮工艺流程(框图)如图1。    图1  一造厂磨浮原则流程     (二)生产指标分类统计分析     对2000年1~8月选厂生产指标进行了分类统计,从统计结果得出如一结论。     1、原矿品位对指标有着直接的影响。随着原矿品位的升高,精矿品位、回收率均呈上升趋势,精矿中MgO含量逐渐降低。     2、原矿镍品位大于1.2%时,只要控制精矿镍品位大于6.5%,精矿中MgO含量即能低于7%,说明在现有工艺条件下,保证一定的精矿品位是降镁的首要条件。     3、原矿镍品位小于1.2%时,要保证精矿中MgO含量,必须将精矿品位提高到7%以上,回收率损失较多。     四、降镁问题分析     (一)矿石性质对降镁的影响     1、MgO赋存矿物的自然可浮性     大多数硅酸盐矿物有强的共价键或离子键,亲水性强,可浮性差,如橄榄石、辉石等。但蛇纹石、滑石、绿泥石等矿物是特殊的层状或双链状硅酸盐矿物,破碎后表面键力是分子键力,疏水性好,自然可浮性强,在浮选过程中容易进入精矿,致使精矿中MgO含量升高。金川矿区的矿石大多发生蚀变,原生的橄榄石、辉石大多蚀变为蛇纹石、滑石、绿泥石等,这些含镁矿物可浮性好,是MgO难以抑制的主要原因。     2、矿石硬度     矿石的硬度变小,在磨矿过程中更容易泥化,矿石的蚀变与矿石中构造挤压带的发育会加剧这一趋势,使蛇纹石、滑石、绿泥石矿泥包裹在金属矿物的表面进入精矿,造成MgO含量升高。     3、矿石品位     矿石中金属硫化物与含镁脉石矿物呈负相关,即矿石品位越低,MgO含量越高。2001年1~8月一选矿处理的龙首混合矿石累计Ni原矿品位1.333%,比计划Ni原矿品位1.35%低0.017%,比2000年同期的1.445%降低了0.112%,呈明显的下降趋势,增加了降镁工作的难度。     (二)降镁方案的局限性     针对龙首混合矿石改善镍铜指标,降低精矿中MgO的工作,各大专院校,科研院所做了大量的试验研究,对不同的矿石采用不同的技术措施都有一定的效果,但是一经生产应用,效果若显若隐。选矿过程很复杂,工业化生产又是一个连续性过程,因目前矿山尚无法实现配矿或稳定出矿,入选的矿石性质、品位波动很大,以不变(或说相对固定)的选矿设备、工艺流程处理多变化矿石,使过程控制更加复杂化,从而使一些看起来比较好的技术措施,在现场应用时就很难取得理想的效果。     五、降镁工作的研究方向     (一)工艺矿物学研究     一矿区龙首混合矿石矿物组成复杂,过去的矿物工艺学研究多侧重于考察原矿,对脉石矿物在选矿过程中各中间产品的赋存状态和工艺特性研究很少,而弄清楚含镁脉石矿物在整个浮选工艺过程中的走向及选矿过程中各中间产品中的脉石矿物的工艺特性,对降镁工艺与药剂的研究具有重要的指导意义,是降镁的关键所在。     (二)选矿新工艺研究     金种一矿区龙首混合矿石降镁工艺的研究晚于二矿区,但也取得了一定进展。但从生产实践来看,还需继续深入探索。     澳大利亚的G·D·Senior等人采用一种新的工艺流程处理镍硫化矿,可除去98%的含镁矿物,工艺要点为:预先浮选含镁矿物,然后将物料分别处理,分段抑制含镁矿物,最后活化含镍矿物,得到高品位镍精矿。金川一矿区混合矿石主要含镁矿物为蛇纹石,其良好的可浮性是造成精矿MgO含量高的重要原因,可以考虑预先浮选蛇纹石,并通过降镁药剂分段抑制其它含镁矿物来达到降镁的目的。另外,G·D·Senior等人认为,粒度不同的物料可浮性和对药剂的要求都有很大的差异,这一点也值得借鉴。     (三)浮选新药剂研究     在工艺流程确定的前提下,影响浮选过程和最终指标最为关键的因素就是浮选药剂的合理选择与使用。由于浮选过程中药剂之间存在着的交互作用,很难真正搞清楚选矿药剂的作用机理,现有的很多理论都是以假设和推测的形式出现,不能确定地描述药剂如何作用于矿物,怎样改变其浮选特性,这一点妨碍了浮选药剂研究的针对性。因此,深入研究各种药剂的作用机理,是降镁研究的重要组成部分。     (四)应注意整体指标的优化     各大专院样、科研院所以往对于金川矿石降低精矿中MgO的研究中,虽然部分地注意了对其它指标的影响,并且采取了一定的技术措施,但这种注意还是不够的。很多降镁方案都要通过不同程度地提高精矿品位来实现,而精矿品位的提高势必造成回收率的损失。若是为了降镁则大幅度提高精矿品位,导致过多地损失回收率,在经济上是不合理的,金川资源有限,在考虑降镁满足闪速炉要求的同时,不能过多损失镍、铜回收率,要特别注意整体指标的优化,这应在今后的降镁工艺研究中引足够重视。     六、结语     金川一矿区龙首混合矿石降镁工艺,经各大专院校、科研院所的大量研究,已取得了一定的进展,有些已应用于工业生产中,目前一选矿的降镁工艺就是在充分吸收各家研究成果的基础上形成的,生产实践也证明在矿石性质、品位相对稳定时,还要靠提高精矿品位来达到降鲜的目的;在矿石性质恶化时,精矿中MgO含量还不能满足要求等,因此,针对一矿区龙首混合矿石降低精矿中MgO含量的工作,还要进一步地探索研究。

氧化镁在电加热管方面的应用

2019-01-04 17:20:20

镁粉主要可用于火箭冲压发动机和去除推进剂燃气中氯化氢。另外还可用作还原剂、制闪光粉、铅合金,冶金中作去硫剂、有机合成、照明剂等。镁粉与铝粉一样,受潮会产生自燃、自爆。当每公升空气中含镁粉10-25毫克,遇到火源就会爆炸。因此工厂在储放镁粉时要格外的注意,一旦生产自然爆炸后果将不堪设想。镁粉做为炼钢不可缺少的材料之一,其需求也多来自于炼钢,因此钢市的好换对镁粉价格有一定的制约作用。 镁粉分为碳酸镁、雾化球形镁粉等。而氧化镁粉作为制作电加热管的主要材料之一,对其电加热管性能好坏的影响非常大。电工级氧化镁粉是指电熔结晶氧化镁块经破碎并对不同颗粒尺寸或数目按一定比例配合,直接或改性后用于管状电热元件中作为在高温下导热的绝缘介质。 电工级氧化镁粉可分为普通型、低温防潮型、中温防潮型以及高温型。氧化镁粉在工作温度的时候,其要具有较高的导热性能,以便能迅速把热量传递到管表面上去,使电阻与管壁温度更接近。当工作温度在1100摄氏度以内时,其具有较好的绝缘性能。其必要要具有一定的颗粒度,形状一般要求为圆状。并且要求其无论在常温还是高温状态下对发热丝材料和管材都应无腐蚀现象。 因氧化镁矿石经粉碎后,颗粒的大小不同,若按一定数量的配比具有以下优点,一是能提高粉密度,减少电阻丝的温度,从而提高电热元件的寿命。二是能克服“分筛”效应,提高mgo粉的利用率。

纳米氢氧化镁的用途及合成方法

2019-01-04 09:45:23

氢氧化镁产品分类及应用现状

2019-03-08 11:19:22

氢氧化镁产品从应用上分为阻燃级、中和级、医用、电子级、油品增加剂用氢氧化镁等;从结构上分为片状、超细、晶须、纳米级、重质氢氧化镁等。其间发展潜力较好的是超细氢氧化镁和氢氧化镁晶须。 片状氢氧化镁可作为增加型阻燃剂,碳化法即以菱镁矿或白云石为质料,经煅烧、消化、除杂、碳化、沉积制得产品。以白云石为质料,为沉积剂并参加表面改性剂十六烷基三甲基化铵,水热制得菱面片层氢氧化镁,该法镁、钙别离程度较高,镁的提取率为90.02%,产品收率为88.21%;沉积法以菱镁矿或白云石为质料,经煅烧、浸取、除杂、沉积制得产品。以白云石为质料,先后用和硫酸浸取,参加克己络合沉积剂和表面改性剂聚乙二醇可制得产品,收率为85.20%。酸解法以多种含镁矿藏为质料,经过酸解、除杂、沉积制得产品。以白云石为质料,经酸化、除杂,以白云石灰乳为沉积剂,产品纯度为98%,其间,白云石灰乳经过白云石煅烧消化制备。 超细氢氧化镁可作为复合材料的阻燃成分,参加不同的表面改性剂能够改动产品粒径。以氯化镁溶液为质料,为沉积剂,产品粒径 卤水替代。 氢氧化镁晶须是短纤维功能型材料,首要作为阻燃剂和补强材料增加到高分子材料中。沉积法,改善沉积进程能够改动长径比。以氯化镁溶液为质料,参加碱和表面改性剂,水热组成产品。以为沉积剂,丙三醇为表面改性剂,选用微波水热,直径为0.1~0.3μm,长度为80~110μm;改用和为沉积剂,酸为表面改性剂,直径为8~15nm,长度为50~150nm;中低浓度的和低浓度的氯化镁溶液,产品的分散性较好;以碱式硫酸镁晶须为前驱体,为沉积剂,油酸钾为表面改性剂,水热制得直径为1~2μm,长度为100~200μm的产品;参加表面改性剂不能减小粒径,反而会阻挠碱式硫酸镁晶须向氢氧化镁晶须转化。

