您所在的位置: 上海有色 > 有色金属产品库 > 石墨烯润滑油

石墨烯润滑油

抱歉!您想要的信息未找到。

石墨烯润滑油专区

更多
抱歉!您想要的信息未找到。

石墨烯润滑油百科

更多

谈铝轧制润滑油基础

2019-03-01 14:09:46

诗曰:一纪五旬世界史,二轮八载中华情;  上一年汗水铸宏业,今岁大志再起程; 前路或然折并曲,后天只信拼才赢; 春风起处抛坯砖,欢请金珠缀玉龙。   好富顿公司是一家具有150年悠长前史的金属加工光滑介质直销商,咱们触及的范畴也十分广泛,在铝轧制范畴更是一向体现杰出。当今,咱们期望能够在这里和咱们树立一个交流平台,抛砖引玉,修篁待仪;十步芳草,各抒主意,来谈谈铝轧制的方方面面,就让咱们先从根底的部分说起吧。    轧制是铝加工的较重要手法之一。现代铝合金轧材包含板带材,型线材以及管材等,种类规格有数千种,而且还在不断扩大,在宽度方面有3米以上的板材,在厚度方面有0.01mm一下的箔材等。在轧制尤其是板带轧制时需求杰出的光滑以便能够下降冲突力功率耗费,削减轧辊磨损和进步板面质量。要完成杰出的光滑,首要需求分析光滑状况,进而可结合铝轧制特色,来断定光滑要完成的手法,以到达需求光滑的意图。    1,光滑状况    图1是斯特贝克(Stribeck)在1900年提出的光滑状况曲线图1:斯特贝克(Stribeck)曲线   图中的三个区域对应着三种首要光滑状况。在I区,冲突表面被接连的光滑油所离隔,油膜厚度远大于两表面的粗糙度之和,冲突阻力由光滑油的内冲突来决议,即由光滑剂的黏度决议。还可细分为流体动压光滑或许弹性流体动压光滑状况。油品黏度越高,相对速度越快,载荷越低和表面粗糙度越低,越简单呈现动力光滑。    跟着压力添加,油膜变薄到与表面粗糙度在相同数量级时,进入料鸿沟光滑,冲突副表面微凸体间处于触摸状况,是由极性分子构成的鸿沟膜将冲突副(轧辊和轧板)分隔,II和III的区别是,在II区依然由光滑剂的(有机)分子将冲突副分隔,而在III区触摸副表面间隔十分近,温度很高,是有光滑剂中的组分与金属反响构成的无机膜,将冲突副离隔,也称为极压光滑。关于铝轧制光滑,其光滑一般处于动力光滑和鸿沟光滑的混合光滑状体,其冲突系数在0.03-0.10之间,薄膜厚度在0.1-1.0微米之间。      2,动力光滑完成    如上所提在I区的动力光滑首要是依托光滑油的黏度。光滑油的黏度首要与根底油有关,所以动力光滑在很大程度上取决于根底油。一般将根底油分为白腊基,环烷基和芳香基,其功能比较如表1所示。  芳香烃相关的许多物质都是致癌物质,现已有许多资料来报导。所以,根底油的挑选其实首要是在环烷基和白腊基中来挑选。白腊基根底油黏度指数高,稳定性好,为绝大多数油品所选用,由于不期望在温度改变时黏度改变太大,如液压油,淬火油等。致癌物质,但在作为轧制油的根底油上,有不同的考虑。轧制油组分多,环烷基根底油溶解性好,有利于坚持平衡,故期望运用环烷基根底油,更重要的,温度升高,环烷基油黏度下降地更多,这对轧制而言,能够下降咬入困难。但也有选用白腊基的根底油,由于在动力光滑阶段,由于轧制压力十分大,以至于轧辊都发生了弹性变形,因而实际上是处于弹性动力光滑状况,而白腊基的黏压特性更适合这种状况下的光滑。    在所谓老三套的炼油技能(溶剂脱蜡,溶剂精制和白土弥补精制)中,环烷基和白腊基油源有关,现在广泛应用的加氢炼油技能现已摆脱了对油源质量的依托,并使根底油的质量有了明显地进步,如表2所示,加氢处理的根底油的质量得到明显进步,对轧制油的根底油而言,应该优先选用加氢精制的根底油。  3,鸿沟光滑和完成    鸿沟光滑是靠极性分子吸附在表面,构成鸿沟光滑膜来完成光滑的,工件在表面的吸附状况取决于分子的极性,吸附机制有物理吸附,化学吸赞同极压发应如图2所示。  首要构成的是物理吸附,这首要是依托分子间力,它是相对的长程吸附,动力是分子间力,物理吸附与分子的极性有关,但吸附分子没有与金属构成化学键,所以,如图2所示,吸附并不需求活化能,因而很简单完成,但构成物理吸附后,能量下降甚微,阐明吸附膜的光滑强度不高。    假如吸赞同基体金属构成化学键,则会构成化学吸附,如图2所示,化学吸附需求战胜活化能ΔEact1,该活化能值不很大,故在温度恰当状况下即能够进行。经过化学吸附后,有较大的能量下降,吸附膜强度比较大,国内资料上大都称其光滑剂为抗磨剂或许油性剂。   假如温度更高,吸附就有或许战胜如图2所示的较大活化能ΔEact2,光滑剂中的组分和金属完成化学反响,构成光滑膜,该光滑膜来自于光滑剂的分子和金属的一起效果,是一个无机膜,能量下降许多,所以光滑膜强度较高,该膜的构成是根据化学反响构成的,所以,极压光滑也是一种控制性的腐蚀进程。图3是含S光滑剂在光滑进程中所构成的的这物理吸附,化学吸赞同化学反响示意图,能够看出物理吸附是极性吸附,但未构成化学键(虚线);化学吸附则构成了化学键,而化学反响是构成一层无机膜,该光滑膜中不再有有机的光滑剂分子。  4,铝轧制光滑的特色    铝的轧制光滑,相同遵从上述光滑机制。但铝的轧制光滑有其不同于黑色金属轧制的特色。    (1)铝是面心立方金属,4个111密排面,3个110滑移方向,共3x4=12个滑移系,简单发生变形和粘铝;铝是金属,反响性强,与酸碱都可反响;铝的强度较低,外来杂质简单压入表面。归纳这些要素,铝在轧制进程中表面简单呈现缺点,所以表面质量将成为铝轧制光滑较重要方针之一。    (2)轧制进程中由于冲突特别是在前滑区发生的铝粉较多,而铝没有磁性,难以经过磁过滤去除,但铝粉有必要及时去除,不然这些铝粉或许又会压回到表面。所以怎么有用去除轧制进程中发生的铝粉将是轧制光滑中的关键技能。    (3)S是十分有用的光滑材料。硫化物有较大极性首要在表面构成物理吸赞同化学吸附,起到油性剂或抗磨剂效果。部分温度高时,和铁反响构成具有层状结构的FeS无机光滑膜,起到极压光滑效果。但因硫铝反响在铝轧制光滑中一般不运用含S的光滑成分,只能转而次之运用P,如磷酸酯。磷酸酯的吸附机理一般以为能够经过亲核加成构成如图4所示,或许经过酸碱反响,如图5所示。  铝轧制光滑的这些特色,需求在轧制油配方规划中给予充分考虑。    (好富顿公司 陈春怀 2016年3月22日)

