您所在的位置: 上海有色 > 有色金属产品库 > 硫精矿浮铅锑 > 硫精矿浮铅锑百科

硫精矿浮铅锑百科

硫精矿技术指标

2019-01-03 14:43:39

硫精矿技术指标含量(ωB)%指  标优等品一等品合格品优-Ⅰ优-Ⅱ有效硫(S)≥48≥45≥38≥28砷(As)≤0.05≤0.07≤0.10氟(F)≤0.05≤0.07≤0.10铅锌(Pb+Zn)≤0.5≤1.0碳(C)≤1.0≤2.0  注1:各组分含量均以干基计。  注2:多金属硫精矿砷的技术指标按合同执行。  注3:水分是计量依据,技术指标由供需双方议定。

钴硫精矿的冶炼工艺

2019-01-18 11:39:38

国内将含钴的黄铁矿和磁黄铁矿精矿通称钴硫精矿,是国内主要炼钴原料之一。南京钢厂、葫芦岛锌厂、湖北光化磷肥厂和山东淄博钴厂四个厂家利用这种原料。其中葫芦岛锌厂的产品是二号电钴,采用硫酸化焙烧→浸出→脂肪酸脱铁铜→沉钴→还原铸阳极→阳极液净化→隔膜电解的方法,因生产成本高,现已停产。南京钢厂曾采用氧化焙烧——烧渣中温氯化焙烧工艺,湖北光化磷肥厂采用氧化焙烧——烧渣硫酸化焙烧工艺。但由于钴硫精矿含钴太低,一般都小于0.3%,加上回收钴的工艺流程复杂,普遍无利可图,所以,这些厂在生产一段时间后,又停止了生产。山东淄博钴厂利用钴硫精矿和含钴原料生产硫化钴、氧化钴、氯化钴、硫酸钴等产品。

钴硫精矿等级质量标准

2019-01-03 14:43:39

钴硫精矿等级质量标准

钴硫精矿精矿等级分类标准

2019-01-03 14:43:39

钴硫精矿精矿等级分类标准

铅锑钴矿化学选矿

2019-02-22 09:16:34

1  铅 难选氧化铅矿是指与氢氧化铁、氢氧化锰及其他围岩严密共生的砷铅矿、磷氯铅矿、铅矾及某些已严峻被氢氧化铁所浸染或在矿石中含有很多原生矿泥和赭土的氧化铅矿。这类矿石的选别选用一般的办法不易得到好成果,关于这类矿石的研讨,已从机械选矿办法逐渐转入化学选矿办法,首要包含烟化法和酸无法。 烟化法计划根据具体情况而定,一般情况下,先经过机械选矿的办法,加以开始富集,然后将比较少数的物料用烟化法处理比较适合。若在浮选给矿中有许多黏土质矿泥和氧化铁,则矿石在细磨曾经预先除掉矿泥(-5μm)是十分必要的,由于这部分矿泥会很多耗费药剂,并严峻影响精矿质量,这时泥质部分可考虑用烟化法处理。 在介质中浸出铅矿藏是当时处理深度氧化铅矿石的常用办法,刘智林用浸出某氧化泥化铅锌矿,铅收回率为14.22%。由于PbCl2的溶解度较高,仍有相当多的铅金属以Pb2+状况赋存于其饱满溶液中,且此办法存在经济本钱较高及设备防腐的问题。 2  锑 多年来,为了进步细粒氧化锑矿的选矿收回率,国内外学者进行了许多实验研讨探究,首要包含细粒氧化锑矿的浮选、化学选矿、选冶联合工艺等几个研讨方向,但至今仍处于实验室研讨阶段。 锑化学选矿工艺首要为复原焙烧-碱浸-电积。周淑珊研讨了以黄锑华为主的氧化锑矿的复原焙烧-碱浸矿浆电积法提取锑,对黄锑华进行复原焙烧,转变为贱价锑的氧化物,再比照进行酸法浸出与碱法浸出,发现碱浸速度快、浸出率高,电积含锑浸出液得到终究产品海绵锑的质量也较好。 国内外学者对化学选矿进程的机理进行了相关研讨,Pavel Raschman研讨了天然辉锑矿在Na2S+NaOH溶液中的溶解动力学,经过SPPM模型断定了浸出速率控制步骤,动力学参数核算成果标明,浸出进程受固液界面Sb2S3与Na2S的化学反应和微孔扩散控制,经典的SPPM模型成果比SCM-PDC模型成果差,但SPPM模型能更好地反映进程参数(颗粒尺度、温度、Na2S浓度)对浸出的影响 3  钴 由于各种钴质料的成分及含量差异,钴的提取办法较多,归纳起来能够归为两类:一类是火法-湿法联合流程,即钴质料经火法预处理,使钴开始富集,然后经过湿法提取;另一类是全湿法流程,即钴质料经湿法浸出、脱除杂质制备纯洁钴溶液和制备得到钴及其化合物。 A  酸浸 现在钴酸浸首要选用硫酸浸出。兰玮锋针对非洲刚果某氧化型水钻矿,进行两段浸出,浸出渣中钴质量分数小于0.5%,钴浸出率达99%。刘俊以Na2SO3为复原剂,从水钴矿复原酸浸液中提取铜和钴,研讨了复原剂品种及用量、浸出温度、硫酸浓度等要素对水钴矿复原酸浸进程中有价金属铜和钴浸出率的影响。 处理水钻矿首要的工艺流程为硫酸浸出-净化除铁-萃取别离-草酸钙沉积。浸出进程一般为非选择性,很多铁及其他杂质一起浸出,有必要选用专门工序净化除铁。一起,萃取别离中萃取设备占地面积大,设备杂乱,需求很多萃取剂。草酸沉积钴时发生很多含铵根离子废水,其处理也是个难题,且整个处理工艺流程较长。针对现有处理工艺所存在的缺乏,郭学益以刚果(金)某含铜较高的水钴矿为质料,进行复原酸浸-旋流电积选择性提取铜和钴的新工艺研讨,对浸出液进行了旋流电积提取铜和钴的探究实验研讨,得到纯度别离为99.95%、99.97%的电积铜、钴产品,铜、钴的直收率别离到达98.23% 和 94.54%. B加压浸 在传统酸法浸出钴矿的进程中,很多杂质进入浸出液,净化进程杂乱,除杂剂、酸碱耗费量大。而关于铜含量较高,导致浸出液萃铜不能一次萃净的矿藏,尤为杂乱。在性系统中,浸出具有选择性,可有用削减钙、镁、铁等离子进人浸出液,净化及别离进程简略。浸液经萃铜后,再蒸得到纯度较高的钴化合物,蒸所得和铵盐回来浸出。与传统酸法处理钴矿进程比较,钴化合物的后续处理进程可显着削减废水排放量。 廖元杭根据质量平衡和电荷平衡的双平衡电算指数法研讨了Co(Ⅱ)与NH3、Cl-、OH-等多种配体的合作平衡规则,经过核算制作了热力学平衡图,提醒了系统中各物质的平衡浓度与浓度和氯离子浓度之间的联系。成果标明,在该系统中仅有存在的固相物质为Co(0H)2,实验验证了热力学核算成果,两者之间的误差仅为10.13%。 刘建华以刚果某钴铜氧化矿为质料,选用加压浸工艺在NH3-NH-H2O系统中浸出钴、铜,分析了各要素对钴、铜浸出率的影响。成果标明:进步cNH3/cMe有利于构成稳定性高的钴、铜合作离子;下降c/c,进步系统pH值可下降复原剂复原电位。钴浸出率可到达95.2%,铜浸出率可到达95.8%。浸出液后续处理工艺简略,及铵盐可完成闭路循环,对环境友好。 C  铵盐焙烧-浸出 现在硫酸浸出、加压浸均可完成氧化铜钴矿中铜钴的收回使用,首要存在的问题是:硫酸浸出耗酸大,收回后发生高浓度硫酸铵废水污染环境;加压浸尽管能够循环使用,但出资和实践生产本钱均较高。因而,开发本钱低且无废水排出的工艺是氧化铜钴矿处理的重要课题。 张明珠选用铵盐焙烧-浸出-沉积工艺,循环使用氯化铵从刚果某铜钴氧化矿中收回铜钴,实验研讨标明:在最佳工艺技术条件下,铜钴收回率别离为90%、95%,氯化铵可从饱满的沉积母液中冷却结晶出来,循环用于氧化铜钴矿的处理,整个进程不会发生废水,也不会污染空气,可完成氧化铜钴矿的低温少废高效开发使用。其焙烧机理为:该铜钴氧化矿在低于320℃时构成中间产品Co( NH3)6CuCl5,该中间产品在320℃时转化成可溶的CoCI2 、CuCI2。 D  其他工艺 王亚雄针对云南某钴土矿的特色,开发了SO2浸出-离子浮选-溶剂萃取工艺,并用以归纳提取钴、锰、铜、镍等有价金属。成果标明,锰收回率大于97%,钴总收回率大于95%,镍总收回率大于90%。 郑雅杰针对青海某地高砷钴矿,比较传统工艺和硝酸氧化硫酸浸出。选用惯例的硫酸浸出时钴浸出率仅为16.86%;选用硫酸化焙烧后硫酸浸出工艺,钴浸出率为67.48%;选用硝酸氧化硫酸浸出,钴浸出率为96.35%。这是由于该矿石中钴首要以类质同象方式存在于砷和铁的化合物中,硝酸能使矿石在溶液中发生分化,有利于钴的浸出。 李光芒等人在二效果下用柠檬酸浸出某红土矿中的钴,钴首要与锰和硅酸盐矿藏共生。30g/L柠檬酸、10g/L二室温下处理该矿石时钴浸出率为84.5%,仅用30g/L柠檬酸处理时钴浸出率为29.1%,这是由于二溶解硅酸盐矿藏,钴从中解离,浸出率进步。

有色冶金系统硫精矿与烟气制酸

2019-02-18 10:47:01

有色冶金体系出产的硫包含矿山副产硫精矿和冶炼厂烟气制酸。1996年有色冶金体系硫精矿244.9万t。    副产硫精矿的有色金属矿山遍布全国20余个省(区),其间首要有:辽宁红透山铜矿、安徽铜陵有色金属公司、江西铜业公司、湖北大冶公司、广东凡口铅锌矿、甘肃白银有色金属公司、陕西金堆城钼业公司和云南锡业公司等。总出产才能约420万t。    首要有色金属冶炼厂烟气制酸工业有辽宁葫芦岛锌厂、安徽铜陵有色金属公司、江西贵溪冶炼厂、湖北大冶公司、广东韶关冶炼厂、金川有色金属公司、云南冶炼厂和甘肃白银有色金属公司等。1996年烟气制酸才能约200万t/a,出产硫酸285.8万t(折100%)。