从低品级菱镁矿中提取高纯氧化镁的研究

2019-01-24 09:36:25

Abstrac:The carbonization soakingof low2grade granularmagnesite is studied. Themineralproperty and light baking performance ofmagnesite, the digestingprocessofMgO aswell as the technologicalparametersof carbonization soaking are investigated. With the carbonization soaking of magnesite, high2grade MgO has been obtained, which contains 99% ofMgO。 我国镁矿资源非常丰富 ,采用碳化法生产轻质碳酸镁的工艺依据矿石性质不同而分为两种:白云石碳化法和菱镁矿碳化法。白云石碳化法生产工艺成熟,但由于碳化浸出过程存在钙含量较高的问题,所以该工艺生产高纯产品受到限制。随着冶炼技术的不断发展,冶金过程中的许多特殊作业趋向于使用高纯度镁砂来大幅度提高耐火制品的寿命,降低生产成本。同时由于高品级菱镁矿的大量出口,因此导致镁矿资源的综合利用问题日益显著。为此,笔者采用低品级菱镁矿粉矿进行碳化法提取高纯氧化镁 (wMgO大于 99%)的工艺研究。试验中,对菱镁矿的矿石性质及轻烧性能、氧化镁的消化过程和碳化浸出的工艺条件和参数进行了研究,并用所获高纯碱式碳酸镁生产出高纯镁砂。 一、矿石性质研究与工艺流程 试样的矿物组成比较简单 ,主要矿物为菱镁矿和白云石,次要矿物为滑石、绿泥石;微量矿物有石英、褐铁矿、黄铁矿、磷灰石等。MgO在矿石中主要作为独立矿物的基本组成形式存在于矿石矿物菱镁矿和脉石矿物白云石、滑石和斜绿泥石中。CaO以两种形式存在于矿物中:一种是以形成独立矿物的基本组成形式存在 ,如白云石、磷灰石 另外一种是以白云石微细包裹体形式存在于菱镁矿晶体中。SiO2亦以两种形式存在于石英、滑石、斜绿泥石、透闪石、方柱石等脉石矿物中,另一种是以石英和硅酸盐矿物细微机械包裹体形式存在于菱镁矿晶体中。 粒度筛析结果表明,wSiO2,wAl2O3在细粒级(-150目 )中略为偏高。wMgO,wCaO,wFe2O3在各粒级中变化不大,与多元素化学分析结果相近。化学分析结果见表1。本试验工艺流程见图1。二、试验结果与分析 (一)煅烧试验 天然菱镁矿在碳化过程中不能直接与二氧化碳起作用,碳酸仅对具有活性的氧化镁起反应,因此需将矿石在高温设备中轻烧,使菱镁矿逸出二氧化碳,生成具有活性的氧化镁。煅烧反应如下: 菱镁矿(WMgCO3约为90%) 轻烧料(WMgO大于90%)+CO2↑    (1) 为使氧化镁易于消化和碳化,对试样进行了差热分析。差热分析结果表明,试样中MgCO3的初始热分解温度为666℃。根据失重曲线可知,700℃以上。由于轻烧氧化镁的活性与煅烧温度和时间有关,故将温度控制在700~850℃之间,并在不同保温时间内进行煅烧条件试验。图2示出了温度和时间对菱镁矿灼减的影响。结果表明,菱镁矿的灼减随温度升高和时间延长而增大。为保证轻烧料不欠烧也不过烧,并具有较高的活性,最佳煅烧温度应控制在800℃,煅烧时间为1.5h。(二)消化试验 许多厂家的生产实践表明,采用白云石生产轻质碳酸镁的工艺中,白云石煅烧后,矿石中含量约30%的CaO与水反应生成Ca (OH)2,矿石自然 裂 解,wMgO为20 %也易与水作用生成Mg(OH)2,因而无需采用细磨工艺。本试验从节约能耗的角度出发 ,将菱镁矿破碎至较小粒级后进行煅烧、消化试验,以探索消化工艺的最佳工艺条件。消化过程的化学反应式如下: MgO+H2O→Mg(OH)2              (2) 轻烧料中的氧化镁在水溶液中转化为氢氧化镁的过程与反应浓度、温度、时间等因素有关,同时与粒度有关。本试验的消化试样为小于2mm粒级的轻烧粉料。 1、消化浓度 将试样放入80℃水中,搅拌4min后过滤,分析不同浓度对消化率的影响。由试验结果得知,消化过程浓度大,转化率低,当浓度低于20%时 ,消化率的变化不大 ,故取消化浓度为 20%进行下面的试验。 2、消化时间 由于浓度试验消化率较低 ,故消化时间试验时增强了搅拌 在消化温度为 ℃、浓度为,80 20%的条件下进行了试验。时间变化对消化率的影响见图3。图3中曲线表明,消化反应时间的增加,对消化率的影响比较明显。消化时间超过12min,消化率已达98%以上。3、消化温度 在试验浓度和时间相对稳定的条件下,温度对消化结果的影响见图4。由图4看出,氧化镁转化成氢氧化镁的过程受化学反应控制,提高反应温度,可加快反应速度,消化温度的提高,对消化过程的影响极为明显。适宜的消化温度应控制在80℃以上。(三)碳化浸出试验 将氢氧化镁转化成碳酸氢镁,是以适量的二氧化碳为浸出剂,在特定的浓度、温度条件下进行反应,不同的时间和压力对浸出结果影响较大。其化学反应式如下 Mg(OH)2+CO2+H2O→Mg(HCO3 )2+H2O          (3) 借鉴前期做过的工作,在常温常压条件下对消化后的试样进行了碳化浸出试验,进塔液nMgO为18.62g /L, cCO2为33%,在浸出过程中定时抽取泥浆过滤,分析碳酸氢镁溶液中WMgO,试验结果见图5。图5中下部曲线表明,试样粒径较大,碳化时间较长。超过90min后氧化镁的转化率增加不明显,浆液中nMgO为7.8g/L。为此,在上述浸出工艺条件相对稳定的条件下,降低进塔液中氧化镁的浓度进行了试验。由图5中上部曲线可知,随着进塔液中的氧化镁浓度的降低,转化率升幅较大,碳化反应至90 min时,MgO的转化率达84.01%,回收率为80.97%。(四)热水解试验 碳化浸出过程实现了目的组分由固相到液相的转移。经固液分离、滤去残渣,将滤液 (重镁水 )加热,使碳酸氢镁转型生成碱式碳酸镁。化学反应式如下: 5Mg(HCO3 )2→4Mg(OH)2·Mg(OH2 )·4 H2O+6 CO2 ↑    (4) 根据上式,在滤液加温至沸腾温度时进行了热水解时间对母液 (废镁水 ) 中氧化镁含量影响的试验。试验结果表明,随时间的延长,母液中氧化镁浓度随之降低。超过5 min后,母液中nMgO均为0.18 g/L,故热水解过程控制为滤液加热至沸腾温度后继续保温 5 min。过滤烘干后的碱式碳酸镁产品多元素化学分析及氧化镁回收率如表2所示。三、结论 (一)采用碳化法浸出工艺处理低品级菱镁矿粉矿,可获得灼减为零时wMgO为99.31%的高纯轻质碳酸镁。氧化镁回收率为80.97%。经烧结工艺处理 ,可获得氧化镁含量为 99.21%,体积密度为3.38g/cm的高纯烧结镁砂。 (二)常压二氧化碳浸出工艺生成的轻质碳酸镁中氧化钙含量较前期加压试验最终产品的CaO品位略有升高。 (三)由于菱镁矿碳化浸出过程中未采用磨矿工艺 ,试样粒径较大 ,故氧化镁的转化率和回收率不近人意。当粒度变小后进行研究,浸出液中氧化镁的转化率指标非常理想。