纳米金刚石在润滑油中的添加应用

2019-01-25 10:18:59

一种在润滑油中添加的纳米金刚石微粒的表面处理方法,依次包括以下步骤,用高速气流对撞机以高速气流将纳米金刚石粉体对撞超细粉碎,解开团聚;将解开团聚的纳米金刚石微粒加入在有表面改性剂和分散剂的有机溶剂中;利用高速剪切机在上述加入有纳米金刚石微粒的有机溶剂中高速剪切,并利用超声波使有机溶剂中的微气泡内部爆炸即超声空化,使纳米金刚石微粒进一步解开团聚;离心分离出表面改性后的纳米金刚石微粒,用有机溶剂将所述纳米金刚石微粒洗涤后离心分离出纳米金刚石微粒,干燥后得到表面改性后的纳米金刚石微粒。本发明的技术效果在于:细化后的纳米金刚石微粒粒度范围在20~60nm,纳米金刚石微粒的表面改性非常充分。

为何石墨软石墨烯“硬”

2019-01-04 15:47:49

导读 为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。  再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

为何石墨软,石墨烯“硬”?

2019-01-03 09:37:04

为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。 石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。 材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。 再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。

漫画简介石墨烯!

2019-03-08 09:05:26

石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。 石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。

石墨烯真神奇

2019-03-07 10:03:00

近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。 日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。 人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露 和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。 科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。 这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。 据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。 石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。 一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。 石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。 “人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。 未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢 因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。 高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。 石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。 可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热…… 石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。 我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。 此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。 高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。 国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业 石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。 据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。 高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。 高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。 例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。 受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。 不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。

石墨烯基础科研现状

2019-01-04 09:45:43

石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。 下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。 一、专利分布 目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。 从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。 总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布 从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。 从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布 从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。 中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。 四、最新研究成果 在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。 在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。 在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。