铜、铅、锌硫可浮性特点

2019-02-22 14:08:07

一、铜、铅、锌硫化矿的可浮性 1、铜矿藏的可浮性 (1)黄铜矿CuFeS2,含Cu 34.57%。斑岩铜矿。 捕收剂:初级黄药、黑药。机理:化学吸附,与铜离子作用生成黄原酸铜;物理吸附,以双黄药方式吸附与Fe3+离子表面。按捺剂:CN-、NaCN、kCN、k4[Fe(CN)6]、k3[Fe(CN)6],均在碱性介质中运用。H2O2、NaClO经过过氧化作用而下降其可浮性,在酸性介质中运用。 活化剂:CuSO4。 (2)辉铜矿和铜兰的可浮性(归于次生铜矿) 辉铜矿Cu2S:含Cu 79.83%,天然可浮性最好。 铜兰 CuS:含Cu 64.4%,天然可浮性很好。捕收剂:初级黄药,黑药,PH值1~13。 机理同上。按捺剂:Na2OS3、Na2S2O3、k4[Fe(CN)6]、k3[Fe(CN)6]、Na2S,均在碱性介质中运用。 按捺作用较差。特色:这两种矿藏均性质较脆,磨矿易泥化,溶解性也相对较大,收回率较低,矿浆中的[Cu2+]离子含量高,形成按捺困难,且简单活化其它矿藏,致使浮选选择性差。 (3)斑铜矿 Cu5FeS4,Cu含量 63.3%,可浮性介于上述(1)、(2)两种矿藏之间。 捕收剂同上,PH值5~10。按捺剂:CN-、石灰在碱性介质中运用。一般规则:1)凡不含铁矿藏,可浮性类似,CN-、石灰对它们的按捺弱。2)凡含铁矿藏,CN-、石灰在碱性介质中能够按捺其可浮性。 3)含铜量越高,可浮性越好。 2、铅矿藏的可浮性 代表性矿藏为方铅矿。PbS含Pb 86.6%,立方晶体结晶,天然可浮性较好。 捕收剂:1)PH值 10.5后方铅矿受必定的按捺。 捕收机理为化学吸附,产品为黄原酸铅。按捺剂:诺克斯试剂(K2CrO4+KCrO2)、Na2S、CaO。按捺后的活化:诺克斯试剂按捺用HCl或酸性介质顶用NaCl活化,后者在酸性介质顶用CuSO4活化。CN-无按捺作用。(含铁时在外)。 3、闪锌矿ZnS,含Zn量67.10%。 天然可浮性较1、2均弱。 捕收剂:用Cu2+活化后,用黄药捕收。未活化则黄药无效。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。特色:常有Fe及Cd呈类质同象混入。形成可浮性下降,使按捺更简单。其间Cd需收回,现在Cd均来自从闪锌矿中的收回。 4、铁硫化矿藏的可浮性 1)黄铁矿的可浮性 FeS2,含S 53.4%。 有必定的天然疏水性,但不充沛,其表面恰当氧化后有利于黄药捕收。过度氧化则可浮性下降。 捕收剂:在弱酸性介质中,用黄药捕收。机理:电化学吸附机理。黄药首要被氧化成双黄药,黄药中的孤对电子和Fe2+离子的空轨迹结合,经过孤对电子的给予黄药吸附在矿藏表面。 按捺剂:石灰,。活化剂:石灰按捺用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附; 按捺用硫酸铜活化。 2)磁黄铁矿 Fe1-xS,x:0.1~0.2,其可浮性弱于黄铁矿,用高档黄药捕收,按捺剂同黄铁矿。 二、铜、铅、锌、硫的别离(各种硫化矿的简称) 1、铜硫别离办法:取决于矿石性质。主要有下列两种办法。 1)优先浮选:适用于细密块状矿石,在比较粗的磨矿粒度条件下Cu与S能充沛单体解离。次序:按捺硫先浮铜。2)混合浮选:适用于矿石中Cu与S结合严密,Cu与S的集合体粒度较粗,而单体矿藏粒度较细时,用混合浮选先甩出合格尾矿,再把Cu与S混合精矿再磨脱药,再选别离。条件:Cu的捕收剂为黄药或黑药,石灰做pH值调整剂及铁矿藏的按捺剂,必要时参加辅佐按捺。活化剂:只要石灰按捺,用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附;合作按捺后用硫酸和硫酸铜活化。 2、铅、锌别离优先浮选法,按捺闪锌矿,捕收方铅矿。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。 3、铜、锌别离优先浮选法,按捺闪锌矿,捕收铜矿藏。别离难度大于2的铅锌别离,应加强对锌的按捺。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。 4、铜、铅别离 一般为铜铅的混合精矿别离,先脱药,再优先浮选。 脱药办法:机械法,再磨脱药,拌和洗刷脱药,Na2S脱药,活性炭吸附脱药,加温,焙烧等。1)按捺铅浮铜 适用于次生铜矿,Cu2+离子溶解较多不易按捺的状况。 按捺铅:诺克斯试剂(K2CrO4+KCrO2)和Na2S合作运用;或氧硫法:1)SO2(或)+淀粉;2),;3)硫代硫酸钠+或硫酸亚铁;4)碳酸钠十硫酸亚铁。2)按捺铜浮铅适用于原生铜矿。捕收剂:黄药、黑药,PH值9~9.5,用CaO调整。 按捺剂:及其代替按捺剂。或加温脱药按捺铅40~70℃(PH值≤7)。 5、锌、硫别离 选用按捺硫,浮选锌的流程。 捕收剂:黄药,锌必须经硫酸铜活化。

铜、铅、锌硫化矿的可浮性

2019-02-22 10:21:22

一、铜、铅、锌硫化矿的可浮性 1、铜矿藏的可浮性(1)黄铜矿CuFeS2,含Cu 34.57%。斑岩铜矿。 捕收剂:初级黄药、黑药。 机理:化学吸附,与铜离子作用生成黄原酸铜;物理吸附,以双黄药方式吸附与Fe3+离子表面。 按捺剂:CN-、NaCN、kCN、k4[Fe(CN)6]、k3[Fe(CN)6],均在碱性介质中运用。 H2O2、NaClO经过过氧化作用而下降其可浮性,在酸性介质中运用。 活化剂:CuSO4。 (2)辉铜矿和铜兰的可浮性(归于次生铜矿) 辉铜矿Cu2S:含Cu 79.83%,天然可浮性最好。 铜兰 CuS:含Cu 64.4%,天然可浮性很好。 捕收剂:初级黄药,黑药,PH值1~13。 机理同上。 按捺剂:Na2OS3、Na2S2O3、k4[Fe(CN)6]、k3[Fe(CN)6]、Na2S,均在碱性介质中运用。 按捺作用较差。 特色:这两种矿藏均性质较脆,磨矿易泥化,溶解性也相对较大,收回率较低,矿浆中的[Cu2+]离子含量高,形成按捺困难,且简单活化其它矿藏,致使浮选选择性差。 (3)斑铜矿 Cu5FeS4,Cu含量 63.3%,可浮性介于上述(1)、(2)两种矿藏之间。 捕收剂同上,PH值5~10。 按捺剂:CN-、石灰在碱性介质中运用。一般规则:1)凡不含铁矿藏,可浮性类似,CN-、石灰对它们的按捺弱。 2)凡含铁矿藏,CN-、石灰在碱性介质中能够按捺其可浮性。 3)含铜量越高,可浮性越好。 2、铅矿藏的可浮性      代表性矿藏为方铅矿。PbS含Pb 86.6%,立方晶体结晶,天然可浮性较好。 捕收剂: 1)PH值 10.5后方铅矿受必定的按捺。 捕收机理为化学吸附,产品为黄原酸铅。 按捺剂:诺克斯试剂(K2CrO4+KCrO2)、Na2S、CaO。按捺后的活化:诺克斯试剂按捺用HCl或酸性介质顶用NaCl活化,后者在酸性介质顶用CuSO4活化。 CN-无按捺作用。(含铁时在外)。 3、闪锌矿ZnS,含Zn量67.10%。天然可浮性较1、2均弱。 捕收剂:用Cu2+活化后,用黄药捕收。未活化则黄药无效。 按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 特色:常有Fe及Cd呈类质同象混入。形成可浮性下降,使按捺更简单。其间Cd需收回,现在Cd均来自从闪锌矿中的收回。 4、铁硫化矿藏的可浮性   1)黄铁矿的可浮性 FeS2,含S 53.4%。 有必定的天然疏水性,但不充沛,其表面恰当氧化后有利于黄药捕收。过度氧化则可浮性下降。 捕收剂:在弱酸性介质中,用黄药捕收。 机理:电化学吸附机理。黄药首要被氧化成双黄药,黄药中的孤对电子和Fe2+离子的空轨迹结合,经过孤对电子的给予黄药吸附在矿藏表面。 按捺剂:石灰,。 活化剂:石灰按捺用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附; 按捺用硫酸铜活化。  2)磁黄铁矿 Fe1-xS,x:0.1~0.2,其可浮性弱于黄铁矿,用高档黄药捕收,按捺剂同黄铁矿。 二、铜、铅、锌、硫的别离(各种硫化矿的简称)1、铜、硫别离 办法:取决于矿石性质。主要有下列两种办法。 1)优先浮选:适用于细密块状矿石,在比较粗的磨矿粒度条件下Cu与S能充沛单体解离。 次序:按捺硫先浮铜。2)混合浮选:适用于矿石中Cu与S结合严密,Cu与S的集合体粒度较粗,而单体矿藏粒度较细时,用混合浮选先甩出合格尾矿,再把Cu与S混合精矿再磨脱药,再选别离。条件:Cu的捕收剂为黄药或黑药,石灰做pH值调整剂及铁矿藏的按捺剂,必要时参加辅佐按捺。活化剂:只要石灰按捺,用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附;合作按捺后用硫酸和硫酸铜活化。 2、铅、锌别离优先浮选法,按捺闪锌矿,捕收方铅矿。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。 按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。 3、铜、锌别离优先浮选法,按捺闪锌矿,捕收铜矿藏。别离难度大于2的铅锌别离,应加强对锌的按捺。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。 按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。  4、铜、铅别离 一般为铜铅的混合精矿别离,先脱药,再优先浮选。 脱药办法:机械法,再磨脱药,拌和洗刷脱药,Na2S脱药,活性炭吸附脱药,加温,焙烧等。 1)按捺铅浮铜 适用于次生铜矿,Cu2+离子溶解较多不易按捺的状况。 按捺铅:诺克斯试剂(K2CrO4+KCrO2)和Na2S合作运用; 或氧硫法:1)SO2(或)+淀粉;2),;3)硫代硫酸钠+或硫酸亚铁;4)碳酸钠十硫酸亚铁。2)按捺铜浮铅 适用于原生铜矿。捕收剂:黄药、黑药,PH值9~9.5,用CaO调整。 按捺剂:及其代替按捺剂。或加温脱药按捺铅40~70℃(PH值≤7)。   5、锌、硫别离 选用按捺硫,浮选锌的流程。 捕收剂:黄药,锌必须经硫酸铜活化。

钴、硫精矿的硫酸化焙烧-湿法处理流程

2019-03-04 11:11:26

因为成矿原因,黄铁矿或磁黄铁矿常含有少数的有色重金属,钴、镍代替了铁的硫化矿藏中的铁离子而成类质同晶,故难分选,多产出含钴的黄铁矿或磁黄铁矿精矿,我国通称钴硫精矿。 因为钴需要量的添加,含钴黄铁矿或磁黄铁矿已作为提钴原科之一。第二次世界大战前后,多限于从黄铁矿烧渣中收回。本世纪五十年代世界上各工业发达国家开端很多研讨钴硫精矿的硫酸化焙烧-湿法处理流程,处理两个首要问题:(一)有用别离和充分利用很多的铁、硫组分来确保较高的钴提取率;(二)别离、收回浸出液中的钴与其它金属。处理问题(一)的办法现代公认以欢腾硫酸化焙烧为好。各厂处理问题(二)的办法各异,有用陈旧的分步沉积法,有高压(NH3)2CO3浸出铜、钴沉积、继之分步蒸别离法,有较新的溶剂萃取法等。下面挑选三例阐明。 我国某厂的钴硫精矿的硫酸化焙烧-湿法冶金工艺流程见图1。图1  某厂处理钴硫精矿工艺流程 芬兰科科拉钴厂是世界上最大的处理钴硫精矿的工厂,1968年建成投产,图2是该厂所用流程图,质料和产品的成分见表1。近年也用粒化-浸出法归纳处理曼斯菲尔德铜厂鼓风炉前床产出的合金,添加钴的产值。 表1  质料与产品的成分图2  科科拉钴厂钴硫精矿处理流程图 钴硫精矿和这种精矿经氧化焙烧所产的焙砂按1∶(3~4)进行硫酸化焙烧,有矩形欢腾炉两台,每台分红四个间室,焙砂用皮带运输机参加榜首室,经隔墙下部洞孔顺次流经各室,最终从第四室溢流口排出。硫酸化焙烧的条件:欢腾层高2~2.5米,温度680℃,参加各间室的精矿量以坚持硫酸化所需的温度和气氛为准。该厂1981年产钴1500吨。 日本北海道下川矿山所产钴硫精矿含铜、钴各0.35%~0.4%,是日本最大的国产钴质料来历。生产流程见图3,其总收回率分别为(%):Co7l,Cu82,S82。图3  日本下川钴硫精矿处理流程