熔盐法制备氧化镁粉体及其反应机理

2019-02-21 11:21:37

跟着高技术陶瓷、橡胶、塑料、催化剂、环保材料、航天材料的不断发展,氧化镁晶体材料、特别是高纯氧材料(MgO含量不低于98%)的使用越来越广。例如用于医治胃酸过多及十二指肠溃疡患者,用作硅钢制作进程中的高温退火阻隔剂,用于制作电子管、滤光器、滤色器、滤波器等。此外作为灵敏型高效催化剂及功用体良的掺杂材料,高纯氧化镁有很多使用于工业催化及材料改性和高功用复合材料的制备。已报导的高纯氧化镁制备办法较多,例如菱镁矿(白云石)碳化法、卤水(海水)-石灰()法、卤水(海水)-碳按法及镁盐直接热解法等。     熔盐法选用一种或几种低熔点的盐类作为反响介质,在高温熔融盐中完结组成反响,然后选用适宜的溶剂将盐类溶解,经过滤、洗刷得到组成产品,它在高熔点氧化物粉体和电子陶瓷粉体及其它功用粉体材料组成等范畴广泛使用。熔盐法具有工艺简略、组成温度低、保温时刻短、本钱低价、组成粉体的化学成分安稳均匀等长处。     对熔盐法制备MgO粉体的不同熔盐系统进行了比照,发现NaCl-KCl盐类熔点适中,功用相对安稳,洗刷进程中NaCl、KCl溶解于水,滤液经枯燥后得到NaC1、KC1等盐类可回收使用,是一种优秀的反响介质。当选用NaN03-KN03盐类作反响介质时,与镁盐直接热解法相同,反响进程中发作腐蚀性气体,不适合工业化出产。可是NaN03 -KN03盐类熔点较低,有利于分析质料系统在熔盐中的反响进程,进而对反响机理进行评论,因而本文以MgCl2、 CaCO3和NaN03、KN03为质料制备Mg0粉体。     一、试验     (一)质料     试验所用无水氯化镁、碳酸钙、、、无水乙醇等均为分析纯。     (二)氧化镁粉体的制备     将MgCl2、CaCO3及NaN03、KN03按1.1︰1︰2︰2配比置于碾钵中碾磨,使质料混合均匀并磨细至-0.074mm粒级,550℃下保温3h热处理,经水浸泡、洗刷、减压过滤、110℃枯燥,再在600℃下保温3h热处理。     (三)反响机理分析     作CaCO3和MgCl2-CaCO3-NaN03-KN03的TG-DSC曲线,分析质料热反响进程;依据TG-DSC曲线,将质料在不同温度和保温时刻下热处理,断定产品组成,分析熔盐法制备氧化镁的反响机理。     (四)表征     用德国NETZSCH公司STA449/6/G型热重-差示扫描归纳热分析仪对试样进行热效应分析。     用荷兰Philips公司出产的X′Pert Pro型X射线衍射仪对产品进行物相判定。     用荷兰Philips公司出产的Nova400NanoSEM型场发射扫描电子显微镜调查粉体描摹及巨细。     二、成果及评论     (一)试样的组成与描摹分析    图1为S11试样和S12试样的XRD图谱,其间S11试样为质料在550℃下保温3h热处理,用水洗刷后经110℃枯燥的前驱物,S12试样为S11试样在600℃温3h热处理的产品。     从图1可见,质料在550℃下保温3h热处理,用水洗刷后的前驱物主要为氢氧化镁,其间尚有少数氧化镁没有水解,经600℃保温3h热处理,氢氧化镁分化为氧化镁。图2  试样TEM (a)S11;(b)S12     图2为S11试样和S12试样的SEM图。从图2可见,氢氧化镁前驱物主要为层状描摹,形状不规整,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;氢氧化镁分化后得到的氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。     表1为S12试样的化学成分分析成果。从表1可知,所制备的氧化镁粉体纯度高,可满意医药、冶金、工业催化、量子器材、微电子等职业要求。 表1  S12试样化学成分分析成果(质量分数)/%Mg0CaC03A1203Si02Fe203IL98.820.520.100.090.060.41     (二)反响机理分析     图3为CaCO3和MgC12-CaC03-NaN03-KN03质料的TG-DSC曲线。     由图3(a)可见,从700℃至800℃失重37.08%,CaC03分化为CaO和CO2,对应的DSC曲线在769.2℃有一个吸热峰。    由图3(b)可见,从室温至400℃失重18.90%,该温度范围内质料失掉悉数物理水及结构水,NaN03-KNO3熔融,对应的DSC曲线上有3个吸热峰;从400℃至530℃失重8.10%,对应的DSC曲线上在490.5℃有一个吸热峰,该温度范围内可能发作了分化反响;从530℃至700℃失重23.20%,对应的DSC曲线上在660.4℃有一个吸热峰,该温度范围内可能发作了分化反响;温度大于700℃后,失重持续加大,主要是熔盐在高温下加速蒸腾。对照图3(a),没有呈现CaCO3分化的吸热峰,阐明在700℃曾经CaCO3已彻底反响。     图4为试样的XRD图谱。其间M11试样为质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品;Ml2试样为质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品;M14试样为质料在900℃下保温3h热处理,用无水乙醇洗刷后产品的XRD图谱。由图4可见,质料在320℃下保温48h热处理,水洗后经110℃枯燥的产品主要为碳酸镁和白云石及少数的氢氧化镁;质料在320℃下保温360h热处理,水洗后经110℃枯燥的产品主要为碳酸镁;质料在900℃下保温3h热处理,用无水乙醇洗刷后产品悉数为氧化镁。    结合S11试样和S12试样的XRD图谱,以MgC12、CaCO3和NaNO3、KNO3为质料,选用熔盐法制备Mg0粉体的反响机理如下:     1、  熔盐环境下Mg2+与Ca2+发作置换反响,其产品组成与反响温度和反响时刻有关。     MgCl2←→Mg2++2Cl-     xMg2++CaCO3→MgxCa1-xCO3     当x<0.5时.产品为碳酸钙的置换型固溶体,当x=0.5时,产品为CaMg(C03)2,当0.5<x<1时,产品为CaMg(C03)2和MgC03混合物,跟着反响的不断进行,当x=1时,产品为MgC03。     2、碳酸镁分化。     MgC03→Mg0+C02↑     3、水洗进程中氧化镁水解。     Mg0+H20→Mg(OH)2     4、氢氢氧化镁分化。        三、结语     (一)MgCl2-CaC03-NaN03-KN03质料制备氧化镁进程中,在熔盐环境下Mg2+与Ca2+发作置换反响,生成白云石和碳酸镁等中间产品,跟着反响的不断进行,白云石终究转变为碳酸镁;550℃热处理碳酸镁分化为氧化镁,经水浸泡后氧化镁水解生成氢氧化镁,600℃热处理氢氧化镁分化为氧化镁。     (二)氢氧化镁前驱物为不规整的层状描摹,巨细散布不均匀,厚度介于0.03~0.05μm,直径介于0.2~1.0μm之间;产品氧化镁为颗粒状描摹,巨细散布较均匀,粒径介于0.2~0.5μm之间。

氧化铜熔点

2017-06-06 17:50:01

氧化铜的熔点为1326℃物质的熔点(melting point),即在一定压力下,纯物质的固态和液态呈平衡时的温度,也就是说在该压力和熔点温度下,纯物质呈固态的化学势和呈液态的化学势相等,而对于分散度极大的纯物质固态体系(纳米体系)来说,表面部分不能忽视,其化学势则不仅是温度和压力的函数,而且还与固体颗粒的粒径有关。铜的熔点为1084 ℃,可见氧化铜熔点高于铜的熔点,在高温条件下,氧化铜的稳定性高于金属铜。