石墨烯在水性涂料中应用

2019-03-07 09:03:45

水性涂料是国家发起开展的环境友好型涂料,但某些功用尚不及相应的溶剂型涂料,影响其开展。石墨烯具有共同功用,可改善水性涂料功用,促进其开展,给涂料作业者带来新的等待。石墨烯在涂猜中运用首先是改性溶剂型涂料,但用于改性水性涂料也有显着开展。改性办法可用共混法复合改性,也可用原位聚合和溶胶-凝胶技能复合法改性,还可用偶联剂润饰,一同实施不同的功用改性。 1 用钛酸酯偶联剂润饰水涣散改性石墨烯 按通用办法将石墨制成氧化石墨烯,向氧化石墨烯涣散液内分别参加钛酸酯和,在水浴加热法下发作反响,使氧化石墨烯复原并一同嫁接上钛酸酯偶联剂分子。将取得的混合液进行后处理和真空枯燥,得到粉末状改性石墨烯。 因为钛酸酯偶联剂对氧化石墨烯进行了表面润饰,不再发生聚会,故石墨烯水涣散体稳定性高,可长期储存,合适用于复合材料及涂层材料的制备。制备工艺简洁,出产效率高,出产进程和产品均能契合环保要求。 2 石墨烯与基体树脂共混复合水性涂料 2.1 水性导电涂料 石墨烯/聚酯树脂复合水性导电涂料。用Hummers法制备氧化石墨烯,经两步化学复原法得到有机分子润饰的石墨烯水溶液,参加聚酯、助剂和交联剂、催化剂,经液态共混,制备得到水性导墨烯涂料。该涂料具有高导电功用和力学功用,可运用于电磁屏蔽、抗静电、防腐、散热、耐磨及电子线路等范畴,具有广泛的运用价值。 2.2 石墨烯改性水性环氧树脂耐磨玻璃涂料 石墨烯改性的耐磨水性玻璃涂料由两组分组成,榜首组分为基体成膜物,第二组分为固化剂。其间榜首组分包含改性环氧树脂20%~40%、助剂0.5%~7%、氧化石墨烯0.1%~5%、偶联剂1%~2%,其他为水(均为质量分数);第二组分是胺类固化剂。在运用前将两组分混合,其间第二组分占混合物质量分数的3%~30%。该涂料具有硬度高、耐磨性好、与玻璃基底亲和力与附着力强、耐水、耐乙醇性好,且契合环保要求。别的制备办法简洁,具有重要的商业化运用价值。 2.3 石墨烯改性酸酯聚合物水泥防水涂料 用Hummers法制备的氧化石墨烯参加酸酯类聚合物乳液中,参加选用的助剂,按份额参加水泥,拌和涣散,制成氧化石墨烯改性的聚合物水泥防水涂料。该涂料显着增加了酸酯类聚合物乳液成膜的抗拉强度;进步了耐水性;此外,氧化石墨烯丰厚的含氧官能团能够调理水泥水化产品晶体的成长,进步其抗拉强度和耐性。故氧化石墨烯改性的聚合物水泥防水涂料具有杰出的耐久性、抗渗性以及物理力学功用,运用远景宽广。 2.4 石墨烯改性聚酯树脂复合水性涂料 2.4.1 石墨烯/水性聚酯纳米复合乳液 将真空脱水的聚醚多元醇(N210)和TDI反响制得聚酯预聚体,参加二羟甲基引进亲水羧基,加中和盐基化,参加氧化石墨烯水溶液、去离子水和乙二胺进行乳化反响,减压蒸馏出后,滴加维生素C溶液进行原位复原反响,得到石墨烯/水性聚酯纳米复合乳胶树脂。该乳胶树脂可运用于静电防护、防腐涂层、建筑涂料等范畴,本发明工艺简洁、环保、合适大规模出产。 2.4.2 石墨烯/TiO2复合材料改性水性聚酯抗菌涂料 纳米TiO2作为光催化纳米材料的一种,有抗菌灭菌效果,但它关于可见光吸收率较低,纳米粒子趋向于集合,大大降低了其灭菌效果。在含纳米TiO2抗菌涂猜中,引进5%以下的石墨烯,显着进步涂料对可见光吸收率,并加强纳米TiO2的光催化活性和抗菌、灭菌才能,使改性后的水性聚酯在抗菌灭菌归纳功用方面有很大进步。而且具有杰出的表面功用、耐水性和力学功用。 