硫精矿烧渣中铁、金综合回收实验研究

2019-02-21 08:58:48

在硫酸出产过程中,硫铁矿通过焙烧后发生的烧渣中,含有氧化铁和剩下的硫化亚铁以及少数铜、铅、锌、砷和微量元素钴、硒、锗、银、金等组分。据统计,我国近几年来年排出的烧渣量在2000万t左右,利用率仅为30%,剩下很多的烧渣不只占有土地,污染着环境,且这种趋势在逐年递加[1]。因而,归纳利用硫酸烧渣,提取其间有价组分,下降废渣排放量,已成燃眉之急。该实验以某高档次硫精矿为研讨目标,研讨了硫精矿焙烧及烧渣浸金的最佳工艺条件,以到达归纳收回烧渣中铁和金、削减废渣排放的意图。 一、矿样性质 某高档次硫精矿的化学多元素分析见表1。该硫精矿含硫较高,为51.6%,还含有低档次的金、银以及铜、铅、锌等元素。铜、铅、锌的含量低,无法归纳收回。金档次达0.98g/t,能够进行归纳收回。 表1  硫精矿多元素分析成果成分w/%S51.60Cu0.22Pb0.01Zn0.28Au*0.98 *w(Au)/10-6 依据硫精矿工艺矿藏学研讨成果,硫精矿矿藏组成杂乱,以硫化矿藏为主,硫化矿藏又以黄铁矿为主,白铁矿、胶状黄铁矿少数;脉石矿藏有方解石、石榴石、石英、云母等。硫矿藏单体解离程度较高,且连生体中黄(白)铁矿粒度偏细。硫精矿中金是以超微粒被包裹于黄铁矿中,须经处理才干使其解离和露出,这样才有利于金的浸取。对硫精矿进行了氧化焙烧,然后再提取金,以到达归纳收回的意图。 二、工艺流程实验 (一)硫精矿焙烧实验 1、不同焙烧保温时刻实验 焙烧保温时刻分别为6、7、8、9h,焙烧温度均为850℃,实验成果见表2。 表2  不同保温时刻的硫精矿焙烧实验成果保温时刻/h烧渣产率/%铁品尝/%Au档次/g·t-1S档次/%668.560.191.012.08767.762.621.131.20867.366.811.310.31966.766.181.350.25 从表2可知,在焙烧温度为850℃的条件下,跟着保温时刻的延伸,烧渣的产率有所下降,但烧渣中铁金的档次均不断提高,而含硫却下降得较快。在保温时刻为8h时,硫质量分数降至0.31%。持续添加保温时刻,铁金以及硫的含量的改动不大,因而挑选最佳的保温时刻为8h。 2、焙烧温度实验 在保温时刻8h,在焙烧温度分别为750℃、850℃、950℃条件下,焙烧实验成果见表3。 表3  不同温度的硫精矿焙烧实验成果焙烧温度/℃烧渣产率/%铁品尝/%Au档次/g·t-1S档次/%75069.070.901.090.9785068.366.811.310.3195067.865.821.370.30 实验成果及烧渣的化学多元素分析成果表明∶焙烧温度850℃时,保温时刻8h,烧渣中铁品尝最高,达66.81%,金档次1.31g/t,含硫为0.31%,焙渣已到达合格铁精矿的要求,而且该温度正好在工业上硫铁矿焙烧制硫酸的温度范围内,因而焙烧温度断定为850℃。 (二)烧渣浸金工艺研讨 1、烧渣水浸除硫实验 为了归纳收回烧渣中的金,进行了浸金实验研讨。在焙烧后的烧渣中,还有残留的硫。为了将这部分硫除掉,对烧渣进行水浸。烧渣水浸实验条件∶水浸液固份额为2∶1,水浸时刻分别为15min、 45min 、60min、 90min 、120min,实验成果见表4。 从表4能够得知,跟着水浸时刻的添加,烧渣中的含硫量越来越少,当水浸时刻45 min后,硫含量改动不明显,因而挑选水浸时刻为45min。 表4 烧渣水浸时刻实验成果水浸时刻/minw(S)/%00.31150.27450.18600.16900.151200.15 为了实验便利,将一切烧渣样先进行了水浸45min,晒干后进行浸金实验。因而,以下用于浸金的试样,均是烧渣水浸45 min后的试样。 2、预处理后化浸金实验 依据硫精矿烧渣化学分析成果,烧渣中金档次1.31,其间含有影响化浸出的有害元素S、Cu、As。这些元素均可与效果,耗费,有的还耗费溶解氧,然后下降金的化浸出率,但少数的Pb盐的存在能够加快金的敏捷溶解。为此,对水浸后烧渣进行了预处理后的化浸金实验。对水浸后烧渣矿浆进行重复过滤洗刷,对浸出前后的渣进行金档次测定。条件实验有∶磨矿细度、用量、预处理时刻、化浸出矿浆浓度、化浸出PH值、用量、化浸出时刻等。实验工艺流程及条件见图1。图1  化浸出工艺流程 (1)磨矿细度实验 改动磨矿时刻,得到不同磨矿细度,进行化浸金实验,成果见图2。从图2得知,跟着磨矿时刻的添加,金的浸出率反而下降。这说明烧渣孔隙度添加,其间金颗粒现已露出出来了,细磨反而使得矿浆泥化,使泥掩盖在露出的金粒上,不利于金的化浸出,故挑选烧渣不经磨矿直接进行浸金。图2  磨矿细度对金浸出率的影响 (2)用量实验 用来那个实验成果见图3。从图3得知,不加,金的浸出率仅为37.8%;跟着用量的添加,金的浸出率也随之添加。当用量到达300g/t时,金的浸出率到达了52.3%;用量为400g/t时,金的浸出率为53.5%,比用量300g/t时稍好。归纳考虑,选取300g/t做为最佳用量。图3  用量对金浸出率的影响 (3)预处理时刻实验 用量固定在300g/t,改动预处理时刻,其他条件固定不变,实验成果见图4。从图4得知∶跟着预处理时刻的添加,金的浸出率也随之升高;当预处理时刻到达4h后,金的浸出率改动缓慢,浸出的效果改善不明显,断定预处理时刻为4h。图4  预处理时刻对金浸出率的影响 (4)化矿浆浓度实验 的用量为300g/t,预处理时刻为4h。矿浆浓度(以液固比来表明)实验成果见图5。从图5得知∶液固比为1.5∶1时,金的浸出率为46.3%。液固比对金的浸出率影响不大。图5  矿浆浓度对金浸出率的影响 (5)pH值条件实验 的用量为300g/t,预处理时刻为4h,化浸出液固比为2∶1,其他条件固定不变,pH条件实验成果见图6。选用石灰调理矿浆ph值。参加石灰的效果∶一是石灰能够清洁单体金和连生金的表面,使金颗粒更易化浸出;二是石灰在化过程中能够调整矿浆的pH值,使矿浆能够坚持足够高的ph值,然后是化浸出顺利进行;别的,石灰价廉易得,还能够使矿浆凝集,有利于化矿浆的洗刷。 从图6可知,跟着矿浆ph值的升高,金的浸出率改动很明显。在低pH(pH=9)时金的浸出率很低,仅为8.4%;而当矿浆ph升高时,金的浸出率随之增大;当pH到达11时,金的浸出率达最大,为55.9%;pH持续升高,金的浸出率略微下降。这可能是因为过量Ca(OH)2会发生薄膜掩盖在金的表面,影响了金与的效果,使得浸出率下降。浸出时矿浆的pH控制在11左右。图6  化浸出ph对金浸出率的影响 (6)用量实验 的用量为300g/t,预处理时刻为4h,化浸出液固比为2∶1,矿浆ph值为11,浸出时刻24h,用量实验成果见图7。由图7可知,跟着用量的添加,金的浸出率也随之升高。在低用量时金的浸出率很低。仅为19.3%;而当用量到达5g/t时,金的浸出率达53.8%;持续添加的用量,金的浸出率改动不大。图7  用量对金浸出率的影响 (7)化浸出时刻条件实验 化浸出时刻实验成果如图8。从图8可知,跟着化浸出时刻的添加,金的浸出率也随之升高。而当化浸出时刻为24h时,金的浸出率到达52.3%;持续添加化浸出时刻,金的浸出率改动不大。归纳考虑,化浸出时刻选取24h。图8  化浸出时刻对金浸出率的影响 (8)归纳条件实验 依据以上断定的条件进行归纳条件实验。的用量为300g/t,预处理时刻为4h,化浸出液固比为2∶1,矿浆ph值为11,用量5kg/t,化浸出时刻24h,归纳条件实验成果见表5。化浸金后浸渣的多元素分析见表6。实验成果表明,烧渣化金浸出率达51.9%,烧渣中铁品尝达66.63%,且烧渣中Cu,S,Pb,As等元素的含量均契合铁精矿冶炼的标准。 表5 化浸出归纳条件实验成果序号烧渣Au 档次/(g·t-1)浸渣Au 档次/(g·t-1)Au浸出率/%11.320.6550.821.320.6253.0平均值                                               51.9 表6 化浸渣的化学多元素分析成分w/%Fe66.63Cu0.258S0.16Pb0.022As0.12Au*0.61 w(Au)/10-6 三、结语 (一)对含硫51.6%、金0.98 g/t的硫精矿进行了焙烧条件实验,断定选用的焙烧温度为850℃、保温时刻为8h,烧渣中铁品尝达66.81%,金档次达1.31g/t,一起烧渣中硫质量分数为0.31%。 (二)烧渣中残留硫选用水浸45min能够有用去除,使烧渣中硫质量分数下降至0.18%,契合铁精矿冶炼对硫的要求。 (三)水浸后烧渣进行了预处理化浸金工艺实验,取得金浸出率为51.9%,化浸渣中铁品尝到达66.63%,且杂质元素的含量均契合铁精矿冶炼的标准。 (四)选用实验断定的工艺及条件处理该硫精矿,能够归纳收回铁、金,到达削减废渣排放的意图。 【参考文献】 [1]罗文,许承凤.硫酸烧渣归纳利用新途径探析[J].安徽化工,2004,31(6):42-43.

高砷硫精矿降砷综合回收金的试验研究

2019-01-18 13:26:58

某矿业有限公司是一家以采选金产品为主业的矿山企业,目前工采的含金多金属硫化矿石,采用浮选法从矿石中分选出金精矿、铅金精矿、锌精矿和硫精矿。载金矿物以方铅矿、毒砂为主。由于硫砷分离(磁黄铁矿、黄铁矿与毒砂分离)没有有效解决,硫精矿中的金没有被计价销售,目前金的回收率偏低仅60%左右。为提高金的回收率,实现硫精矿中金的有效回收,本研究针对高砷硫精矿,以突破硫砷分离为技术路线,探索获得砷金精矿产品以提高金的回收率。 一、试样性质 将高砷硫精矿(下称物料)进行主要化学元素分析和粒度分析,结果分别见表1和表2。    物料试样中含硫36.30%,含砷6.72%,含金2.6g/t,属高砷硫精矿,且知毒砂是金的载体矿物。就本试样言,试验拟通过浮选分离毒砂和黄铁矿,使金在毒砂中富集作为砷金精矿产出。 由表2数据可知,试样粒度较细,-0.074mm(-200目)粒级含量为68.24%,硫、砷的分布率分别为72.56%和76.00%。其中-0.043mm(-325目)粒级中的硫砷分布率也较高,分别达到32.52%与34.62%,从浮选角度分析,这部分物料会影响分离时抑制剂的选择性,从而造成分离困难。 二、分离方法的确定和试验研究内容 (一)该公司现场选矿原则流程为混浮选铅金-铅金分离,浮尾硫酸铜活化浮锌,锌尾调浆在酸性条件下浮硫。本研究在不改变生产原测流程的前提下,采用抑砷浮硫的方案进行试验研究,重点探讨砷硫分离浮选的抑制剂。 通过对比进行了碱法和酸法两种浮抑砷分离工艺的试验研究,结果表明采用酸法工艺为宜,并在酸法浮硫抑砷的抑制剂种类中筛选出Y-As抑制剂为佳。 (二)硫砷分离试验分析与结果 1、抑制剂用量试验 以Y-As作毒砂的抑制剂,分别进行了矿浆pH、Y-As抑制剂用量及捕收剂的用量试验,其中Y-As抑制剂的粗选用量条件试验流程图见图1,试验结果见图2。图2表明:增加抑制剂用量,硫精矿回收率有下降趋势。当Y-As用量2kg/(t·原矿),硫精矿含砷1.65%最低,此时砷的回收率69.36%。 2、精选试验 两次粗选后的泡沫含砷1.65%,因此进行精选Y-As用量试验,精选试验流程在图1条件试验流程的基础上增加一次精选,试验结果见图3。 由图3可知,精选增加Y-As用量有利于抑制毒砂。当添加Y-As为100g/t时,硫精矿中砷含量为1.00%左右,且砷的回收率约为9.00%,继续增加用量,砷品位及其回收率基本不变,因此,确定精选Y-As用量为100g/t为量佳。 (四)闭路试验 针对原矿中部分黄铁矿难活化而部分毒砂难抑制的特点,根据精选试验结果进行闭路试验。硫砷分离闭试验流程为两粗一精一扫见图4,试验结果见表3。由表3数据可以看出,经两次粗选一次精选后硫精矿含S42.85%,硫回收率85.51%,含As1.08%,Au0.42g/t;尾矿作为砷金精矿,产率27.52%,砷品位20.34%,含Au8.66g/t,砷回收率87.73%,金回收率88.67%,硫损失率仅14.49%。 三、结论 (一)试样为高砷硫精矿,含S36.30%,As6.72%,Au2.6g/t,砷矿物主要是毒砂,且为载金矿物,因此实现硫砷分离是提高金回收率的必要途径。 (二)Y-As为一组合抑制剂,由无机盐与有机抑制剂组合而成,无毒、廉价、来源广。本试验研究表明,在酸性矿浆中,Y-As组合抑制剂对毒砂具有较强的抑制作用。 (三)小型闭路试验获得硫精矿含S42.85%,硫回收率85.51%,含As1.08%,Au0.42%;尾矿砷品位20.34%,含Au8.66g/t,砷回收率87.73%,金回收率88.67%,作为砷金精矿销售,达到预期综合回收金的目标。