烧结矿不同碱度、氧化镁及二氧化硅含量水平试验研究

2019-01-24 09:38:21

Abstract:Based on the present material condition of N0.3 sintering plant of Magang, the effects of different basicitys and SiO2 and MgO contents in sinter on production and quality of sinter are studied. The results show that, with increas ing the sinter basicitys and SiO2 contents, the sinter strength is improved, but after increasing the MgO contents in sinter, all sinter technicaleconomic indexes are worsened. Therefore, the sinter basicity should be 2.0, SiO2 content should be 4.95%, MgO content should be reduced to the best of its ability in practical production. 烧结矿的碱度、MgO及SiO2含量水平直接影响着烧结矿品位、强度、产量及其冶金性能。为了了解其变化对烧结生产技术指标的影响,马鞍山钢铁股份有限公司(简称马钢)在烧结实验室进行了烧结矿不同MgO、SiO2含量及不同碱度水平的试验。 一、原料成分及烧结工艺制度 试验用含铁料均取自港务原料厂和马钢第三烧结厂生产现场,其化学成分列于表1。此次烧结试验在Φ300mm烧结杯上进行,料层高度为580mm,点火负压6kPa,点火时间1.5min,烧结抽风负压为12kPa。烧结饼经机上冷却后,进行落下和ISO转鼓试验,然后取样做化学分析和冶金性能检验。每组试验在相同的条件下反复进行多次,取在允许误差范围内的两次试验平均值为试验结果,以确保试验结果的重现性。 表1  含铁原料化学成分分析  %粉矿名称TFeFeOSiO2CaOAl2O3MgOTiO2SP烧损姑精57.410.5012.090.8231.150.2990.2250.0120.2502.25CVRD粉65.280.233.740.3550.780.0890.0540.0120.0190.72杨基粉58.710.314.350.1021.350.1040.0490.0030.05010.47天普乐粉62.361.763.840.0291.940.0670.1150.0030.0494.47恰那粉63.010.313.970.1302.120.0850.1040.0120.0653.19FTC粉66.010.313.100.0780.890.0430.1180.0090.0291.22MBR粉67.000.421.460.1201.200.0600.190.0100.0501.30 二、试验方案 本次试验共进行7组。所用的烧结含铁料配比设计基本与马钢第三烧结厂现行生产混匀矿配比相一致,主要是通过对含SiO2较高的姑精配比以及石灰石、白云石的添加量作调整,使得烧结矿的碱度、MgO及SiO2含量满足各个试验水平的要求。设计各组试验因素的水平见表2。各组混合料配比及编组见表3。混合料中含铁料配比为100%,燃料和熔剂百分数是外配的。 表2  各组试验因素的水平  %组号SiO2RMgO备  注14.951.852.10基准组24.951.652.10低碱度34.952.052.10高碱度44.951.852.40高MgO含量54.951.851.80低MgO含量64.801.852.10低SiO2含量75.151.852.10高SiO2含量 表3  混合料的配比及编组  %组号姑精CVRD粉杨基粉天普乐粉恰那粉FTC粉白云石石灰石113.63012111716.410.097.10213.23012111716.810.064.87314.03012111716.010.139.38413.73012111716.311.806.20513.53012111716.58.407.99611.73012111718.310.116.50716.23012111713.810.077.92 三、试验结果及分析 烧结矿化学成分列于表4,冶金性能试验结果见表5。 表4  烧结矿化学成分  %组号TFeFeOSiO2CaOMgOAl2O3TiO2SPC/S157.738.445.029.232.101.460.1060.0110.0651.84257.977.965.098.532.111.540.1030.0100.0631.67357.137.465.049.982.071.580.1200.0140.0681.98457.588.735.009.412.301.560.1040.0120.0691.88557.689.254.949.271.891.410.1070.0090.0651.88658.158.564.819.052.101.550.1020.0090.0651.88757.627.755.159.352.031.500.1170.0130.0711.82 表5  还原性、还原粉化及熔滴性能试验结果组号还原粉化试验结果/%不同还原时间的还原度(RI)/%开始软化温度Ts/℃开始熔化温度Tm/℃开始滴下温度TD/℃最高压差△Pmax/kPa透气性指标S/kPa.℃滴下量MD/gRDI+6.3RDI+3.15RDI-0.530min60min90min120min150min180min125.3658.767.5330.3646.2458.1566.4671.2075.141108133514954.60941841.5223.5654.928.3728.3944.9055.5260.9668.4771.981128132414402.15715780.3326.2459.637.5529.9645.1357.9367.9275.7181.091115134515203.5303421.5428.0961.796.6828.8843.3254.1463.7569.7574.131130133015052.15732085.0532.7862.717.4525.7741.2854.0064.3273.0579.391082132414654.70733979.1626.4159.557.4024.7939.5151.4461.7870.5278.061108131014807.74777843.1724.8057.428.1327.9644.3757.9868.3776.7681.931126134215103.13819741.4 (一)不同烧结矿碱度的影响 由第2组、第1组和第3组构成不同烧结矿碱度水平试验。从试验结果可以看出,当烧结矿SiO2含量一定时,随碱度的提高,烧结生产率及烧结矿强度指标均呈上升趋势。当碱度由1.65升至2.05时,垂直烧结速度稍微加快(由18.78mm/min升到19.51mm/min)、再加上烧结矿成品率的增加(由76.42%升到78.17%),使烧结生产率提高,由1.231t/m2.h增加到1.253t/m2.h,而且也改善了烧结矿的强度指标,转鼓指数也从65.39%提高到67.88%。这主要是因为碱度提高后,烧结矿粘结相中铁酸钙系得以进一步发展的缘故。同时,由于烧结成品率随碱度升高而提高,吨矿烧结固体燃耗由68.24kg下降到66.65kg。而烧结矿品位相应由57.97%降到57.13%。 随碱度升高,RDI+6.3不断升高,RDI+3.15亦升高,RDI-0.5有所降低,但1、3组极接近;还原性改善明显,碱度提高0.1,RI180min提高近3.2%,软化温度无明显变化,熔融和滴下温度不断升高,滴下量逐渐减少。 (二)同烧结矿SiO2含量的影响 由第6组、第1组和第7组构成烧结矿不同SiO2含量试验。在烧结矿碱度一定条件下,随着SiO2含量增加,烧结矿粘结相增加,强度指标变好。当烧结矿SiO2含量从4.80%提高到5.15%时,转鼓指数由64.80%升高到67.70%,提高幅度约2.9个百分点,烧结成品率亦提高1个百分点。而烧结生产率则呈下降趋势,从1.300t/m2.h降到1.247t/。造成生产率下降的原因是:当烧结矿粘结相增多时,烧结过程透气性变差,烧结速度会下降。此外,本次试验是通过调整含SiO2较高的姑精矿配量来满足烧结矿SiO2含量不同水平要求。提高烧结矿SiO2含量就需要配加更多的姑精矿,精粉率增大也直接影响了烧结矿生产率的提高。 随SiO2含量的升高,烧结矿品位由58.15%下降到57.62%。这是因为在原料中增加了高硅的自产姑精矿用量、并减少了进口高品位巴西FTC矿,同时石灰石的配比也有所提高。 6、1、7三组含SiO2由低到高,对应的还原粉化及还原性指标基本相近,而软化、熔融、滴下温度亦不断升高,TD-Ts、TD-Tm区间差异不大,最高压差和透气性S值不断降低,滴下量无明显差异。 (三)不同烧结矿MgO含量的影响 由第5组、第1组和第4组构成烧结矿不同MgO含量试验。从试验结果可知,随MgO含量的增加,烧结矿产量、转鼓强度均有所下降,固体燃耗上升。当烧结矿MgO含量从1.8%增加到2.4%时,生产率由1.281t/m2.h降至1.240t/m2.h,烧结矿转鼓强度由67.07%降到65.67%;而吨矿固体燃耗由68.04kg上升到69.20kg。造成烧结经济技术指标变差有以下原因: 1、白云石在烧结过程中的分解是吸热反应,因此对分解后的MgO矿化形成新的化合物不利,显微分析发现有不少未发生反应的圆粒状MgO被方镁石周围生成的铁酸镁(MgO·Fe2O3)液相所胶结。 2、本次烧结试验及现场生产均配用粗颗粒白云石(-4mm含量只有90%),导致烧结矿产生大量白云石“白点”。 3、白云石与硅酸盐矿物常混在一起,生成镁橄榄石和钙铁橄榄石,结晶细小,一般以玻璃质的物相存在,而玻璃相中发现有细微裂纹,随着白云石的添加,烧结矿玻璃相大量增加。 4、白云石中Mg++容易渗入Fe3O4晶格,稳定了Fe3O4矿相,造成Fe3O4难以向Fe2O3转变形成铁酸钙,MgO添加量愈多,将有更多Mg++渗入到Fe3O4晶格中,限制了铁酸钙系的发展。 由表5可见,随MgO含量上升,还原粉化指标略变差,还原度有所下降,软化、熔融、滴下温度逐渐上升。 四、结  语 (一)在烧结矿SiO2含量一定条件下,随着烧结矿碱度提高,烧结生产率及烧结矿强度指标均能得到提高,还原粉化指标得到改善。因此,在现有高炉用料碱度得到平衡的条件下,马钢第三烧结厂应按2.0的碱度组织生产以满足炼铁厂对烧结矿产、质量的要求。 (二)提高烧结矿SiO2含量亦能提高烧结矿强度,烧结矿软熔温度均有所上升,其它冶金性能无明显变化,但同时烧结矿品位及生产率皆呈下降趋势。因此,在目前条件下烧结矿SiO2含量应稳定在4.95%,以保证烧结矿的强度。 (三)当MgO含量增加时,烧结各项技术经济指标均变差,烧结矿还原性及还原粉化指标略变差。可见,在确保高炉炉渣流动性的前提下,应尽可能降低烧结矿中MgO含量。

氧化铜 熔点

2017-06-06 17:50:02

氧化铜的熔点为1326℃物质的熔点(melting point),即在一定压力下,纯物质的固态和液态呈平衡时的温度,也就是说在该压力和熔点温度下,纯物质呈固态的化学势和呈液态的化学势相等,而对于分散度极大的纯物质固态体系(纳米体系)来说,表面部分不能忽视,其化学势则不仅是温度和压力的函数,而且还与固体颗粒的粒径有关。铜的熔点为1084 ℃,可见氧化铜熔点高于铜的熔点,在高温条件下,氧化铜的稳定性高于 金属 铜。

一种生产环保型氢氧化镁的新工艺

2019-02-22 09:16:34

跟着社会经济的开展,燃煤开释的二氧化硫、二氧化碳,燃油开释的硫化合物,氮化合物及采矿、冶金、印染、化工、制药等职业排放的工业废液对人类赖以生存的环境的污染日益严峻,怎么有用地处理这些污染要素,以削减它们给人类带来的巨大丢失,已成为需求火急处理的全球性重要问题之一。 依据对环境保护的需求,处理这些污染必定要用到具有以下特色的化工产品:无毒、温文、不腐蚀处理设备,廉价易得、处理本钱低,效率高,能力强、易操作,且易收回或综合利用、不构成二次污染。 料浆状氢氧化镁正是契合上述一切特色的最佳质料之一,它是一种首要运用于环保范畴的液相无机碱类产品,具有活性大、比表面积大、吸附能力强、缓冲和中和能力强、非沉积性、流动性好、运用和调理便利、温文、安全、无毒、无害、腐蚀性小、易操作、副产品易收回或综合利用等特色,被称为环境友好型“绿色安全中和剂”,运用于酸性废水中和、废液中重金属离子(Ni2+、Mn2+、Cd2+、Cu2+、Cr3+、Cr6+等)脱除、烟气脱硫、印染废液处理等环保范畴,具有其他碱性物质(氧化钙、氢氧化钙、、碳酸钠等)无与伦比的优越性,以往运用于酸性工业废水、含硫烟气处理范畴中的一些强碱物质,如:石灰、烧碱、纯碱等的运用逐渐遭到限制,而被兴起的弱碱氢氧化镁所代替。 因料浆状氢氧化镁运用于环保范畴的许多优势,20世纪90年代末,国外料浆状氢氧化镁料的出产和运用得到迅速开展;我国虽然具有丰厚的镁资源,可是氢氧化镁的出产和运用并未引起人们的满意注重,首要处于研讨开发阶段。近年来,国内虽然建设了一些中试或出产设备,但规划小、品种少、产品质量低、技能水平低,亟待进步职业全体水平。 一、现有料浆状氢氧化镁的首要出产办法 依据氢氧化镁用处和形状的不同,可分为粉末状、滤饼状、料浆状三种。用于环保范畴的料浆状氢氧化镁的纯度要求不是很高,一般在30%左右即可,首要是要求不含重金属等污染严峻的杂质,其出产办法相对简略,首要包含粗氧化镁(镁砂、粗制工业氧化镁等)水化法、海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法等。 氧化镁水化法是一种非常陈旧的出产工艺,首要是将菱镁矿轻烧得到的轻烧氧化镁粉放入盛有热水的反响池中,边加边拌和,加料结束后保温沉化2h左右,然后进行固液别离、脱水,得到滤饼状及料浆状氢氧化镁。此工艺根本不具有除杂功用,产品质量受质料氧化镁的纯度和活性影响,氧化镁中的杂质除微量可溶性的盐类外,根本被带入产品中,因此,只能出产低层次的氢氧化镁。 海水或卤水-碱性物质(、石灰、氢氧化钙、等)沉积法是将海水或卤水经过简略的净化后,参加碱性沉积剂,发生氢氧化镁沉积,经过滤、洗刷、脱水得到滤饼状及料浆状氢氧化镁。虽然原理简略,但的挥发性强,易污染环境,操作难度大;石灰和氢氧化钙易生成硫酸钙,随氢氧化镁一同分出,构成产品杂质含量高,质量差;是强碱,易使生成的氢氧化镁构成胶体沉积,给产品功能操控带来困难,一起易带入较多的Na+和Cl-及其他杂质,也构成产品杂质含量高,纯度难以保证。 二、海水、卤水-轻烧白云石沉积法 氢氧化镁运用于环保范畴具有其它碱性物质无与伦比的优越性,在国外已被大量出产和广泛的运用,而我国氢氧化镁的出产办法较落后,本钱较高,杂质含量较多,质量较差,在环保范畴的运用更是屈指可数。鉴于此,咱们首要针对出产环保型氢氧化镁,研制了海水、卤水-轻烧白云石沉积法。 该办法归于沉积法的一种,以海水、卤水和轻烧白云石为质料,选用操控结晶一步组成工艺制取氢氧化镁,它克服了以往出产办法的不利要素,产品纯度高、杂质含量少、质量安稳。 (一)根本原理 将轻烧白云石水合生成含氢氧化钙和氢氧化镁的轻烧白云石乳,轻烧白云石乳中的氢氧化钙和质料海水、卤水中的镁离子在接连组成及别离一体化反响器中反响生成氢氧化镁。本工艺选用自主研制的接连组成及别离一体化反响器,在反响器中始终保持一定量的晶种,简化了传统的晶种回头增加工艺,并在反响器中将生成的氢氧化镁和杂质进行了有用地别离,氢氧化镁完结液经沉降、洗刷、别离、脱水得到滤饼状氢氧化镁,把滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁,反响方程式:(二)工艺流程(见图1)图1  海水、卤水-轻烧白云石沉积法工艺流程图 首要,用一种不同于韩利华说到的新处理技能,将质料水中影响产品质量的杂质除掉,得到净化质料水,将轻烧白云石加适量净化质料水水合消化后,加水制得契合组成要求的轻烧白云石乳。 然后,将制好的净化质料水和轻烧白云石乳按份额打入带拌和的接连组成及别离一体化反响器中,操控好反响时间和反响结尾,使二者充沛触摸、完全反响。因为氢氧化镁和不溶性较大粒径杂质沉降速度的不同,不溶性较大粒径杂质首要沉积到反响器底部,并由反响器底部排出。富含氢氧化镁的完结液从反响器中上部进入一级沉降器进行固液别离,固相经净化水洗刷除掉大部分可溶性杂质后进入二级沉积器进行二次固液别离,固相经脱水得到滤饼状产品,滤饼加水谐和,并按份额增加分散剂,以防止氢氧化镁的聚会结核,然后制得不同浓度且功能安稳的料浆状氢氧化镁。 (三)产品质量 氢氧化镁的技能方针多种多样,但用于环保范畴的料浆状和滤饼状氢氧化镁在我国没有见专门的质量标准,为适运用户需求,国外有关供应商对料浆状和滤饼状氢氧化镁产品均拟定了厂商标准,见表1。 表1  国外料浆状、滤饼状氢氧化镁厂商标准本工艺出产的氢氧化镁的首要方针:Mg(OH)230%~35%,CaO 0.5%~0.6%,Cl-≤0.1%,虽杂质氧化钙的含量稍高于日、美产品的质量方针,但已远低于瑞士的质量方针。且该质量的氢氧化镁已足以满意废水处理、烟气脱硫等环保范畴的质量要求咱们将在此基础上进一步改善工艺,进步产品质量,以满意更多职业更高运用要求的需求。 (四)工艺特色 该工艺的首要质料为海水、卤水和轻烧白云石,其来历广泛、报价低廉。 该工艺反响在常温下进行,整个进程不需求加压、加热,出产节能、本钱低。 该工艺进程无有毒、有害及有腐蚀性的物料投入和产出,对出产设备无特殊要求,首要设备为压滤机、普通工业泵和反响器、沉降器等碳钢槽罐,设备出资少,操作简略。 该工艺中,经过对质料水的预处理,有用地下降了产品中杂质含量,产品质量显着优于国内同类工艺产品,达到了沉积法出产高质量氢氧化镁的要求。 该工艺中,接连组成及别离一体化反响器的研制和运用,有用地操控了产品结晶,反响器中保留足量的晶种,防止了晶种的回头增加,完成了接连组成,并完成了方针产品和杂质的有用别离,产品质量较传统办法出产的产品杂质含量少、质量高。 三、结束语 污染正给人类构成巨大的损害,给经济构成巨大的丢失。就我国排放的二氧化硫一项,其构成的酸雨给我国经济构成的丢失每年大约在1100亿元在上,环境管理,已刻不容缓。 我国在酸性废水中和、重金属离子脱除和烟气脱硫等环保方面运用的处理工艺比较落后,操作杂乱,质料耗费高,运转本钱高,并且处理的不完全,副产品又构成二次污染。 跟着我国可持续开展战略的施行、世贸组织的参加、环保认识的增强和环保法律法规的逐渐健全、完善,运用于环保范畴的新技能、新工艺也被日益注重,对其研讨开发的力度正在加大,高效、无毒、优质的新产品或代替产品越来越遭到人们的注重。 我国海水、卤水资源、白云石、菱镁矿、水镁石等含镁资源适当丰厚,应充沛利用现有资源优势,经过改善现有落后工艺,研讨开发新工艺,大力开展多品种的氢氧化镁产品,并进步产品的质量和附加值、下降出产本钱,以满意环保及其他职业日益开展对氢氧化镁质量要求不断进步和用量不断增加的需求,促进经济健康快速地开展。