3 石墨烯/聚酯原位聚合的水性导电涂料 石墨烯比较传统的碳系导电填料(炭黑、石墨、碳纳米管、碳纤维等)具有愈加优异的导电性及机械功用。 用二元胺对氧化石墨烯进行基化改性,后用化学复原康复石墨烯的共导电系统,使用石墨烯表面的—NH与—NCO封端的水性聚酯原位聚合,制得含石墨烯的水性聚酯导电涂料。 该导电涂料具有防辐射、抗静电、防腐蚀、耐磨等特性,可用于高分子材料、金属材料、纺织材料表面等方面。 4 用溶胶-凝胶技能制备改性石墨烯/水性聚酯纳米复合涂料 中国科技大学Xin Wang等于2012年在《Surface& CoatingsTechnology》上宣布了他们的研讨论文:用溶胶-凝胶技能制备改性石墨烯/水性聚酯复合纳米涂料,分3部分: (1)硅烷改性石墨烯纳米薄膜制备。用Hummers法制备氧化石墨烯(GO),然后对GO水涣散体用化学复原成GNS,再用DCC(N,N'-二环己基碳化二亚胺)和3-基丙基三乙氧基硅烷(APTES)功用改性,用超声波涣散1h,在70 ℃下拌和反响24 h,经后处理得到APTES功用改性的石墨烯纳米膜f-GNS。 (2)硅烷APTES封端的水性聚酯(WPU)制备。用异佛尔酮二异酸酯(IPDI)、聚氧化丙二醇、一缩二乙二醇和三羟甲基混合多元醇组成PU预聚物,再和二羟甲基反响,然后加APTES反响,得到APTES封端的水性聚酯(WPU),产率86.3%,数均分子量28600(GPC测定)。 (3)溶胶-凝胶技能制备f-GNS/WPU纳米复合涂料。凭借超声波将f-GNS粉末涣散在去离子水中制成悬浮液,将APTES封端的WPU参加其间一同混合,用调理pH值,制成f-GNS/WPU纳米复合涂料。 用1H-NMR、FTIR、XPS、GPC、AFM、HRTEM等表征了GO、f-GNS的结构,根本验证了图1所示的分子结构式与反响进程,及f-GNS/WPU纳米复合涂料产品结构和组成。纳米复合物中的T1、T2和T3代表了单、二和三替代的硅烷键合,证真实APTES封端的WPU和f-GNS相邻的硅氧烷分子之间缩聚反响,构成共价键。 5 结 语 5.1 石墨烯具有共同功用,研制热潮在全球突起 石墨烯是当今世界发现的“至薄”的晶体材料,厚度只要1个碳原子,也是“至坚”材料之一,并具有高导电性、高导热性。猜测在航空航天、世界勘探、海洋开发、国防工业、国民经济各方面具有不可估量的运用远景,研讨热潮在全球突起,国内也起步不俗,开展较快。 5.2 石墨烯在改性涂料功用方面展现了新的远景 对石墨烯在导电、防腐、阻燃、导热和高强度等功用涂猜中都具有十分诱人的潜在远景。 石墨烯与各种涂料树脂经过物理共混、原位聚合和溶胶-凝胶技能等法复合;或用偶联剂润饰,或选用原位聚合等工艺。这些工艺在改性水性涂猜中均证明可行,且功用改善显着。水性涂料经石墨烯改性,其功用有望“更上一层楼”,其进一步开展可期。 5.3 石墨烯改性涂料研制脚步初迈,要正确促进石墨烯出产及运用的开发热潮继续升温,但应镇定对待。 对出产厂商而言,石墨烯出产技能是否到达世界最先进,是否契合清洁文明出产工艺要求,本钱是否合理,有许多技能作业要做。石墨烯在涂猜中的运用,国内有不少研讨作业和专利宣布,开展势头较好,但不能说“已入胜境”。石墨烯和涂料树脂复合办法、助剂挑选、功用性改善,研制的空间都很大。国内宣布石墨烯改性水性涂料的作业和专利多是实验室效果,要到达有用并产业化,要更多投入,有许多研制作业要做。