铜铅混合精矿铜铅浮选分离试验研究

2019-02-21 10:13:28

云南某一大型矿山现在建成的单一浮选流程只能出产铜铅混合精矿,不能完成铜铅别离。而另建体系在选矿时完成铜铅一次性别离将会构成出资大、严重影响出产的问题。针对此现状,展开铜铅混合精矿浮选别离实验研讨,意图是寻觅一种有用的工艺技术,建一个小型的浮选厂对现有体系出产的混合精矿进行铜、铅别离,进步产品的附加值。 实验矿样含铜8.22%、铅28.87%、锌11.36%。经过多方实验研讨,终究选用脱药、硫酸调浆、硫代硫酸钠与硫酸亚铁组合按捺剂[1]抑铅浮铜,成功完成了铜铅的有用别离,获得如下选矿目标:铜精矿铜回收率90.66%、精矿档次20.01%、含铅2.66%、含锌3.46%,铅精矿铅回收率96.56%、精矿档次45.51%、含铜1.27%、含锌16.55%。 一、矿样性质 矿样为云南某矿山所产铜铅混合精矿,经筛析其细度为-741xm占95%,-45μm占81.2%。矿样中金属矿藏以硫化矿藏为主,首要矿藏有黄铜矿、方铅矿、闪锌矿、黄铁矿、辉铜矿等,还伴生有金银等稀贵金属,矿样多元素分析成果见表1。 表1  矿样多元素分析成果%二、浮选实验研讨 实验作业在实验室进行,实验设备为:XMB-67型200~240棒磨机,XFD-3L粗扫选浮选机,XFD-1.5L和1.0L精选浮选机。 (一)混合精矿脱药办法挑选 因为矿样为抑硫混选后得到的混合精矿,混选时参加的浮选药剂有部分存在于矿藏中,所以在铜铅别离实验前有必要先将这部分药剂脱除,结合矿石性质归纳研讨,实验选用脱药。经仔细调研,现在脱药办法有拌和脱药、再磨脱药、加温脱药[三种办法,经实验成果比照分析,再磨办法可到达较好的脱药作用,再磨细度-451μm占95%、用量9000g/t时的铜、铅分选作用较为抱负。 (二)铜铅别离药剂用量实验 传统的铜铅别离常运用重完成抑铅浮铜[2],或运用完成抑铜浮,因为这些办导致环境污染,现在政府在出产中制止运用。为此,本次实验选用脱药,硫酸调浆,硫代硫酸钠与硫酸亚铁组合按捺剂来抑铅浮铜,详细药剂用量实验成果如下。 1、硫酸用量实验 硫酸用量实验成果见图1,实验成果表明,当硫酸用量大于3680g/t时,对铅的按捺作用变差,但硫酸的参加对进步铜档次和回收率有利,适合的硫酸用量为3680g/t,此刻矿浆pH5.5。图1  硫酸用量实验成果 2、硫代硫酸钠用量实验 硫代硫酸钠用量实验成果如图2,实验成果表明,硫代硫酸钠用量大于1200g/t时对铜铅的目标均发生晦气的影响,但小于1200g/tt时对铅的按捺作用欠好,因而适合的硫代硫酸钠用量为1200g/t。图2  硫代硫酸钠用量实验成果 3、硫酸亚铁用量实验 硫酸亚铁用量实验成果如图3,实验成果表明,硫酸亚铁用量添加会小幅度进步铜的回收率,一起进步尾矿中铅的档次,当硫酸亚铁用量到达5000g/t时可获得较好的铜铅别离作用。图3  硫酸亚铁用量实验成果 4、丁基黄药用量实验成果 丁基黄药用量实验成果如图4,运用捕收性较强的丁基黄药后铅在铜粗精矿中的回收率均在30%邻近,铜的回收率得到进步,其适宜的用量为60g/t。图4  丁基黄药用量实验成果 (三)精选Ⅰ药剂用量实验 首要进行了精选Ⅰ药剂用量实验,经实验得到精选Ⅰ较佳的药剂用量为:硫酸800g/t(此刻pH值为6.3),硫代硫酸钠600g/t,硫酸亚铁1600g/t,丁基黄药30,松醇油5g/t。 (四)闭路实验 闭路实验流程见图5,实验成果见表2。图5  铜铅别离闭路实验流程 表2  铜铅别离闭路实验成果%三、结语与评论 1、针对该混合精矿的特征,经过多种计划的比较,选用组合按捺剂进行铜铅别离实验,能够到达铜铅别离的意图,并可获得较为抱负的分选目标,完成铜、铅有用别离。 2、使用脱药,硫酸调浆,与硫酸亚铁组合按捺剂进行铜铅别离,效,并且环保作用很好。硫代硫酸钠不只十分有 3、实验成果表明,浮选工艺准则施行便利、简单易行,所用选矿药剂均为惯例浮选药剂,较易在出产中施行。 4、因为矿石中锌的含量不高,分选难以构成合格的独自精矿产品,故本次实验未进行别离。 参考文献 [1] 艾光华,朱易春,魏宗武.组合按捺剂在铜铅别离浮选中的实验研讨[J].我国矿山工程,2005(5):11-12,16. [2] 秦永启,张文华.某铅锌矿选矿工艺实验研讨[J].湿法冶金,2004(6):98—100. [3] 邱廷省,罗仙平,陈卫华,等.进步会东铅锌矿铅锌选矿目标的实验研讨[J].金属矿山,2004(9):34-36.

电解铅、粗铅、还原铅、再生铅、铅精矿的区别

2018-12-19 09:49:44

1号电解铅 :Pb含量不小于99.994% ; 2号铅: Pb含量不小于99.99%; 粗铅:  硫化铅矿氧化脱硫-去渣-粗铅.粗铅Pb纯度在96%-98%; 还原铅:以废铅做原料,重新回炉冶炼而得,PB含量通常在96%~98%左右,也可做为生产电解铅的原料。   再生铅:蓄电池用铅量在铅的消费中占很大比例,因此废旧蓄电池是再生铅的主要原料。有的国家再生铅量占总产铅量的一半以上。 再生铅主要用火法生产。例如,处理废蓄电池时,通常配以8~15%的碎焦,5~10%的铁屑和适量的石灰、苏打等熔剂,在反射炉或其他炉中熔炼成粗铅。 铅精矿:矿石经过经济合理的选矿流程选别后,其主要有用组分富集,成为精矿,它是选矿厂的最终产品。精矿中主要有用组分的含量称精矿品位。精矿品位有的以重量百分比(如铜、铜、锌等)表示,有的以重量比(如金矿以克/吨)表示。它是反映精矿质量的指标,也是制定选矿工艺流程的一项参数。

精矿杂质对铅冶炼的影响

2018-12-19 09:49:16

铅精矿中的杂质:铜:在精矿中呈含铜硫化物存在.在烧结焙烧温度下,反应为氧化铜,熔炼时还原为金属铜,进入粗铅,如粗铅含铜高(>2%)时,则需造冰铜,对铜进行回收,否则,熔炼时,铅,渣分离困难,且易堵塞虹吸道,造成处理困难,影响工人健康和铅的挥发损失大.铅产品中合铜量较高时易使铅变硬.故要求铅精矿中含铜量锌:在铅精矿中以硫化锌状态存在,焙烧时变成ZnO.在熔炼过程中不起化学变化,大部分进入炉渣,增加炉渣粘度,缩小铅液与炉渣比重差,而使二者分离困难,影响铅的回收率.部分ZnO可能凝结在炉壁上形成炉结,使操作困难.原料中含锌高时,会造成高铁炉渣,增加铅在渣中的损失.锌易使铅金属变硬不能压成薄片,并促使硫酸对铅的腐蚀性.因此要求铅精矿含锌不大于10%.砷:在精矿中以毒砂(FeAsS)及雄黄(As2S3)的状态存在,熔炼时,部分还原成As2O3而挥发进入烟气,形成极有害的大气环境污染.部分As进入粗铅和炉渣;粗铅中含As高时,需采用碱性精炼法除As,产出的浮渣中所含的Na3AsO4极易溶于水而污染水源,致使人畜中毒.砷易与铅形成合金,使铅硬化,故要求铅精矿中含砷不大于0.6%.氧化镁(MgO):熔点2800℃,增加炉渣熔点,且易使铁的氧化物在渣中溶解度降低,炉渣变粘,一般含MgO达3.5%,则故障频繁,因此希望铅精矿含MgO不大于2%.氧化铝(Al2O3):熔点2050℃,使炉渣熔点增高,粘度增大,特别是与ZnO结合成锌尖晶石(ZnO·Al2O3),在鼓风炉中系不熔物质,使炉渣熔点与粘度显著升高,故要求精矿中Al2O3不大于4%.

高锑铅阳极泥湿法回收金

2019-02-26 09:00:22

一、试验物料与工艺流程 高锑铅阳极泥组成为:Au0.04286%,Ag7.143%,Pb13.75%,Sb51.36%,Cu2.985%,As1.029%,Bi0.357%。其工艺流程如图1所示。图1 高锑铅阳极泥湿法工艺流程 二、浸出锑铜 锑阳极泥中的锑多以Sb2O3存在,少数金属锑和锑合金因为氧的存在,在浸出进程中均能与效果构成SbCl3溶液。其反响为: Sb2O3+6HCl=2SbCl3+3H2O 2Sb+1(1/2)O2+6HCl=2SbCl3+3H2O 铜在锑阳极泥中主要以金属铜存在,在氧效果下,部分铜构成Cu2(OH)2CO3,在浸出中反响为: Cu+(1/2) O2+2HCl=CuCl2+H2O Cu2(OH)2CO3+4HCl=2CuCl2+CO2↑+3H2O 反响生成的CuCl2进入溶液。 浸出试验成果表明,跟着浓度的增高,铜、锑浸出率也随之增高,而银的浸出率改变不大,银损失率小于1%,铅最高为1.26%。当浓度为4mol/L时,铜、锑浸出率都大于90%,完成铜锑与银铅别离。锑、铜的浸出率也跟着浸出温度上升也增高,当大于85℃时,增幅很小。因而浸出条件为:温度85℃、浓度4mol/L,液固比5∶1,时刻为1.5h时,浸出成果为:锑浸出率为90.8%~92.6%,铜93.2%~94.0%,银铅基本保存于固相渣中。 三、氯化浸出金和浸银 在固定浸出金条件为:浓度1mol/L,温度85℃,液固比5∶1,浸出4h,NaCl浓度40g/L,调查NaClO3参加量的影响,试验成果表明参加量在10%时,金的浸出率为96.1%,银浸出率 用10%渣重浸出金后的渣浸银。浸出条件为,浓度4mol/L,温度50℃,时刻1.5h,液固比5∶1,银浸出率最高为92.9%。分析银浸出不高的原因,发现阳极泥中有部分银是以单质银存在,必须经氧化才干被浸出。因而对氯化浸出金条件进行调整,然后对调整后的渣再浸银。为了氧化单质银,所以考虑在氯化浸出金时的参加量,由10%增加到20%。此刻浸20%的浸渣,其银的浸出率增加到96。9%。 归纳考虑浸银、浸出金的浸出率,断定浸出金的优化条件为:参加量为渣重的20%,浸出温度80~85℃,液固比4∶1,HCl介质浓度0.5mol/L,浸出时刻4h。 四、金、银收回和锑铅收回 在氯化浸出金时,Au以[AuCl4]-进入溶液,用硫酸亚铁复原,即可得金粉。反响为: [AuCl4]-+3Fe2+→Au+3Fe3++4Cl- Fe3+/Fe2+的标准电极电位较[AuCl]-/Au低,较铅、铜、锑离子高,故能选择性复原金。因为是液态离子复原,然后确保了金的质量。在常温下,参加亚铁离子为金理论需求量的15倍,复原率好达99.1%、纯度达99.981%。浸银液参加理论需求1.1倍的,常温至50℃下复原率为99.99%,复原银后液银含量为0.56µg/mL,银粉纯度为99.972%。 锑从浸锑液顶用铁屑置换收回,在70~80℃下,参加过量铁屑置换1.5h,置换率为98.7%。铁屑耗量与锑之比为1∶2。铅以精矿产出,含铅量50%~59%。整个进程无废渣产出。