氧化铜的熔点

2017-06-06 17:50:02

氧化铜的熔点为1326℃物质的熔点(melting point),即在一定压力下,纯物质的固态和液态呈平衡时的温度,也就是说在该压力和熔点温度下,纯物质呈固态的化学势和呈液态的化学势相等,而对于分散度极大的纯物质固态体系(纳米体系)来说,表面部分不能忽视,其化学势则不仅是温度和压力的函数,而且还与固体颗粒的粒径有关。铜的熔点为1084 ℃,可见氧化铜熔点高于铜的熔点,在高温条件下,氧化铜的稳定性高于 金属 铜。

白铜熔点

2017-06-06 17:50:03

白铜熔点及优缺点在标准状况下~铜的熔点是1083.4度,铁的熔点是1534.8度……铜分黄铜,青铜,白铜 等……青铜的熔点比较低,约为800℃黄铜H62,H68熔点934度 黄铜H80熔点为967 度白铜熔点约为935℃白铜的优势与缺点纯铜加镍能显著提高强度、耐蚀性、硬度、电阻和热电性,并降低电阻率温度系数。因此白铜较其他铜合金的机械性能、物理性能都异常良好,延展性好、硬度高、色泽美观、耐腐蚀  白铜山水墨盒、富有深冲性能,被广泛使用于造船、石油化工、电器、仪表、医疗器械、日用品、工艺品等领域,并还是重要的电阻及热电偶合金。白铜的缺点是主要添加元素——镍属于稀缺的战略物资, 价格 比较昂贵。   镍白铜(有叫洋白铜),用途:晶体振荡元件外壳,晶体壳体,电位器用滑动片,医疗机械,建筑材料等。以上就是白铜熔点及优缺点的介绍,更多信息请详见上海 有色金属 网

紫铜熔点

2017-06-06 17:50:09

紫铜熔点即是指紫铜由固态转变为液态的温度点。一般普通情况之下,紫铜的熔点为1083度,不同于黄铜和不锈钢的熔点,紫铜作为单质铜的主要品种之一,具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。常用的铜合金分为黄铜﹑青铜﹑白铜3大类。紫铜熔点高只是其一个优良物理特性之一,紫铜,就是铜单质,因其颜色为紫红色而得名。各种性质见铜。紫铜就是工业纯铜,其熔点为1083℃,无同素异构转变,相对密度为8.9,为镁的五倍。比普通钢还重约15%。其具有玫瑰红色,表面形成氧化膜后呈紫色,故一般称为紫铜。它是含有一定氧的铜,因而又称含氧铜。除了紫铜熔点之外,紫铜的其他性质也决定着紫铜的工业价值。紫铜因呈紫红色而得名。它不一定是纯铜,有时还加入少量脱氧元素或其他元素,以改善材质和性能,因此也归入铜合金。中国紫铜加工材按成分可分为:普通紫铜(T1、T2、T3、T4)、无氧铜(TU1、TU2和高纯、真空无氧铜)、脱氧铜(TUP、TUMn)、添加少量合金元素的特种铜(砷铜、碲铜、银铜)四类。紫铜的电导率和热导率仅次于银,广泛用于制作导电、导热器材。紫铜在大气、海水和某些非氧化性酸(盐酸、稀硫酸)、碱、盐溶液及多种有机酸(醋酸、柠檬酸)中,有良好的耐蚀性,用于化学工业。另外,紫铜有良好的焊接性,可经冷、热塑性加工制成各种半成品和成品。20世纪70年代,紫铜的 产量 超过了其他各类铜合金的总 产量 。紫铜中的微量杂质对铜的导电、导热性能有严重影响。其中钛、磷、铁、硅等显著降低电导率,而镉、锌等则影响很小。氧、硫、硒、碲等在铜中的固溶度很小,可与铜生成脆性化合物,对导电性影响不大,但能降低加工塑性。普通紫铜在含氢或一氧化碳的还原性气氛中加热时,氢或一氧化碳易与晶界的氧化亚铜(Cu2O)作用,产生高压水蒸气或二氧化碳气体,可使铜破裂。这种现象常称为铜的“氢病”。氧对铜的焊接性有害。铋或铅与铜生成低熔点共晶,使铜产生热脆;而脆性的铋呈薄膜状分布在晶界时,又使铜产生冷脆。磷能显著降低铜的导电性,但可提高铜液的流动性,改善焊接性。适量的铅、碲、硫等能改善可切削性。紫铜退火板材的室温抗拉强度为22~25公斤力/毫米2,伸长率为45~50%,布氏硬度(HB)为35~45。纯净的铜是紫红色的 金属 ,俗称“紫铜”、“红铜”或“赤铜”。 紫铜富有延展性。象一滴水那么大小的纯铜,可拉成长达两公里的细丝,或压延成比床还大的几乎透明的箔。紫铜最可贵的性质是导电性能非常好,在所有的 金属 中仅次于银。但铜比银便宜得多,因此成了电气工业的“主角”。2.鉴于紫铜熔点相对较高等各方面特点,其工业用途也被广泛开发:紫铜的用途比纯铁广泛得多,每年有50%的铜被电解提纯为纯铜,用于电气工业。这里所说的紫铜,确实要非常纯,含铜达99.95%以上才行。极少量的杂质,特别是磷、砷、铝等,会大大降低铜的导电率。铜中含氧(炼铜时容易混入少量氧)对导电率影响很大,用于电气工业的铜一般都必须是无氧铜。另外,铅、锑、铋等杂质会使铜的结晶不能结合在一起,造成热脆,也会影响纯铜的加工。这种纯度很高的纯铜,一般用电解法精制:把不纯铜(即粗铜)作阳极,纯铜作阴极,以硫酸铜溶液为电解液。当电流通过后,阳极上不纯的铜逐渐熔解,纯铜便逐渐沉淀在阴极上。这样精制而得的铜;纯度可达99.99%。紫铜熔点较高,使紫铜能够耐高温,成为了工业用主要 金属 之一,除了上述介绍的紫铜的用途之外,紫铜的 价格 也就成为了紫铜生产厂家及厂商所关注的焦点,紫铜 价格 报价也就至关重要。上海 有色 网提供专业的 有色金属 相关报价及其他资讯相关服务,更多相关信息,请查询上海 有色金属 网!