石墨烯的时代,还远没有到来

2019-03-06 10:10:51

导读前不久,任正非在承受媒体采访时宣称,未来10至20年内会迸发一场技能,“我以为这个年代将来最大的推翻,是石墨烯年代推翻硅年代”,“现在芯片有极限宽度,硅的极限是七纳米,现已接近鸿沟了,石墨是技能前沿”。这儿说到的石墨烯,终究是何方神圣?它真的能带来推翻吗?扫描电镜下的石墨烯,显现出其碳原子组成的六边形结构。图片来历:Lawrence Berkley National Laboratory石墨烯——一种只需一个原子厚的二维碳膜——确实是种令人惊奇的材料。尽管姓名里带有石墨二字,但它既不依靠石墨储量也彻底不是石墨的特性:石墨烯导电性强、可弯折、机械强度好,看起来颇有未来奇特材料的风仪。假如再把它的潜在用处开个清单——维护涂层,通明可弯折电子元件,超大容量电容器,等等——那简直是改动国际的发明。连2010年诺贝尔物理学奖都颁发了它呢!其实就在2012年,因石墨烯而取得诺贝尔奖的康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)和他的搭档曾经在《天然》上发表文章评论石墨烯的未来,两年来的开展也根本证明了他们的猜测。他以为作为一种材料,石墨烯“出路是光亮的、路途是曲折的”,尽管将来它或许能发挥严重效果,可是在战胜几个严重困难之前,这一场景还不会到来。更重要的是,考虑到工业更新的巨大本钱,石墨烯的优点或许不足以让它简略地代替现有的设备——它的真实远景,或许在于为它的共同特性量身定做的全新运用场合。 石墨烯终究是什么? 石墨烯是人们发现的第一种由单层原子构成的材料。碳原子之间彼此连接成六角网格。铅笔里用的石墨就适当于许多层石墨烯叠在一起,而碳纳米管就是石墨烯卷成了筒状。石墨、石墨烯、碳纳米管和球烯之间的联系。图片来历:enago.com由于碳原子之间化学键的特性,石墨烯很坚强:能够曲折到很大视点而不开裂,还能反抗很高的压力。而由于只需一层原子,电子的运动被约束在一个平面上,为它带来了全新的电学特点。石墨烯在可见光下通明,但不透气。这些特征使得它十分合适作为维护层和通明电子产品的质料。 可是合适归合适,真的做出来还没那么快。 问题之一:制备方法。       许多项研讨向咱们展示了石墨烯的惊人特征,但有一个圈套。这些美好的特性对样品质量要求十分高。要想取得电学和机械功能都最佳的石墨烯样品,需求最费时吃力费钱的手法:机械剥离法——用胶带粘到石墨上,手艺把石墨烯剥下来。诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带。胶带上的签名“Andre Geim”就是和诺沃肖洛夫一起取得诺贝尔奖的人。图片来历:wikipedia尽管所需的设备和技能含量看起来都很低,但问题是成功率更低,弄点儿样品做研讨还能够,工业化出产?恶作剧。要论工业化,这手法毫无用处。哪怕你把握了全国际的石墨矿,一天又能剥下来几片……        当然现在咱们有了许多其他方法,能增加产值、降低本钱——费事是这些方法的产品质量又掉下去了。咱们有液相剥离法:把石墨或许相似的含碳材料放进表面张力超高的液体里,然后超声轰炸把石墨烯雪花炸下来。咱们有化学气相堆积法:让含碳的气体在铜表面上冷凝,构成的石墨烯薄层再剥下来。咱们还有直接成长法,在两层硅中间直接设法长出一层石墨烯来。还有化学氧化还原法,靠氧原子的刺进把石墨片层别离,如此等等。方法有许多,也各自有各自的适用范围,可是迄今为止还没有真的能合适工业化大规模推行出产的技能。        这些方法为什么做不出高质量的石墨烯?