铅阳极泥中锑资源的回收

2019-01-31 11:06:17

一、株冶锑资源及其运用状况 (一)锑资源 1994年株冶铜铅锌三大产品的产值为22.5万t,从进厂原猜中带入的锑量估量为431t,锑在各质料和产品中的散布别离见表1、表2。 表1  从原猜中带入的锑量锌精矿铅精矿粗杂铅粗铜算计主金属量,t11131356393146039896192205带入锑量,t941941385431带入锑量比,%21.8145.0132.021.16100 表2  锑在冶炼体系各产品中的散布          %铅粗炼铅精粹锌冶炼铜冶炼金银冶炼粗铅87.07阳极泥94.92欢腾炉烟尘1.98鼓风炉渣19.32稀渣14.02氧化锌7.7冰铜3.54净化渣1.43鼓风炉烟尘9.08氧化渣2.40烟化炉渣1.69反射炉烟尘0.02窑渣45.22转炉渣52.01苏打渣0.07总烟尘1.64无名丢失1.5ZnO浸出渣24.03转炉烟尘3.92精粹烟尘25无名丢失2.5算计100多膛炉尘1.12粗铜13.02熔炼烟尘57.45算计100无名丢失26.22无名丢失1.75丢失1.11算计100算计100算计100 铅体系中的锑有一个较会集去向-铅电解阳极泥。但进入金银冶炼后又相对涣散,较会集的是熔炼烟尘,精粹烟尘和稀渣,后两者回来铅体系,然后进行一个循环。锌体系中的锑,约一半进入蒸发窑渣而堆存,1/4进入氧化锌浸出渣而转入铅体系。铜冶炼的锑首要来源于铅体系的铅冰铜,经铜冶炼后粗铜中的锑有75%进入反射炉渣,18%进入阳极泥,阳极泥又转入金银冶炼。 (二)运用状况 1、从白砷残渣中收回粗锑 运用烟灰出产白砷,其残渣送铅体系熔铅工序收回粗锑,工艺流程见图1。图1  从白砷残渣中收回粗锑工艺流程图 2、出产As-Sb合金 其工艺流程为:烟尘与木炭粉混合,经蒸馏、冷凝,得到As-Sb合金。 3、从高压水浸渣中收回锑 其工艺流程见图2。图2  从水浸渣中收回锑工艺流程图 由于种种原因,以上工艺均未能完成工业出产。 4、出产玻璃弄清剂 以As-Sb烟灰为出产质料,与多家玻璃厂和特种助剂厂协作出产玻璃弄清剂,处理了该烟灰很多长时刻积存的问题,但其报价极廉,从长远看,不合算。 二、国内几家炼铅厂的锑资源收回作业 (一)东北某铅厂 东北某铅厂从70年代就开端了锑资源的收回作业,走在各供应商前列。起先将锑质料处理成金属锑锭,从1985年起改为只出产三氧化二锑,年产值60~100t,锑的归纳收回率为50%~65.5%。现在的卖价为31000元∕t(含税价),出产本钱可操控在11000元/t左右。 1、质料 质料为金银熔炼烟气丘里收尘所得的烟尘(一次烟尘)和锑熔炼烟气丘里收尘所得的烟尘(二次烟尘),其成分见表3。 表3  烟尘成分    %2、工艺流程 将两种烟尘配入苏打、粉煤进行复原熔炼,取得含锑大于55%的锑台金,合金在蒸发锅中熔化,鼓入空气,得到三氧化二锑和铅铋合金。三氧化二锑经复原熔炼和精粹得到精锑,其工艺流程见图3,产品成分要求见表4。 表4  各阶段产品的质量要求    %图3  锑出产工艺流程图 (二)西北某厂 西北某厂从1983年起开端进行湿法提取铅阳极泥中锑和铋的工怍。选用浸出锑,硫陵一食盐溶液浸出铋,浸出渣提取金银的工艺流程。 1、质料 阳极混成分(%):Sb43~46,Bi6~8, Pb7~9, Cu0.8~3, Fe0.2~0.8, As<0.2,Au0.1~0.15, Ag15左∕右。 2、工艺流程 工艺流程见图4。图4  铅阳极混处理流程图 3、工艺条件 低酸、常温预处理,300℃条件下烘干氧化。浸出锑:溶液浸出,时刻1~2h,温度>98℃,趁热过滤,热水洗刷。电积锑:温度32~40℃,槽压2.2~2.8V,电解后液含Sb>16 g/l,阳极电流密度250~310A/m2。浸出铋;温度>95℃,液固比8∶1,时刻2h,开端H2SO4100~120g/l,NaCl150g/l。置换铋:铁屑常温置换,所得海绵铋含Bi50%~77%。海绵铋经枯燥后熔炼成粗铋,处理后的阳极混熔炼成贵铅。 4、首要技能经济目标 锑浸出率92%~96%,锑电流功率>75%,铋浸出率>90%,铋置换率>96%,阴极锑档次>97%,粗铋档次>94%,金银熔炼收回率>99%。 (三)湖南某铅厂 湖南某炼铅厂从1987年开端将铜、铅阳极泥一同处理,1990年下半年推广应用湿法处理阳极泥技能,选用氯盐预处理铅阳极泥-火法提金银出产流程。 1、质料 铅阳极泥成分(%):Au 0.04~0.05,Ag 10~15, Cu 5~8,Pb 7~12,Bi20~27,As 4~10,Sb 25~27,H2O 25~35。 2、工艺流程 工艺流程见图5图5  铅阳极泥氯盐预处理流程图 3、首要技能条件 氯盐浸出:浸出结尾浓度2~2.5mol/l,固液比1∶4,温度80℃。收回锑、铋、铜:浸出液成分(g/l);Bi35~40,Sb 40~50,Cu8~10,Pb1~3。水解沉锑:温度50~60℃,冲稀3~3.5倍。中和沉铋。结尾pH值2.5~3.0,室温。置换沉铜:pH值2~2.5,温度70℃。废水处理:用石灰乳词pH值至11~12,加、鼓风,弄清后外排。 4、首要技能目标 各有价金属收回率(%):Au>99, Ag>98, Sb80~85, Bi90~95, Cu60~70。每吨阳极泥材料耗费(t):2~2.2,纯碱0.8,铁粉0.08,0.023,石灰0.4。 (四)河南某铅厂 该厂原选用火法处理铅阳极泥,金银收回率较低,别离为90%和80%。80年代中南工大协助研究出一个全湿法流程,使金银收回率到达一个较好的水平,并收回了其间锑、铋、铜等有价金属。 1、质料 铅阳极混成分(%);Au 0.8,Ag 8,Sb 40,Pb10,Bi 6,Cu 3,Ag1。 2、工艺流程 工艺流程见图6图6  铅阳极泥湿法处理工艺流程图 3、工艺条件与目标(见表5) 表5  工艺条件与目标工序工艺条件目标浸出L∕S=4~6,50~80℃,拌和3hSb、Bi、Cu浸出率98%~99%水解(Cl-)=1N,30℃,拌和3min氯氧化锑含Sb60%,水解后液含Sb<0.5g∕l锑熔炼氯氧化锑∶纯碱∶煤=100∶20∶8锑锭含Sb93% 三、评论 以上4个厂商工艺比照状况列于表6。 表6  锑收回工艺的比照东北某厂西北某厂湖南某厂河南某厂质料含Sb,%35~5043~4625~2735~45质料含As,%2~715±4~101~3铅阳极泥处理 办法火法湿法预处理-火法熔炼湿法预处理-火法熔炼全湿法处理工艺特色锑的收回在金银熔炼之后中,选用合金-氧化-复原-精粹流程锑的收回在金银熔炼之前,选用浸出-电积流程锑的收回在金银熔炼之前,选用氯盐浸出-水解-熔炼流程锑的收回在金银熔炼之前,选用氯盐浸出-水解-熔炼流程金收回率,%99.2999998银收回率,%99.2999896锑收回率,%50~60~9080~85~90长处对金银冶炼无影响,砷开路并成产品收回对金银收回率影响不大,锑的收回率高,一起也收回锑含锑质料首要处理,锑收回率较高,可收回铋、铜金银冶炼适应性强,收回铋、铜缺陷只从部分含锑原猜中收回,帮收回率较低,劳作环境较差电耗高,阴极锑档次不高,砷较涣散材料耗费大,砷涣散,易构成污染,耗费大,对金银收回率有影响金银收回率不太高,砷涣散,易构成污染,水耗大 (一)对金银冶炼的影响 某厂收回锑所用质料是金银熔炼的文丘里尘,故对金银冶炼毫无影响,这是一条很大的长处,其他各法均要对阳极混进行预处理,理论上影响不大,但机械丢失不免。我厂金银冶炼的收回率达99.01%(1994年数据),若要收回锑,需以不影响金银冶炼为准则。 (三)防止砷的晦气影响 砷的晦气影响首要是构成污染,难与锑别离。东北和河南的冶炼厂,质料含砷不高,砷在锑收回进程中的消沉效果不大。而别的两厂铅阳极泥中含砷较高,砷在冶炼进程中散布较散,易对环境和冶炼进程构成晦气影响。 (三)经济的合理性 要使锑的收回经济合理,有必要做到对金银的收回率影响不大,防止这部分效益受损,一起还要做到锑收回的经济效益较好,产出大于投入。湖南某厂的办法在阳极泥预处理阶段,对金银收回率的影响操作正常时是微乎其微的,归纳收回锑、铋、铜也有必定的经济效益。 四、株冶锑资源运用的主张 株冶1994年铅阳极混成分如表7所示,阳极泥的总载锑量达516t,除掉一部分中间产品在铅冶炼体系穿插运用而构成的锑循环,可供运用的资源估量为380~400t。 表7  铅阳极泥成分    %PbBiSbAsSnAuAg最高值13.3713.8525.4310.030.300.02006.089最低值6.706.045.1225.412.050.056013.394平均值9.419.7135.2518.210.730.03448.7703 金银冶炼所发生的中间物料砷、锑含量及散布如表8所示。若从熔炼烟尘中收回锑,则可供运用的锑资源估量为296t。 表8  中间物猜中砷、锑含量及散布    %稀渣氧化渣苏打渣精粹冷却尘精粹面袋尘熔炼烟尘As含量12.150.970.9418.5733.5928.08散布18.440.830.0368.7913.8655.20Sb含量14.314.342.8152.4433.5242.06散布14.022.400.0716.038.9257.45 无论是从铅阳极泥中收回锑,仍是从金银熔炼烟尘中收回锑,对我厂而言,都存在质料含砷过高的问题,有必要先除掉砷后再收回锑。现在尚无现成工艺可照搬,主张就如下办法挑选实验。 (一)除砷 依据和三氧化二锑饱满蒸汽压的不同,运用焙烧法部分别离砷,已有工厂选用此法。但其设备出资较大,需求较巨大的收尘设备,作业场所的大气污染较难防治。此外,对我厂物料而言还或许存在炉料粘结问题。 依据与三氧化二锑水溶性的差异别离砷,也已有工厂有用选用。沈冶在收尘工艺中选用文丘里收尘,使大部分砷进入水相,再从水相中得到砷钙渣,这种砷钙渣供玻璃厂用于弄清玻璃,而文丘里烟尘中含砷则降到2%~5%,供锑收回用。广西某厂运用在水中溶解度随温度敏捷添加的性质,将含锡高砷烟尘(%):As24.31, Sb 2.13,Sn 25.17,Pb 4.25,Zn 1.17, Fe8.67湿法处理,选用常压热水浸出一净化一浓缩结晶的工艺制取白砷也取得成功。水浸法脱砷工艺较简略,设备也不杂乱,污染可操控,简单上马,主张优先选用。 此外,我厂现在与国外某公司触摸的运用和三氧化二锑电性质不同,在电收尘中别离砷的办法也是能够考虑的。 (二)锑的收回 从铅阳极泥中收回锑仍是从金银熔炼烟尘中收回锑,关键在于经济效益的比照,即锑收回工艺对银回牧率的影响。以我厂铅阳极泥中的银量计,若收回率下降0.5%,则丢失银0.642t,合86.7万元。按沈冶数据,收回1t锑(氧化锑)本钱为1.1万元,价格2.65万元(不含税),毛利1.5万元左右,则要收回58t锑方能补偿银的上述丢失,该问题应当认真对待。两种锑收回计划的经济效益比照见表9。 表9  两种锑收回计划经济功率比照金银熔炼烟尘铅阳极泥可供收回锑量,t290380锑冶炼收回率,%9090收回锑量,t261342单位本钱,元∕t11000(氧化锑)10000(粗锑)单价,元∕t2650032000总产值,万元691.651094.4总赢利,万元404.55547(不影响银收回率)512(银收回率下降0.2%)460(银收回率下降0.5%)373(银收回率下降1%) 我厂曾对铅阳极泥预处理进行过一次开始实验,从成果看不会对银收回率构成太大影响,并且阳极泥中的锑、铋、铜均可得到收回,估量铋的归纳收回率比现行工艺有所进步,这对在现有工艺条件下进步金银冶炼和有关技能经济目标也是有利的。