磷铜熔点

2017-06-06 17:50:02

磷铜熔点:熔点与周围空气的压强及铜的纯度都有关。在标准状况(101325帕及零摄氏度)下,纯铜的熔点是1083.4±0.2℃。●主要化学成份合金牌号                    化学成分         Cu    Pb    Fe     Sn    Zn     P    Cu+Sn+PC5111   余量  ≤0.05 ≤0.10 3.5-4.5 ≤0.20 0.03-0.35 ≥99.5C5101   余量  ≤0.05 ≤0.10 4.5-5.5 ≤0.20 0.03-0.35 ≥99.5C5191   余量  ≤0.05 ≤0.10 5.5-7.0 ≤0.20 0.03-0.35 ≥99.5C5212   余量  ≤0.05 ≤0.10 7.0-9.0 ≤0.20 0.03-0.35 ≥99.5C5210   余量  ≤0.05 ≤0.10 7.0-9.0 ≤0.20 0.03-0.35 ≥99.5磷铜的代号有:QSn6.5-0.1 QSn6.5-0.4 QSn7-0.2 QSn4-0.3等.特性:高的强度,弹性,耐磨性,抗磁性各抗热性,加工性能好耐腐蚀等等. 应用:弹簧和精密仪器零件磷铜硬度规格 状态 维氏硬度 抗拉强度 延伸率C5191 软料 90-110 310-395 >40 H/4 110-150 395-490 >35 H/2 半硬 150-180 490-600 >20 H 硬态 180-210 590-680 >10 EH 特硬 210-230 大于650 >5C5210 状态 维氏硬度 抗拉强度 延伸率 H/4 130-160 390-490 >40 H/2 半硬 160-190 480-600 >27 H 硬态 190-210 590-705 >20 EH 特硬 210-230 680-785 >11

黄铜熔点

2017-06-06 17:50:00

黄铜熔点是黄铜的一项重要的物理性质,随着黄铜在人们的日常生活中和工业生产中的广泛应用,更好的了解黄铜的各项性质(如黄铜熔点等)对于黄铜产业的以后的发展具有重要的意义。    黄铜是铜锌合金,锌的沸点较低,仅为907℃,故焊接过程中极容易蒸发,铜得熔点1083℃,沸点2567℃。根据合金定律,合金的熔点低于所含单质的熔点最低的,随着ZN的含量变化,黄铜熔点也跟着变化。黄铜H62,H68熔点934度 黄铜H80熔点为967。    黄铜退火温度和黄铜熔点的关系是:黄铜退火温度低于黄铜熔点。      黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。黄铜的各项性质(如黄铜熔点等)对于黄铜的用途具有一定的影响。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。    更多关于黄铜熔点的资讯,请登录上海有色网查询, 

铜合金 熔点

2017-06-06 17:50:08

    铜合金 熔点主要规格 / 特殊功能:铜合金浸浇料,具有熔点低、润湿性好的特点。    在铜合金中低熔点杂质(铋Bi、锡Sn和砷As含量偏高时,会形成分布在晶界的低熔点共晶物BiCu、SnCu和AsCu,导致热脆,若硫S含量偏高,会形成化合物Cu2S导致冷脆)钨铜选用高纯精细钨、铜粉末,经一流浸透烧结工艺精制而成,高熔点、高硬度、良好抗粘附性,电蚀产品表面光洁度高,精度极高,损耗低。应用于高硬度材料(如钨钢,淬火钢等超硬 金属 )及薄片电极放电加工和点焊、碰焊电极。       HAg-2B,含银2%,等同于美标AWS BCuP-6、国标BCu91PAg及L209,具有良好的流动性和填充能力,广泛用于空调、冰箱、机电等 行业 ,铜及铜合金的钎焊。熔点645-790.铜合金的熔点和导热率之间存在什么样的关系?    钨铜合金綜合了钨和铜的优点,耐高溫、耐电弧烧蚀、高硬度、高熔点、高强度、高比重、高导电、高导热、易切削、抗粘附、并具有发汗冷却等特性。我公司采用等静压成型-高温烧结钨骨架-渗铜工艺,生产含铜量为6-90%的各种大型、异形件,产品纯度高,组织均匀,性能优异;采用模压成形、挤压成形、注射成形可生产各种片材、杆材、管材、板材和形状复杂的各种型号制品产品的用途:由于具钨的高硬度、高熔点、抗粘附特点,经常用來做有一定耐磨性、抗高溫的凸焊、点焊电极。针对钨钢耐高温超硬合金制作的模具需电蚀時,普通电极损耗大,速度慢。而钨铜高的电蚀速度,低的损耗率,精确的电极形状,优良的加工性能,能保证被加工件的精确度大提高。

铜合金熔点

2017-06-06 17:50:04

铜合金熔点主要规格 / 特殊功能:铜合金浸浇料,具有熔点低、润湿性好的特点。 型号:516 形状:颗粒 由本厂独立研制和生产的516合金浸浇料,是以铜、镍为主,锡、锰为辅的四元合金,并含有其它多种微量元素,如Si、Fe、P、Zn、Re等。其外型为大小不等的颗粒,是大型钻探工具以及其它硬质合金胎体烧结的理想填充钎料,具有流动性好、强度高、耐浸蚀、耐冲击、耐磨损等诸多特点。钨铜选用高纯精细钨、铜粉末,经一流浸透烧结工艺精制而成,高熔点、高硬度、良好抗粘附性,电蚀产品表面光洁度高,精度极高,损耗低。  应用于高硬度材料(如钨钢,淬火钢等超硬 金属 )及薄片电极放电加工和点焊、碰焊电极。 

锡丝的熔点

2017-06-06 17:50:00

锡丝的熔点可能很多人并不了解,本文会有些相关的小知识。熔点231.89℃  低温锡丝(熔点140度)有铅锡条的种类:  1、63/37焊锡条(Sn63/Pb37)  2、电解纯锡条(电解处理高纯锡)  3、抗氧化锡条(添加高抗氧化剂)  4、波峰焊锡条(适用波峰焊焊接)  5、高温焊锡条(400度以上焊接)无铅锡条的种类:  1、锡铜无铅锡条(Sn99.3Cu0.7)  2、锡银铜无铅锡条(Sn96.5Ag3.0Cu0.5)  3、0.3银无铅焊锡条(Sn99Ag0.3Cu0.7)  4、波峰焊无铅焊锡条(无铅波峰焊专用)  5、高温型无铅焊锡条(400度以上焊接)有铅锡条的特点:  ★ 电解纯锡,湿润性、流动性好,易上锡。  ★ 焊点光亮、饱满、不会虚焊等不良现象。  ★ 加入足量的抗氧化元素,抗氧化能力强。  ★ 锡渣少,降低能耗,减少不必要的浪费。  ★ 各项性能稳定,适用波峰或手浸炉操作。无铅锡条的特点:  ★ 纯锡制造,湿润性、流动性好,易上锡。  ★ 焊点光亮、饱满、不会虚焊等不良现象。  ★ 加入足量的抗氧化元素,抗氧化能力强。  ★ 纯锡制造,锡渣少,减少不必要的浪费。  ★ 无铅RoHS标准,适用波峰或手浸炉操作。 如果你想更多的了解锡丝的熔点有关的知识,你可以登陆上海有色网进行寻找,特别是锡专区里面有很多相关于锡的知识。 

铝的熔点

2017-06-06 17:49:50

铝的熔点660℃。铝是银白色金属,熔点660.4℃,沸点2467℃,密度2.70克/厘米3,很轻,约为铁的1/4。它的硬度比较小,具有良好的延展性,可以拉成细丝,也可以辗压成铝箔,后者常用来包装糖果、香烟。它还有良好的导电导热性,电力工业上用它制造电线、电缆、日常生活中用它制造炊具。它可以跟镁、铜、锌、锡、锰、铬、锆、硅等元素形成多种合金,广泛用作制造飞机、汽车、船舶、日常生活用品的材料,也用于建筑业制造门窗。铝是热和光最好的反射体之一,它被用做绝热材料和用于制造反射望远镜中的反射镜。一般情况下合金的熔点比纯金属的熔点应该低些。铝合金的种类很多,其熔点也各不相同。如硬铝(铝铜镁)的熔点为641℃;铝镁合金的熔点是568--652℃;铸铝合金的熔点是520--645℃。铝的熔点是关注到铝业加工的重要信息之一,更多铝的性质请参考上海有色网。

金属铟的熔点

2017-06-02 16:13:21

金属 铟的熔点是156.61℃。铟是银白色并略带淡蓝色的金属 ,熔点156.61℃,沸点2080℃,密度7.3克/厘米3(20℃)。很软,能用指甲刻痕,比铅的硬度还低。铟的可塑性强,有延展性,可压成极薄的金属片。从常温到熔点之间,铟与空气中的氧作用缓慢,表面形成极薄的氧化膜,温度更高时,与氧、卤素、硫、硒、碲、磷作用。大块金属铟不与沸水和碱反应,但粉末状的铟可与水作用,生成氢氧化铟。铟与冷的稀酸作用缓慢,易溶于浓热的无机酸和乙酸、草酸。铟能与许多金属形成合金。铟的氧化态为+1和+3,主要化合物有In2O3、In(OH)3,与卤素化合时,能形成一卤化物和三卤化物。金属铟来源:主要以微量存在于锡石和闪锌矿中,用化学法或电解法由闪锌矿制得。绝大部分铟是从湿法炼锌的浸出渣中回收的,矿渣经化学处理后,可用溶剂萃取法得到铟。用锌片还原矿渣浸出液,也可得到铟。进一步用电解精炼,可得纯度为99.97%的金属铟。纯度为99.9999%的高纯铟仍需利用电解法提纯。金属铟用途:质软,能拉成细丝。可作低熔合金、轴承合金、半导体、电光源等的原料。主要作飞机用的涂敷铅的银轴承的镀层。铟与铜、银、金的合金用作假牙。铟化合物半导体有锑化铟和磷化铟,用作红外检测器和微波振荡器材料。银铅铟合金可作高速航空发动机的轴承材料。铟还用作耐腐蚀的包覆层用于发动机轴承  。易熔的伍德合金中每加1%铟,可降低熔点1.45℃金属铟危险性    重金属,有轻微毒性。健康危害:铟比铅还毒。美国和英国已公布了铟的职业接触限值均为0.1mg/m3。而这两个国家铅的标准为0.15 mg/m3。说明铟的毒性不可轻视。环境危害: 对环境有危害,对水体可造成污染。燃爆危险:可燃,具刺激性。想要了解更多关于金属铟的熔点的资讯,请继续浏览上海 有色网 ( www.smm.cn )有色金属频道。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