举个比如。尽管一片石墨烯的中心部分是完美的六元环,但在边际部分往往会被打乱,成为五元或七元环。这看起来没啥大不了的,可是化学气相堆积法发生的“一片”石墨烯并不真的是完好的、从一点上成长出来的一片。它其实是多个点一起成长发生的“多晶”,而没有方法能确保这多个点长出来的小片都能完好对齐。所以,这些变形环不光散布在边际,还存在于每“一片”这样做出来的石墨烯内部,成为结构缺点、简略开裂。更糟糕的是,石墨烯的这种开裂点不像多晶金属那样会自我愈合,而很或许要一向延伸下去。成果是整个石墨烯的强度要折半。材料是个费事的范畴,想鱼与熊掌兼得不是不或许,但必定没有那么快。显微镜下的一块石墨烯,伪色符号。每一“色块”代表一片石墨烯“单晶”。图片来历:Cornell.edu 问题之二:电学功能。       石墨烯一个有远景的方向是显现设备——触屏,电子纸,等等。可是现在而言石墨烯和金属电极的接触点电阻很难抵挡。诺沃肖洛夫估量这个问题能在十年之内处理。       可是为啥咱们不能爽性扔掉金属,全用石墨烯呢?这就是它在电子产品范畴里最丧命的问题。现代电子产品全部是建筑在半导体晶体管之上,而它有一个要害特点称为“带隙”:电子导电能带和非导电能带之间的区间。正由于有了这个区间,电流的活动才干有非对称性,电路才干有开和关两种状况——可是,石墨烯的导电功能真实太好了,它没有这个带隙,只能开不能关。只需电线没有逻辑电路是毫无用处的。所以要想靠石墨烯发明未来电子产品,代替硅基的晶体管,咱们有必要人工植入一个带隙——可是简略植入又会使石墨烯损失它的共同特点。现在针对这个范畴的研讨确实不少:多层复合材料,增加其他元素,改动结构等等;可是诺沃肖洛夫等人以为这个问题要真实处理,还要至少十年。 问题之三:环境危险。       石墨烯工业还有一个意想不到的费事:污染。石墨烯工业现在最老练的产品之一或许是所谓“氧化石墨烯纳米颗粒”,它很廉价,虽不能用来做电池、可弯折触屏等高端范畴,作为电子纸等用处却是适当不错;可是这东西对人体很或许是有毒的。有毒没关系,只需它老老实实呆在电子产品里,那就没有任何问题;可是前不久研讨者刚发现它在地表水里十分安稳、极易分散。尽管现在对它的 环境影响下断语还为时太早,但这确实是个潜在问题。 所以,石墨烯的命运终究怎么?       鉴于曩昔几个月里学界并无新的突破性发展,近来它的这波突发性“炽热”,恐怕本质上仍是本钱运转的炒作成果,应审慎对待。作为工业技能,石墨烯看起来还有许多未能战胜的困难。诺沃肖洛夫指出,现在石墨烯的运用仍是受限于材料出产,所以那些运用最初级最廉价石墨烯的产品(比如氧化石墨烯纳米颗粒),会最早问世,或许只需几年;可是那些依靠于高纯度石墨烯的产品或许还要数十年才干开发出来。关于它能否代替现有的产品线,诺沃肖洛夫仍然心存疑虑。 另一方面,假如商业范畴过度夸张其奇特之处,或许会导致石墨烯工业变成泡沫;一旦决裂,那么或许技能和工业的发展也无法解救它。科学作者菲利普·巴尔曾经在《卫报》上撰文《不要希望石墨烯带来奇观》,指出一切的材料都有其适用范围:钢坚固而沉重,木头简便但易腐,就算看似“全能”的塑料其实也是种种截然不同的高分子各显神通。石墨烯一定会发挥巨大的效果,可是没有理由以为它能成为奇观材料、改动整个国际。或许,用诺沃肖洛夫自己的话说:“石墨烯的真实潜能只需在全新的运用范畴里才干充沛展示:那些设计时就充沛考虑了这一材料特性的产品,而不是用来代替现有产品里的其他材料。” 至于眼下的可打印、可折叠电子产品,可折叠太阳能电池,和超级电容器等等新范畴能否发挥它的潜能,就让咱们平心静气拭目而待吧。