锑在电缆护套铅生产中的应用

2019-01-30 10:26:34

一、制备电缆护套铅的所需原料 (一)铜的加入 为了尽量避免Cu2Sb这一严重影响电缆护套铅挤压性能的金属间化合物的生成,采用了直接把铜加入铅熔体的方法。护套铅成品的含铜量与生产时配入量有很好的吻合性, 在正常情况下, 两者之间的误差小于5%。 现在电缆厂对护套铅的含铜量的要求逐步提高,趋向于0.06% 。这给生产带来一定困难,一方面使熔解过程的时间延长;另一方面因含铜量的升高,容易从熔体中熔析,使铅液中的含铜量下降,尤其是在有Sb存在的情况下。 但是设法避开一些不利因素的影响,提高Cu含量是完全可行的。铜在铅液中的熔解,并不等于铜与铅已经合金化。必须给予合金化的过程。 (二)锑的加入 锑的熔点为630.5℃,比重为6.684。在灼热的情况下,容易氧化产生出三氧化二锑白烟。锑对氧的亲和力大于铅对氧的亲和力 因此,锑容易在配制过程中被烧损。但锑在液态铅中溶解度较大,溶解速度也快。破碎成块状的锑放入搅拌着的铅液中,很快被吸入液流旋涡,再也不浮出液面。从加入到溶解只需数分钟,但是搅拌必须充分。在锑完全溶解后还需持续一段时间,否则在金相照片中仍可见到单独的锑相。 锑的损失较大,其损失程度(也称烧损)与铅液温度、搅拌强度与时间、铅液表面残余的氧化铅量有关、烧损率可达l0%~l8%。温度对锑的利用率的影 响。为了减少烧损,在满足生产工艺要求的前提下,应采用较低的温度和搅拌强度、较短的搅拌时间。这对于降低生产成本有着实际意义。以成品含Sb为 0.55%计算,若把锑的利用率由85%提高到90%,则每吨护套铅的成本可降低近3元。 (三)锡的加入 在Pb~Sn—Sb合金中要加入锡。锡的熔点为231.9℃,比重7.29。配入锡时要注意的问题与配锑相似。它被氧化饶损的速度受到操作温度、搅拌强度 的极大影响。于由锡易于与PbO发生反应生成PbO•SnO2,因此铅液面上残存的氧化铅量的多少会直接影响锡的利用率。操作温度对锡的利用率的影响。由 于锡的烧损随操作温度的升高而急剧增大,为了减少烧损,应控制在尽可能低的温度。控制在400~4l0℃ 的范围内。温度过低,会增加铸锭机操作的困难,护套铅锭的飞边毛刺和表面夹渣明显增多,浇注孔也容易堵塞,工人的劳动强度大大增加。过度的搅拌可以使合金中锡含量下降,因此,在操作过程中应当控制搅拌强度和时间。另外,在铸锭时也应尽量减小铅液的回流量并尽可能地缩短浇铸过程的延续时间在搅拌强度一定的情况下,曾试验过搅拌时间对合金含Sn量的影响,从中可以看出随着搅拌时间的延长,合金中含Sn量降低。 液态合金平静保温放置时,虽经数小时,但含Sn量变化甚微。可见锡的烧损与新鲜液面对空气的接触情况有关。 二、关于Pb—Sb—Cu合金的金相结构 Pb—Sb—Cu护套铅合金从控制的化学成份范围和Pb—Sb—Cu三元相来看,应是铅基金属固溶体。护套铅锭的铸态组织是不平衡的,不可避免地存在着枝晶偏析。这种偏析经退火处理则会消失。由于护套铅锭在用于制作电缆包皮之前要经过重熔,其溶温一般要达到380~400℃,其铸态组织必然被破 坏。因此,铸态组织的状态不宜作为护套铅锭质量优劣的判断依据。 但是,电缆厂家从护套铅挤压加工的实践出发,认为护套铅中针状Cu2Sb的存在十分有害,会较严重地影响合金的挤压性能。因此,有的厂家在订货时要求护套铅中不得有针状Cu2Sb存在,团粒状Cu2Sb的直径在X250金相片上不得大于1 mm,即团粒直径不得大于4×10—3mm。这一要求的定量标准是否合理,另当别论,但从一个方面反映了电缆厂家的实践经验。 如果采用先配别Sb一Cu中间合金后再加入铅的方法来生产Pb—Sb—Cu合金,则合金中必然有大量Cu2Sb,其中针状Cu2Sb占相当大的比 例。这种合金不能用于连续挤压机的生产。这一点巳被电缆厂所证实。 采用直接配入铜,锑的方法,可以大大减少Cu2Sb的生成,但是不可能不产生Cu2Sb。在1l% Sb和0.075% Cu处,有一个铅、锑和锑化二铜的共晶点,共晶温度仅248℃。如果合金熔体成份是含Sb>11%、含Cu>0.075%的某点时,在冷却过 程中首先出现Cu2Sb相,接着出现Cu2Sb与Sb的共晶,最后是Pb,Sb和Cu2Sb三元共晶,其中Cu2Sb有一部分就形成针状结构。所以只要严格控制工艺条件,针状Cu2Sb的形成是可以避免的。

电解铅、粗铅、还原铅、再生铅以及铅精矿的区别

2018-10-15 09:42:39

1号电解铅 :Pb含量不小于99.994% ;2号铅: Pb含量不小于99.99%;粗铅: 硫化铅矿氧化脱硫-去渣-粗铅.粗铅Pb纯度在96%-98%;还原铅:以废铅做原料,重新回炉冶炼而得,PB含量通常在96%~98%左右,也可做为生产电解铅的原料。 再生铅:蓄电池用铅量在铅的消费中占很大比例,因此废旧蓄电池是再生铅的主要原料。有的国家再生铅量占总产铅量的一半以上。 再生铅主要用火法生产。例如,处理废蓄电池时,通常配以8~15%的碎焦,5~10%的铁屑和适量的石灰、苏打等熔剂,在反射炉或其他炉中熔炼成粗铅。铅精矿:矿石经过经济合理的选矿流程选别后,其主要有用组分富集,成为精矿,它是选矿厂的最终产品。精矿中主要有用组分的含量称精矿品位。精矿品位有的以重量百分比(如铜、铜、锌等)表示,有的以重量比(如金矿以克/吨)表示。它是反映精矿质量的指标,也是制定选矿工艺流程的一项参数。