铜按照色泽如何分类

2019-05-28 09:05:47

我国铜及铜合金分类习气按色泽分类,一般分为四大类     1、紫铜系指纯铜,首要种类有无氧铜、紫铜、磷脱氧铜、银铜;    2、黄铜系指铜与锌为根底的合金,又可细分为简略黄铜和杂乱黄铜,杂乱黄铜中又以第三组元冠名为镍黄铜、硅黄铜等;黄铜的机械功能和耐磨功能都很好,可用于制作精细仪器、船只的零件、炮的弹壳等。黄铜敲起来声响好听,因而锣、钹、铃、号等乐器都是用黄铜制做的。    3、青铜系指除铜镍、铜锌合金以外的铜基合金,首要种类有锡青铜、铝青铜、特殊青铜(又称高铜合金);铜与锡的合金叫青铜,因色青而得名。青铜一般具有较好的耐腐蚀性、耐磨性、铸造性和优秀的机械功能。用于制作精细轴承、高压轴承、船只上抗海水腐蚀的机械零件以及各种板材、管材、棒材等。青铜还有一个失常的特性——“热缩冷胀”,用来铸造塑像,冷却后胀大,可以使端倪更清楚。    4、白铜白铜是铜与镍的合金,其色泽和银相同,银光闪闪,不易生锈。常用于制作电器、外表和装饰品。     5、磷青铜铜与锡、磷的合金,坚固,可制绷簧。

黄铜的熔点

2017-06-06 17:50:02

黄铜是铜锌合金,根据合金定律,黄铜的熔点肯定低于纯铜,随着锌含量的不同而变换,黄铜H62,H68熔点934度 黄铜H80熔点为967。

锌的熔点

2017-06-06 17:49:55

锌是一种蓝白色金属。密度为7.14克/立方厘米,锌的熔点为419.5℃。在室温下,性较脆;100~150℃时,变软;超过200℃后,又变脆。锌作为一种常见的金属,大家对它的性质基本都了解了.但是熔点是什么呢?让小编来告诉您.熔点是固体将其物态由固态转变(熔化)为液态的温度。进行相反动作(即由液态转为固态)的温度,称之为凝固点。与沸点不同的是,熔点受压力的影响很小。而大多数情况下一个物体的熔点就等于凝固点。晶体开始融化时的温度叫做熔点。物质有晶体和非晶体,晶体有熔点,而非晶体则没有熔点。晶体又因类型不同而熔点也不同.一般来说晶体熔点从高到低为,原子晶体>离子晶体>金属晶体>分子晶体。在分子晶体中又有比较特殊的,如水,氨气等.它们的分子只间因为含有氢键而不符合"同主组元素的氢化物熔点规律性变化''的规律。锌的熔点是锌的一个物理性质。锌的熔点并不是固定不变的,有两个因素对熔点影响很大。一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况;如果压强变化,熔点也要发生变化。熔点随压强的变化有两种不同的情况.对于大多数物质,熔化过程是体积变大的过程,当压强增大时,这些物质的熔点要升高;对于像水这样的物质,与大多数物质不同,冰熔化成水的过程体积要缩小(金属铋、锑等也是如此),当压强增大时冰的熔点要降低。另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。但在现实生活中,大部分的物质都是含有其它的物质的,比如在纯净的液态物质中熔有少量其他物质,或称为杂质,即使数量很少,物质的熔点也会有很大的变化,例如水中熔有盐,熔点就会明显下降,海水就是熔有盐的水,海水冬天结冰的温度比河水低,就是这个原因。饱和食盐水的熔点可下降到约-22℃,北方的城市在冬天下大雪时,常常往公路的积雪上撒盐,只要这时的温度高于-22℃,足够的盐总可以使冰雪熔化,这也是一个利用熔点在日常生活中的应用。更多有关锌的熔点和锌的咨询,欢迎登陆上海有色网!    

铜的熔点

2017-06-06 17:49:53

铜的熔点是铜的物理性质的一种,为1083.4±0.2℃。让我们一起来补充一下铜的基础知识吧。铜是人类最早发现的古老金属之一,早在三千多年前人类就开始使用铜。自然界中的铜分为自然铜、氧化铜矿和硫化铜矿。自然铜及氧化铜的储量少,现在世界上80%以上的铜是从硫化铜矿精炼出来的,这种矿石含铜量极低,一般在2-3%左右。金属铜,元素符号CU,原子量63.54,比重8.92,铜的熔点1083.4±0.2℃。纯铜呈浅玫瑰色或淡红色。铜具有许多可贵的物理化学特性,例如其热导率都很高,化学稳定性强,抗张强度大,易熔接,且抗蚀性、可塑性、延展性。纯铜可拉成很细的铜丝,制成很薄的铜箔。能与锌、锡、铅、锰、钴、镍、铝、铁等金属形成合金,形成的合金主要分成三类:黄铜是铜锌合金,青铜是铜锡合金,白铜是铜钴镍合金。铜的冶炼      从铜矿中开采出来的铜矿石,经过选矿成为含铜品位较高的铜精矿或者说是铜矿砂,铜精矿需要经过冶炼提成,才能成为精铜及铜制品。A.铜矿石的加工      工业上使用的铜有电解铜(含铜99.9%~99.95%)和精铜(含铜99.0%~99.7%)两种。前者用于电器工业上,用于制造特种合金、金属丝及电线。后者用于制造其他合金、铜管、铜板、轴等。a.铜矿石的分类及属性:炼铜的原料是铜矿石。铜矿石可分为三类:(1)硫化矿,如黄铜矿(CuFeS2)、斑铜矿(Cu5FeS4)和辉铜矿(Cu2S)等。(2)氧化矿,如赤铜矿(Cu2O)、孔雀石[CuCO3·Cu(OH)2]、蓝铜矿[2CuCO3·Cu(OH)2]、硅孔雀石(CuSiO3·2H2O)等。(3)自然铜。铜矿石中铜的含量在1%左右(0.5%~3%)的便有开采价值,因为采用浮选法可以把矿石中一部分脉石等杂质除去,而得到含铜量较高(8%~35%)的精矿砂。b.铜矿石的冶炼过程:      从铜矿石冶炼铜的过程比较复杂。以黄铜矿为例,首先把精矿砂、熔剂(石灰石、砂等)和燃料(焦炭、木炭或无烟煤)混合,投入“密闭”鼓风炉中,在1000℃左右进行熔炼。于是矿石中一部分硫成为SO2(用于制硫酸),大部分的砷、锑等杂质成为AS2O3、Sb2O3等挥发性物质而被除去:2CuFeS2+O2=Cu2S+2FeS+SO2↑。一部分铁的硫化物转变为氧化物:2FeS+3O2=2FeO+2SO2↑。Cu2S跟剩余的FeS等便熔融在一起而形成“冰铜”(主要由Cu2S和FeS互相溶解形成的,它的含铜率在20%~50%之间,含硫率在23%~27%之间),FeO跟SIO2形成熔渣:FeO+SiO2=FeSiO3。熔渣浮在熔融冰铜的上面,容易分离,借以除去一部分杂质。然后把冰铜移入转炉中,加入熔剂(石英砂)后鼓入空气进行吹炼(1100°~1300℃)。由于铁比铜对氧有较大的亲和力,而铜比铁对硫有较大的亲和力,因此冰铜中的FeS先转变为FeO,跟熔剂结合成渣,而后Cu2S才转变为Cu2O,Cu2O跟Cu2S反应生成粗铜(含铜量约为98.5%)。2Cu2S+3O2=2Cu2O+2SO2↑,2Cu2O+Cu2S=6Cu+SO2↑,再把粗铜移入反射炉,加入熔剂(石英砂),通入空气,使粗铜中的杂质氧化,跟熔剂形成炉渣而除去。在杂质除到一定程度后,再喷入重油,由重油燃烧产生的一氧化碳等还原性气体使氧化亚铜在高温下还原为铜。得到的精铜约含铜99.7%。B.铜的冶炼工艺      铜治金技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法治炼为主,其产量约占世界铜总产量的85%,现代湿法冶炼的技术正在逐步推广,湿法冶炼的推出使铜的冶炼成本大大降低。 火法冶炼与湿法冶炼(SX-EX)。a.火法炼铜:       通过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高品位的硫化铜矿。火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。 生产过程大致如图:      除了铜精矿之外,废铜做为精炼铜的主要原料之一,包括旧废铜和新废铜,旧废铜来自旧设备和旧机器,废弃的楼房和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右),一般废铜供应较稳定,废铜可以分为:裸杂铜:品位在90%以上;黄杂铜(电线):含铜物料(旧马达、电路板);由废铜和其他类似材料生产出的铜,也称为再生铜。 b.湿法炼铜:       一船适于低品位的氧化铜,生产出的精铜称为电积铜。 现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低品位复杂矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技术正在逐步推广,预计本世纪末可达总产量的20%,湿法冶炼的推出使铜的冶炼成本大大降低。湿法冶炼过程为: c.火法和湿法两种工艺的特点 比较火法和湿法两种铜的生产工艺,有如下特点: (1)后者的冶炼设备更简单,但杂质含量较高,是前者的有益补充。(2)后者有局限性,受制于矿石的品位及类型。 (3)前者的成本要比后者高。可见,湿法冶炼技术具有相当大的优越性,但其适用范围却有局限性,并不是所有铜矿的冶炼都可采用该种工艺。不过通过技术改良,这几年已经有越来越多的国家,包括美国、智利、加拿大、澳大利亚、墨西哥及秘鲁等,将该工艺应用于更多的铜矿冶炼上。湿法冶炼技术的提高及应用的推广,降低了铜的生产成本,提高了铜矿产能,短期内增加了社会资源供给,造成社会总供给的相对过剩,对价格有拉动作用。想知道更多关于铜的熔点的知识,您可以登陆上海有色网进行查看 。 