石墨烯应用领域及前景浅析

2019-01-03 09:36:46

石墨烯是一种二维晶体,石墨烯独特的结构使它具有优异的电学、力学、热学和光学等特性,例如石墨烯具有100倍于硅的超高载流子迁移率、高达130GPa的强度、很好的柔韧性和近20%的伸展率、超高热导率、高达2600m2/g的比表面积,并且几近透明,在很宽的波段内光吸收只有2.3%。这些优异的物理性质使石墨烯在射频晶体管、超灵敏传感器、柔性透明导电薄膜、超强和高导复合材料、高性能锂离子电池和超级电容器等方面展现出巨大的应用潜力。 尽管石墨烯还没有实现大规模的产业化,但是,市场对于石墨烯的应用十分看好,就目前的研发成果显示,未来石墨烯将广泛应用于以下四大领域。 1.电子材料领域 作为电极材料,石墨烯是绝佳的负极材料,被认为是可以替代硅的芯片材料。另外,石墨烯在柔性屏幕、可穿戴设备、太阳能充电等领域的应用还有待挖掘。 据悉,英国曼彻斯特大型已经开发出仅有10至40个原子厚度的石墨烯LED屏幕,拥有超薄、可弯曲的特性。这意味着未来,电子设备的屏幕可以进一步降低厚度、更为灵活,甚至实现整体柔性化。 石墨烯在可穿戴设备领域也具有一定应用空间。例如,爱尔兰科学家正在开发基于石墨烯的灵活可穿戴传感器,并发现该传感器能够检测到用户最细微的动作,包括跟踪呼吸和脉搏。另外,该传感器还能实现自供电,也许未来能够应用在智能服装中。 2.散热材料领域 金属材料在散热应用方面存在难于加工、耗费能源、密度过大、导电、易变形以及废料难回收等诸多问题,几乎没有太大的降价空间。而纳米石墨烯导热塑料如应用在LED灯具等产品的散热上,其系统成本至少可以降低30%。石墨烯是一种由碳原子构成的单层片状结构的纳米新材料,是目前人类所发现的几乎完美的平面原子结构,其出色的导电、导热以及散热性能让各行各业均对其寄予厚望。 石墨烯是二维的单层碳原子晶体,与三维材料相比,其低维结构可显著削减晶界处声子的边界散射,并赋予其特殊的声子扩散模式。石墨烯所具有的快速导热与散热特性使得石墨烯成为极佳的散热材料,可用于智能手机、平板电脑、大功率节能led照明、卫星电路、激光武器等的散热。 3.生物医学领域 石墨烯具有突出的力学性能和生物相容性,将其作为增强填料可显著提高生物材料的力学性能。 生物传感器是生命分析化学及生物医学领域中的重要研究方向,已广泛应用于临床疾病诊断和治疗研究。石墨烯制成的生物传感器对生命分析领域的快速发展具有重要现实意义。在基因组测序技术领域,最近成功开发出来的DNA感测器,是一种以石墨烯为基础的场效应类晶体管设备,能探测DNA链的旋转和位置结构。该感测器利用石墨烯的电学性质,成功实现检测DNA序列的微观功能。 4.军工领域 从中国石墨烯产业技术创新战略联盟(简称联盟)获悉,为促进石墨烯在军工领域的推广应用,2015年1月16日,联盟将举行军工应用委员会成立授牌仪式。 我国政府和国防军工方面的领导和专家对石墨烯在军工领域的应用前景十分关注。据悉,今年年初,在哈尔滨召开的“石墨烯军工应用技术研讨会”上,总装备部、国防科工局、各军工集团相关领导、专家,以及石墨烯产业领域专家与企业家、军工及民口配套单位代表共同研讨石墨烯在军工方面的应用前景。 由于石墨烯具有高导电性、高韧度、高强度、超大比表面积等特点,业内人士认为,石墨烯在航天军工等领域有广泛应用。据悉,我国科学家发现石墨烯可做太空动力源。通过对石墨烯在光作用下的运动现象的研究表明,石墨烯材料可将光能直接转化为动能,这标志着石墨烯材料将成为一种新的动力来源,这种动力源将远高于光压现象所产生的动力源。未来,石墨烯可能为星际探索、卫星变轨等提供无尽的动力。 结语 石墨烯由于优越的特性,业内预计未来5至10年,全球石墨烯产业规模会超过1000亿美元。更有乐观者认为,石墨烯的市场潜在规模至少在万亿元以上。就目前情况来讲,石墨烯市场化的最大阻碍是市场需求和价格,石墨烯未来产业化之路遥遥,需要政府的支持,和研发人员的开拓创新,相信通过共同努力,石墨烯将在更多的领域大放异彩。