从凡口铅锌矿尾矿中回收硫精矿的研究

2019-01-31 11:05:59

凡口铅锌矿l号尾矿库从1968年投产到20世纪80年代初闭库,尾矿库容面积20hm2,共有尾矿约40万t。在矿石日趋贫化、资源日渐干涸、环境认识日益增强的今日,尾矿归纳使用将成为凡口铅锌矿可继续发展的必然选择。 因为遭到技术水平,配备功能,经济条件等要素的影响,凡口铅锌矿20世纪60、70年代的选矿工艺流程和选矿水平遭到限制,铅锌硫等有价元素的收回率不高,然后形成适当一部分有价元素丢失到尾矿中。矿山尾矿的酸化是一个较为遍及的现象,部分尾矿有产酸的或许,特别是含硫较高的尾矿。凡口铅锌矿1号尾矿库的尾矿中硫含量高达13.8%,硫首要以硫铁矿的方式存在。20多年来,因为表层尾矿中的硫铁矿露出于空气中,加上天然淋滤效果,硫铁矿在细菌的催化下与水和氧气反响,发生了较多的硫酸,使1号尾矿库的天然pH值降到了6.5,并促进了尾矿表层部分重金属铅锌镉的溶解。研讨还发现酸化首要发作在尾矿表层0~30cm,对底层的影响不大,但酸化一旦发作, pH值会敏捷下降,重金属离子的溶出将明显进步,跟着酸化而发作一系列反响,加重尾矿对环境的污染。因而,收回凡口铅锌矿1号尾矿库中的硫精矿,能够大幅度下降硫的含量,削减酸化,保护环境,一起添加厂商的经济效益和社会效益。 一、尾矿性质 凡口铅锌矿1号尾矿库的尾矿,其首要元素化学成分和粒径散布别离如表1和表2所示。由表l和表2可知,凡口铅锌矿1号尾矿库的尾矿中首要成分为石英、碳酸盐矿藏、绢云母等脉石,其次为硫和铁,铅、锌等金属含量也较高,其间硫和铁首要以硫铁矿的方式存在,硫铁矿在整个尾矿中的含量高达18%。尾矿粒度较粗,+0.074mm粒级含量约占70%,-0.037mm粒级含量不到15%。-0.074 mm粒级尾矿中硫的含量仅为3.85%,且大部分为闪锌矿和方铅矿,+0.074mm的尾矿中硫的含量上升到15.2%。由凡口铅锌矿的粒度与解离度联系进一步分析可知,当矿石磨细到-0.074mm时硫铁矿解离已比较充沛,矿石磨细到-0.037mm时方铅矿与闪锌矿才充沛解离。在本来的矿石浮选过程中,-0.074mm的硫铁矿、-0.037mm的闪锌矿和方铅矿因为解离较充沛,其时已基本收回,尾矿中的硫铁矿首要会集在+0.074 mm粒级中。因为硫铁矿、方铅矿、闪锌矿的密度分另0为5.0~5.2t/m3、6.5~7.0t/m3、4.0~4.2t/m3,脉石(石英、碳酸盐矿藏、绢云母等)的密度为2.6~2.9t/m3,有价元素铅锌硫等与脉石矿藏的密度相差较大,比较合适重选进行开端的别离与富集。因而,断定对凡口铅锌矿l号尾矿库的尾矿选用0.074mm的细筛分级,筛上部分重矿湿磨,与筛下部分重矿兼并浮选收回硫精矿的实验计划。 二、实验成果及分析 (一)重选实验 因为凡口铅锌矿1号尾矿库的尾矿中,有价金属档次较低,脉石(石英、碳酸盐矿藏、绢云母等)含量到达了70%。单一的浮选收回有价元素本钱高,也难以获得合格的精矿产品,悉数尾矿都经磨矿将大大添加选矿本钱,粒度较细的尾矿再磨也会发生泥化,对硫精矿和铅锌等金属元素的收回晦气。重选不必药剂,对环境不发生污染,水源可循环使用相邻3号尾矿库已达标的外排水,加上设备简略、本钱低,是开端富集别离硫精矿的首选,通过摇床选别后,大部分脉石抛尾,不只能够消除矿泥对浮选的影响,还能够通过摇床的振荡对尾矿表面进行冲选和磨擦,有利于浮选收回硫精矿和后续的铅锌矿。在给矿量和给矿浓度断定的条件下,尾矿的粒度、摇床的冲程冲次和床面的倾斜度等都是重选收回硫精矿的关键要素。对+0.074mm粒级尾矿,选用小冲程、快冲次及冲刷水为小冲刷水、大横坡进行摇床实验;而-0.074mm粒级尾矿,选用大冲程、慢冲次及冲刷水为小冲刷水、小横坡进行摇床实验。对凡口铅锌矿1号尾矿库的尾矿用0.074mm细筛分级、各自重选,实验成果见表3。由表3可知,通过摇床选别后,+0.074mm粒纫重矿中,硫精矿的硫含量达28.6%。-0.074mm粒级中,尽管尾矿中的硫含量比较低,但因为硫铁矿等解离比较充沛,更简单用重选的办法与脉石矿藏别离,重矿中硫含量也到达了23.5%。对中矿进行二次重选富集,轻矿抛尾,算计可削减大约55%左右的脉石矿藏,大大减轻了下一步的磨矿量,节省了磨矿本钱,一起也富集了铅、锌、银、锗、镓等有价金属元素。 (二)浮选实验 凡口铅锌矿l号尾矿库的尾矿经重选后得到的硫精矿,一方面,硫的档次没有到达35%的供应标准,还有必要进一步富集;另一方面,得到的硫精矿中铅锌等首要金属的含量算计已到达了5%左右,具有了较好的收回方铅矿和闪锌矿的条件。为了更好的归纳收回各种有价金属,对重选后的硫精矿进行了浮选实验。 1、磨矿时刻对浮选收回率的影响   凡口铅锌矿1号尾矿库的尾矿堆积多年,因为前史原因,尾矿颗粒自身较粗,有用矿藏得不到充沛解离。因为粒度巨细对收回率有直接联系,要充沛收回硫、铅、锌等有价元素,有必要进行磨矿实验。取+0.074mm重选之后的重矿试样500g,加水800mL,在容积为5L的球磨机中磨矿,研讨磨矿时刻对硫收回率的影响,实验成果如图1。由图l可知,湿磨时刻在8~10min内硫的收回率到达了80%以上。故尾矿湿磨的最佳时刻为8~10 min。 2、对浮选收回率的影响 由在浮选中的效果机理可知,它能暂时按捺硫化物矿的浮选,对方铅矿和闪锌矿的按捺较强,对硫铁矿的按捺最弱,在某些情况下还能够活化硫铁矿。比照实验标明:对重选后已湿磨的尾矿在天然pH为6.5(尾矿的正常值)的条件下进行直接浮选,添加黄药和2#油的用量,延伸搅搅拌浮选时刻,只能使15%的方铅矿和闪锌矿浮选出来。因为硫铁矿表面遭到氧化而发生了部分硫元素,添加了硫铁矿的疏水性,有利于硫铁矿的浮选。在浮选前参加少数后进行相同的实验,方铅矿和闪锌矿简直不能浮出,而硫铁矿的浮选收回率到达了80%以上,阐明的确对方铅矿和闪锌矿进行了暂时按捺,而对黄硫铁矿起到了活化效果。因为尾矿寄存时刻长,表面的方铅矿和闪锌矿部分被氧化,参加后在必定的时刻内会发作如下反响:在参加Na2S充沛反响一段时刻后,使尾矿中表面被氧化的PbSO4和ZnSO4形成了具有必定厚度的难溶性PbS和ZnS覆盖层,黄药类捕收剂好像吸附在方铅矿和闪锌矿表面相同不易掉落,进步了方铅矿和闪锌矿的可浮性,然后使尾矿中部分被氧化的方铅矿和闪锌矿遭到活化[7],对下一步收回方铅矿和闪锌矿、进步铅锌的收回率起到关键性的效果。故在浮选收回硫铁矿时不能太早参加,更不能在湿磨时参加,有必要在浮选开端前以溶液参加才干到达最佳效果。 的用量直接影响到硫精矿的浮选收回率,用量过小不能有用的按捺方铅矿和闪锌矿,也缺乏以使部分被氧化的硫酸铅和硫酸锌表面充沛硫化,使后续铅和锌的浮选收回率不高;反之,既能够使硫铁矿遭到按捺,也会加大的水解,使溶液的pH值上升,晦气于硫铁矿的浮选,也添加了药剂本钱。取500g已湿磨10min的重矿进行浮选(硫含量为28.6%),在其他条件(丁基黄药150g/t、松醇油40g/t)不变的情况下,改动的用量(实验时将现场配制成10%的溶液,用针筒抽取),通过一次粗选、一次精选、二次扫选(下同),实验成果见表4。由表4可知,当的用量到达800r/t时,硫精矿的收回率最高,硫的档次也到达了35%以上的要求,当的用量超越800g/t时,收回率下降,添加的用量对硫精矿的档次影响不明显,生产上可选的用量为800g/t。 3、pH值对浮选收回率的影响 取上述已重选和湿磨后的重矿500g(硫含量为28.6%),在其他条件(丁基黄药150g/t、800g/t、松醇油40g/t)不变的情况下,用H2SO4和石灰别离调到不同的pH值,进行浮选实验,实验成果见表5。由表5可知,pH值超越7.5时,硫精矿的收回率和产率快速下降,硫铁矿开端遭到按捺。硫的档次也逐步下降,原因首要是因为硫精矿产品中的方铅矿和闪锌矿含量上升。明显,硫铁矿在酸性介质中较简单浮出,但考虑到设备腐蚀和凡口铅锌矿1号尾矿库中的尾矿天然pH为6.5的实际情况,把浮选硫精矿的 pH值设定为6.5的天然状况较好。 4、浮选时刻对浮选收回率的影响 取上述已重选和湿磨后的重矿500g(硫含量为28.6%),矿浆pH值6.5,参加丁基黄药150g/t,800g/t、松醇油40g/t,研讨浮选时刻对收回率的影响,实验成果见表6。由表6可知,当浮选时刻到达8min后,尽管硫精矿的收回率继续上升,但硫的档次却开端下降,这首要是因为跟着浮选时刻的延伸,对方铅矿和闪锌矿的按捺效果削弱,使尾矿中的部分方铅矿和闪锌矿收回到硫精矿中,这样将会丢失尾矿中最有价值的铅锌矿等产品。在生产上可取最佳浮选时刻为7~8 min。 5、丁基黄药用量对浮选收回率的影响 取上述已重选和湿磨后的重矿500g(硫含量为28.6%),矿浆pH值6.5,800g/t,松醇油40g/t,浮选时刻为8min,研讨丁基黄药用量对收回率的影响,实验成果见表7。从表7可知,硫精矿的收回率和产率都随丁基黄药用量的添加而升高,但当用量到达150g/t后,其收回率增大不明显,硫的档次却跟着丁基黄药用量的增大而不断下降,首要是因为尾矿中的部分方铅矿、闪锌矿和脉石收回到硫精矿中形成。工业生产上捕收剂的用量为120~150g/t。 (三)小型闭路实验 在上述各种条件实验的基础上进行全流程小型闭路实验。工艺流程如图2。以图2流程获得了杰出的效果,硫精矿硫档次为35.7%,收回率为79.5%。三、结  语 (一)针对凡口铅锌矿l号尾矿库的尾矿特征,选用细筛分级、重选和浮选的联合新工艺流程收回硫精矿,获得了满足的效果,小型实验得到了含硫35.7%,总收回率为63.5%的硫精矿产品。 (二)选用0.074mm的细筛分级,+0.074mm的尾矿可开端富集硫精矿,再别离对尾矿进行重选富集,可使约55%的脉石矿藏抛尾,大大减轻了后续磨矿和选矿本钱,一起富集了硫、铅、锌、银、镓、锗等有价元素,也改进了后续浮选条件,能较好地收回凡口铅锌矿I号尾矿库中的硫精矿。 (三)重选后的尾矿最佳浮选收回硫精矿的条件为:矿浆pH值6.5,丁基黄药150g/t,松醇油40g/t,浮选时刻8min,的最佳用量800g/t。的参加地址和参加量,对活化硫铁矿、有用按捺方铅矿和闪锌矿,并为下一步收回铅、锌、银、镓、锗等金属元素起到了关键性的效果。 (四)从铅锌尾矿中收回硫精矿的新工艺,完成了二次资源的可继续使用,为削减铅锌尾矿库的酸化,进步厂商的经济效益和社会效益,保护环境供给了一条新的途径,对同类型的铅锌矿老尾矿库中收回硫精矿具有较好的参考价值。

铅、铅锌精矿的烧结焙烧

2019-01-07 17:38:01

烧结焙烧是硫化物在高温(800℃以上)条件下经氧化脱硫转为氧化物,并烧结产出具有多孔和一定强度的烧结块的过程。烧结过程应尽可能提高烟气中S02浓度,以利于制酸,同时力求富集原料中易挥发的有价金属,以便综合利用。       烧结设备有烧结锅、烧结盘和带式烧结机,带式烧结机适用于规模在20000t/a以上的大中型冶炼厂。带式烧结机又分为吸风和鼓风两种型式。烧结机吸风烧结、烧结锅烧结和烧结盘烧结所产烟气含SO2浓度低,一般在2.0%以下,难以制酸,排入大气严重污染环境,因而仅在极少数老厂或小厂还保留使用。烧结机鼓风烧结产出的烟气,含SO2浓度可达4%~7%,可进行制酸,有利环保,因此目前多采用烧结机鼓风烧结焙烧。       采用鼓风炉炼锌(I.S.P)冶炼流程时,铅锌精矿需先进行烧结焙烧,鉴于铅锌精矿的烧结工艺流程与铅烧结的工艺流程基本相同,为避免重复,故合在一起叙述。但是,这二种烧结工艺在烧结混合料成分控制、点火和烧结温度、烧结块质量要求等方面存在着较大的差异。为便于区分这二种不同烧结工艺,先将其主要不同点叙述如下。       一、混合料       (一)铅烧结       1、烧结块含铅一般要求在40%~45%,当处理高品位铅精矿时,配料时需添加熔炼炉或烟化炉的水碎渣降低烧结块中的铅品位。      2、鼓风炉熔炼时,烧结块中的锌几乎全部进入熔炼炉渣,为保证熔炼顺利进行,炉渣含锌受到限制,一般不超过15%。当处理高锌铅精矿时,必须添加烟化过的熔炼炉渣代替熔炼水碎渣。       3、进行配料的物料除各类铅精矿和含铅物料外,尚有烧结、熔炼、通风烟尘,熔剂,水碎渣等物料;熔剂有石英石(或河砂)、石灰石、烧渣等,熔剂可以全部在烧结配料时一次配入,也可以在烙炼时加入部分块状熔剂,剩余部分在烧结配料时加入。       (二)铅锌烧结       1、混合料中的Pb、Zn、 SiO2等成分必须符合产出的烧结块中的Pb+Si02不大于26%,锌铅比不小于2.0的要求。       2、混合料是由铅锌精矿,烧结烟尘、通风烟尘、熔剂、浮渣、蓝粉等物料组成的。熔剂通常为石灰石,且在烧结时一次配入。蓝粉和部分烧结通风烟尘以泥浆形态加入圆筒冷却机。       二、点火温度、烧结温度和料层厚度       名称       点火温度,℃    烧结温度,℃     料层厚度,mm     铅烧结      800~1000       1100~1150         200~300     铅锌烧结    950~1150       1200~1300         320~400       铅锌烧结的烧结尖峰温度有时高达1400℃,从而得到高强度烧结块。       三、烧结块质量要求       (一)铅烧结块       烧结块含铅和造渣成分必须符合鼓风炉熔炼的要求。此外,还要求:       1、残硫一般为1.5%~3.0%,当原料含铜高时,残硫会更高。       2、烧结块的块度为50~150mm。      (二)铅锌烧结块       1、残硫要求不能大于1.0%,一般0.6%~0.8%。       2、烧结块的块度为30~100mm。       3、烧结块的强度要比铅烧结块强度高。       四、返粉制备与返粉量       现代烧结-鼓风炉熔炼铅厂的返粉制备,甚至配料基本上与铅锌烧结相一致。       铅烧结返粉量由于铅精矿含硫一般为16%~18%,故返粉率为60%~75%;铅锌烧结原料中含硫要比铅精矿高得多,一般为26%~30%,故返粉率要比铅烧结高得多,通常达到75%~83.5%。