纯铜熔点

2017-06-06 17:50:03

纯铜熔点为1083.4±0.2℃。无缝药芯焊丝是铝铜钎焊连接的最新技术成果,是铝铜钎焊用料的升级换代产品。其主要成分由锌铝铜和无腐蚀性氟铝铯盐组成,其钎焊工艺性、接头机械性能和接头导电性均优于锌镉、锌锡铜钎料。广泛用于电力电器、信息电子、不锈钢制品、制冷 行业 、电热电器、五金制品等 行业 。不需专用焊接设备和特殊生产场地,即可实现环保、便捷、安全的铝铜连接。其中铜包含常见的铜合金,铝主要指1系列、3系列和6系列和部分4系列。郑州机械研究所是目前国内主要的无缝药芯铝焊丝生产企业,已有50余年的钎焊材料及钎焊工艺研究的历史,是中国焊接学会及国家焊接标准化委员会团体会员。该铜铝焊接钎料已在制冷,变压器,电机等铜改铝 行业 得到成熟的应用。铜及铜合金的焊接特点是:(1)难熔合及易变形;(2)容易产生热裂纹;(3)容易产生气孔。铜及铜合金焊接主要采用气焊、惰性气体保护焊、埋弧焊、钎焊等方法。铜及铜合金导热性能好,所以焊接前一般应预热,并采用大线能量焊接。钨极氢弧焊采用直流正接。气焊时,紫铜采用中性焰或弱碳化焰,黄铜则采用弱氧化焰,以防止锌的蒸发。铜矿石的冶炼过程:从铜矿石冶炼铜的过程比较复杂。以黄铜矿为例,首先把精矿砂、熔剂(石灰石、砂等)和燃料(焦炭、木炭或无烟煤)混合,投入“密闭”鼓风炉中,在1000℃左右进行熔炼。于是矿石中一部分硫成为SO2(用于制硫酸),大部分的砷、锑等杂质成为AS2O3、Sb2O3等挥发性物质而被除去:2CuFeS2+O2=Cu2S+2FeS+SO2↑。一部分铁的硫化物转变为氧化物:2FeS+3O2=2FeO+2SO2↑。Cu2S跟剩余的FeS等便熔融在一起而形成“冰铜”(主要由Cu2S和FeS互相溶解形成的,它的含铜率在20%~50%之间,含硫率在23%~27%之间),FeO跟SiO2形成熔渣:FeO+SiO2=FeSiO3。熔渣浮在熔融冰铜的上面,容易分离,借以除去一部分杂质。然后把冰铜移入转炉中,加入熔剂(石英砂)后鼓入空气进行吹炼(1100~1300℃)。由于铁比铜对氧有较大的亲和力,而铜比铁对硫有较大的亲和力,因此冰铜中的FeS先转变为FeO,跟熔剂结合成渣,而后Cu2S才转变为Cu2O,Cu2O跟Cu2S反应生成粗铜(含铜量约为98.5%)。2Cu2S+3O2=2Cu2O+2SO2↑,2Cu2O+Cu2S=6Cu+SO2↑,再把粗铜移入反射炉,加入熔剂(石英砂),通入空气,使粗铜中的杂质氧化,跟熔剂形成炉渣而除去。在杂质除到一定程度后,再喷入重油,由重油燃烧产生的一氧化碳等还原性气体使氧化亚铜在高温下还原为铜。得到的精铜约含铜99.7%。铜的冶炼工艺:铜冶金技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法治炼为主,其 产量 约占世界铜总 产量 的85%,现代湿法冶炼的技术正在逐步推广,湿法冶炼的推出使铜的冶炼成本大大降低。 火法冶炼与湿法冶炼(SX-EX)。火法炼铜:通过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高品位的硫化铜矿。火法冶炼一般是先将含铜百分之几或千分之几的原矿石,通过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精炼脱杂,或铸成阳极板进行电解,获得品位高达99.9%的电解铜。该流程简短、适应性强,铜的回收率可达95%,但因矿石中的硫在造锍和吹炼两阶段作为二氧化硫废气排出,不易回收,易造成污染。近年来出现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐渐向连续化、自动化发展。纯铜熔点决定纯铜作为焊接的好材料。 

钨的熔点

2017-06-06 17:50:00

钨的熔点为:3380℃  其沸点可达到 5927℃ 。接下来我们在来更深入的了解一下什么是钨。钨是一种金属元素。原子序数74。钢灰色或银白色,硬度高,熔点高,常温下不受空气侵蚀;主要用途是制造灯丝和高速切削合金钢、超硬模具,也用于光学仪器,化学仪器方面 tungsten;wolfram——元素符号W。钨是属于有色金属,也是重要的战略金属,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的金属,熔点极高,硬度很大。钨是稀有高熔点金属,属于元素周期表中第六周期(第二长周期)的VIB族。钨是一种银白色金属,外形似钢。钨的熔点高,蒸气压很低,蒸发速度也较小。钨的化学性质很稳定,常温时不跟空气和水反应,不加热时,任何浓度的盐酸、硫酸、硝酸、氢氟酸以及王水对钨都不起作用,当温度升至80°—100°C 时,上述各种酸中,除氢氟酸外,其它的酸对钨发生微弱作用。常温下,钨可以迅速溶解于氢氟酸和浓硝酸的混合酸中,但在碱溶液中不起作用。有空气存在的条件下,熔融碱可以把钨氧化成钨酸盐,在有氧化剂(NaNO3、NaNO2、KClO3、PbO2)存在的情况下,生成钨酸盐的反应更猛烈。高温下能与氯、溴、碘、碳、氮、硫等化合,但不与氢化合。目前世界上开采出的钨矿,约50%用于优质钢的冶炼,约35%用于生产硬质钢,约10%用于制钨丝,约5%其他用于其他用途。钨可以制造枪械、火箭推进器的喷嘴、切削金属的刀片、钻头、超硬模具、拉丝模等等,钨的用途十分广泛,涉及矿山、冶金、机械、建筑、交通、电子、化工、轻工、纺织、军工、航天、科技、各个工业领域。钨是稀有金属,也是重要的战略物资。我国是产钨大国,钨资源储量520万吨,占世界总储量的65%,产量及出口量均居世界第一。湖南、江西、河南三省的钨资源储量居全国的前三位,其中湖南、江西两省的钨资源储量占全国的55.48%。湖南以白钨为主,江西以黑钨为主,其黑钨资源占全国黑钨资源总量的42.40%。钨的熔点或是其他更多有关金属方面疑问,请登入上海有色网查询。 

锡的熔点

2017-06-06 17:49:50

锡的熔点是锡物理性质的一种,我们来看一下。锡的熔点为 231.9 ℃我们来了解下锡的其他主要物理性质密度(20℃) 7.3 g/cm3沸点 2625 ℃平均比热(0~20℃ ) 226 J/(kg·K)熔化热 7.08 kJ/mol汽化热 296.4 kJ/mol热导率(0~100℃) 73.2 W/(m·K)电阻率(20℃) 12.6 μΩ·cm锡相对较软,具有良好的展性,但延性很差。锡有三个同素异形体:灰锡(α-Sn)、白锡(β-Sn)和脆锡(γ -Sn)。人们平常见到的是白锡,白锡在13.2~161℃之间稳定。低于13.2 开始转变为灰锡,但转变速度很慢,当过冷至—30℃左右时,转变速度达到最大值。灰锡先是成分散的小斑点出现在白锡表面,随着温度降低,斑点逐渐布满整个表面,随之整块锡碎成粉末,这就是所谓的“锡疫”现象。白锡为四方晶系,密度7.28克/厘米 硬度2,延展性好;灰锡为金刚石形立方晶系,密度5.75克/厘米脆锡为正交晶系,密度6.54克/厘米常温是白锡 低温是灰锡 高温是脆锡锡的化学性质有:在空气中锡的表面生成二氧化锡保护膜而稳定,加热下氧化反应加快;锡与卤素加热下反应生成四卤化锡;也能与硫反应;锡对水稳定,能缓慢溶于稀酸,较快溶于浓酸中;锡能溶于强碱性溶液;在氯化铁、氯化锌等盐类的酸性溶液中会被腐蚀。 锡和不具有强氧化性的常见无机酸能发生置换反应,放出氢气。锡与无机酸的作用很缓漫,与有机酸几乎不发生作用。但是水中和蔬菜中的有机酸与锡能发生化学反应,生成一种毒性极大的锡甲烷,可损害中枢神经。锡的化学性质是十分稳定的。它与水不会发生化学反应,即使让它长期与潮湿空气接触,也只会在它的表面逐渐形成一层密密的氧化物薄膜,这层薄膜能防止锡的继续氧化。锡在加热下与氧发生反应,生成二氧化锡。在高温下,锡与氯作用,生成四氯化锡(气体),与硫作用,生成硫化锡。锡不与水作用,与盐酸、硫酸、稀硝酸反应,生成氯化亚锡、硫化亚锡和硝酸亚锡,与浓硝酸作用,生成二氧化锡,与浓氢氧化钠溶液反应,生成亚锡酸钠。 想知道更多关于锡的熔点的知识,你可以登陆上海有色网进行查看,其锡专区知识有很多。