铜、铅、锌硫化矿可浮性特点和分离方法详解

2019-02-25 15:59:39

一、铜、铅、锌硫化矿的可浮性 1、铜矿藏的可浮性 (1)黄铜矿CuFeS2,含Cu 34.57%。斑岩铜矿。 捕收剂:初级黄药、黑药。机理:化学吸附,与铜离子作用生成黄原酸铜;物理吸附,以双黄药方式吸附与Fe3+离子表面。 按捺剂:CN-、NaCN、kCN、k4[Fe(CN)6]、k3[Fe(CN)6],均在碱性介质中运用。H2O2、NaClO经过过氧化作用而下降其可浮性,在酸性介质中运用。 活化剂:CuSO4。 (2)辉铜矿和铜兰的可浮性(归于次生铜矿) 辉铜矿Cu2S:含Cu 79.83%,天然可浮性最好。 铜兰 CuS:含Cu 64.4%,天然可浮性很好。捕收剂:初级黄药,黑药,PH值1~13。 机理同上。 按捺剂:Na2OS3、Na2S2O3、k4[Fe(CN)6]、k3[Fe(CN)6]、Na2S,均在碱性介质中运用。 按捺作用较差。特色:这两种矿藏均性质较脆,磨矿易泥化,溶解性也相对较大,收回率较低,矿浆中的[Cu2+]离子含量高,形成按捺困难,且简单活化其它矿藏,致使浮选选择性差。 (3)斑铜矿 Cu5FeS4,Cu含量 63.3%,可浮性介于上述(1)、(2)两种矿藏之间。 捕收剂同上,PH值5~10。 按捺剂:CN-、石灰在碱性介质中运用。一般规则:1)凡不含铁矿藏,可浮性类似,CN-、石灰对它们的按捺弱。2)凡含铁矿藏,CN-、石灰在碱性介质中能够按捺其可浮性。 3)含铜量越高,可浮性越好。 2、铅矿藏的可浮性 代表性矿藏为方铅矿。PbS含Pb 86.6%,立方晶体结晶,天然可浮性较好。 捕收剂: 1)PH值 10.5后方铅矿受必定的按捺。 捕收机理为化学吸附,产品为黄原酸铅。 按捺剂:诺克斯试剂(K2CrO4+KCrO2)、Na2S、CaO。按捺后的活化:诺克斯试剂按捺用HCl或酸性介质顶用NaCl活化,后者在酸性介质顶用CuSO4活化。CN-无按捺作用。(含铁时在外)。 3、闪锌矿ZnS,含Zn量67.10%。 天然可浮性较1、2均弱。 捕收剂:用Cu2+活化后,用黄药捕收。未活化则黄药无效。 按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。特色:常有Fe及Cd呈类质同象混入。形成可浮性下降,使按捺更简单。其间Cd需收回,现在Cd均来自从闪锌矿中的收回。 4、铁硫化矿藏的可浮性 1)黄铁矿的可浮性 FeS2,含S 53.4%。 有必定的天然疏水性,但不充沛,其表面恰当氧化后有利于黄药捕收。过度氧化则可浮性下降。 捕收剂:在弱酸性介质中,用黄药捕收。机理:电化学吸附机理。黄药首要被氧化成双黄药,黄药中的孤对电子和Fe2+离子的空轨迹结合,经过孤对电子的给予黄药吸附在矿藏表面。 按捺剂:石灰,。 活化剂:石灰按捺用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附; 按捺用硫酸铜活化。 2)磁黄铁矿 Fe1-xS,x:0.1~0.2,其可浮性弱于黄铁矿,用高档黄药捕收,按捺剂同黄铁矿。 二、铜、铅、锌、硫的别离 1、铜、硫别离 办法:取决于矿石性质。主要有下列两种办法。 1)优先浮选:适用于细密块状矿石,在比较粗的磨矿粒度条件下Cu与S能充沛单体解离。 次序:按捺硫先浮铜。2)混合浮选:适用于矿石中Cu与S结合严密,Cu与S的集合体粒度较粗,而单体矿藏粒度较细时,用混合浮选先甩出合格尾矿,再把Cu与S混合精矿再磨脱药,再选别离。 条件:Cu的捕收剂为黄药或黑药,石灰做pH值调整剂及铁矿藏的按捺剂,必要时参加辅佐按捺。活化剂:只要石灰按捺,用硫酸、碳酸钠活化,生成硫酸钙及硫酸氢钙解析Ca在矿藏表面的吸附;合作按捺后用硫酸和硫酸铜活化。 2、铅、锌别离优先浮选法,按捺闪锌矿,捕收方铅矿。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。 3、铜、锌别离优先浮选法,按捺闪锌矿,捕收铜矿藏。别离难度大于2的铅锌别离,应加强对锌的按捺。 捕收剂:初级黄药、高档黄药、黑药。通常在碱性介质中别离。按捺剂:CN-、NaCN、kCN、ZnSO4、Na2OS3、Na2S2O3。 活化剂:硫酸铜。然后用高档黄药捕收。 4、铜、铅别离:一般为铜铅的混合精矿别离,先脱药,再优先浮选。脱药办法:机械法,再磨脱药,拌和洗刷脱药,Na2S脱药,活性炭吸附脱药,加温,焙烧等。 1)按捺铅浮铜:适用于次生铜矿,Cu2+离子溶解较多不易按捺的状况。 按捺铅:诺克斯试剂(K2CrO4+KCrO2)和Na2S合作运用;或氧硫法:1)SO2(或)+淀粉;2),;3)硫代硫酸钠+或硫酸亚铁;4)碳酸钠十硫酸亚铁。 2)按捺铜浮铅:适用于原生铜矿。捕收剂:黄药、黑药,PH值9~9.5,用CaO调整。按捺剂:及其代替按捺剂。或加温脱药按捺铅40~70℃(PH值≤7)。 5、锌、硫别离:选用按捺硫,浮选锌的流程。 捕收剂:黄药,锌必须经硫酸铜活化。

从粗铜渣中提取铜、铅、锑试验研究

2019-01-24 17:45:48

一、前言 韶关冶炼厂利用贵铅炉吹炼反射炉产出的冰铜,产出含铜90%左右粗铜,粗铜渣中含有较高的铜、锑、铅等有价金属,本文所阐述的就是从吹炼后的粗铜渣中回收铜、铅、锑等有价金属的试验研究。 粗铜渣经破碎筛分后,采用两段氧化酸浸生产硫酸铜,浸出渣还原熔炼得铅锑多元合金的工艺来处理,经小试及扩验,均可得到二级品以上的硫酸铜产品和主成份大于80%的铅锑合金。 二、方案选择 贵铅炉吹炼冰铜产出的粗铜渣主要成份如表1所示。 表1  粗铜渣主要成分从表1可知,粗铜渣中有价金属品位较低,采用火法处理比较困难,而用湿法工艺来处理该渣是比较合适的。在湿法工艺中,可根据产品结构不同而有多种方案。据我们研究分析及探索性试验,决定采用氧化酸浸,使铜、砷、钠进液,从液中分离出As、Na,生产硫酸铜产品,浸出渣中的铅、锑经还原熔炼生成铅锑合金。试验工艺流程如图1所示。 三、试验结果及讨论 (一)粗铜渣的酸浸 浸出的目的是将铜尽可能的浸出,铅、锑在渣中进一步富集。图1  试验工艺流程图 在探索试验中,进行了水洗、酸浸,铜的浸出率都很低;在一次氧化酸浸过程中,发现酸度越高,浸出时间越长,铜的浸出率越高;但同时由于浸出液终酸越高,下一步液的中和除杂所用的中和剂量就越大,铜的损失也就越大。 为了使浸出液酸度低而浸出率又高,我们最终采用两段逆流氧化酸浸。两段逆流氧化酸浸的技术条件如下: 一段酸浸:液固比4∶1,浸出温度70~80℃,浸出时间:4h,鼓入空气量46L/min,始酸浓度40g/L。 二段酸浸:液固比4∶1,浸出温度70~80℃,浸出时间:8h,鼓入空气量46L/min,始酸浓度98g/L。 根据表2数据可计算出,两段氧化酸浸铜的浸出率为85.56% 表2  粗铜渣酸浸小试数据一览表注:1.中和时取酸浸液量1000mL,沉铜时取中和后液量1150mL;2.液体浓度以g/L计,固体以百分含量计。 (二)酸浸液的中和 中和的主要目的是降低溶液酸度,同时除去As、Fe等杂质。Cu2+的水解pH0值为3.88(t=70℃),而Fe[3+]的水解pH0值(t=70℃)为0.99,因此中和终点pH值控制在2.5~3.0,将酸浸液加热至70~80℃后向烧杯内壁上方喷射石灰乳,慢慢加入石灰乳中和。 中和除杂时铜的直收率为95.3%(按渣计)。 (三)中和后液的沉铜与沉铜渣的漂洗、溶解 将中和后液加热至50℃,加入Na2CO3沉铜,终点pH值控制在5.5~6.0左右,到终点后继续搅拌10min即可过滤,沉铜过程主要反应为: 2CuSO4+3Na2CO3+2H2O=Cu(OH)2 CuCO3↓+2NaHCO3+2Na2SO4 过滤得到的沉铜渣在70~80℃下用渣中铜量30倍的水漂洗30min,洗后的渣加入铜量的1.8倍浓H2SO4溶解,30倍的水,搅拌溶解20min即可。过程主要反应为:中和后液沉铜及沉铜渣的溶解过程中,铜的直收率为95.69%。 (四)硫酸铜溶液的浓缩、结晶及离心过滤 将溶解沉铜渣得到的硫酸铜溶液加热蒸发浓缩至比重1.38~1.41后冷却结晶,离心过滤即可得到二级品硫酸铜过滤时要加水淋洗确保产品质量。 从粗铜渣浸出至产出硫酸铜产品,铜的总回收率78.02%。 (五)酸浸渣的还原熔炼 从表2可知,酸浸渣中含铅、锑高,必须再回收。我们初步探索了还原熔炼法来回收其中的铅和锑,即将酸浸渣配以焦炭粉、纯碱和铁屑,装在石墨坩锅放入井式电炉进行还原熔炼,过程主要反应为:还原熔炼主要技术条件: 焦炭粉:渣量的10%,纯碱:渣量的10%,铁屑:渣量的2%,温度1150℃,时间:3~4h。 酸浸渣:粗Pb-Sb合金和还原炉渣主要成份如表3所示。还原熔炼铅、锑直收率分别为90.1%和81.3%。 表3  还原熔炼各物料主要成份含量(%)(六)扩大试验 1、粗铜渣提铜 每次浸出物料5000g,试验条件与小试相同,试验数据如表4所示。扩大试验铜的浸出率为88.2%,总回收率达到81.8%,产出的硫酸铜达到二级品以上。 表4  粗铜渣提铜扩大试验数据一览表  注:1.中和时取酸浸液量3000mL,沉铜时取中和后液量3060mL;2.液体浓度以g/L计,固体以百分含量计 2、酸浸渣的还原熔炼 每次取扩大试验的酸浸渣900g来还原熔炼,条件与小试相同,各成份含量见下表5。实验结果:Pb直收率84.2%,Sb直收率77.3%。 表5  酸浸渣还原熔炼扩大试验数据四、主要技术经济指标 (一)主要技术指标(见表6)。 表6  主要技术指标(%)(二)原材料消耗和费用结算 1、每吨硫酸铜原材料消耗(见表7) 表7  每吨硫酸铜原材料消耗2、每吨粗Pb-Sb合金原材料消耗(见表8) 表8  每吨粗Pb-Sb合金原材料消耗五、结论和讨论 小试和扩大试验表明,两段氧化酸浸处理粗铜渣,综合回收其中的铜、铅、锑等有价金属的工艺是可行的,可产出二级品以上的硫酸铜和主成份大于80%的Pb-Sb合金,铜、铅、锑回收率高。 粗铜渣中含铜有0.2%左右,具有很高的回收价值,有待今后进一步考虑其回收问题;另外,酸浸渣还原熔炼后的还原渣含锑高,如何改变渣型,降低渣中锑含量,提高锑的回收率,仍需进一步实验研究。

2017-06-06 17:50:00

锑在地壳中的含量为0.0001%,主要以单质或辉锑矿、方锑矿、锑华和锑赭石的形式存在,目前已知的含锑矿物多达120种。锑质坚而脆,锑钨矿山容易粉碎,有光泽,无延性和展性。锑具有黄锑、灰锑、黑锑三种同素异形体。金属锑呈银白色,性脆,有独特的热缩冷胀性。无定形锑呈灰色,可由卤化锑电解制得。   锑有两种同素异形体:黄色变体仅在零下90℃以下才稳定;金属变体是锑的稳定形式。2070℃时锑蒸汽为单原子分子。   金属锑不是一种活泼性很强的元素,它仅在赤热时与水反应放出氢气,在室温中不会被空气氧化,但能与氟、氯、溴化合;加热时才能与碘和其他百金属化合。锑易溶于热硝酸,形成水合的氧化锑。能与热硫反应,生成硫酸锑。锑在高温时可与氧反应,生成三氧化二锑,为两性氧化物,难溶于水,但溶于酸和碱;可与浓硝酸反应。锑多用作其它合金的组元,可增加其硬度和强度。如蓄电池极板、轴承合金、印刷合金(铅字)、焊料、电缆包皮及枪弹中都含锑。铅锡锑合金可作薄板冲压模具。高纯锑是半导体硅和锗的掺杂元素。锑白(三氧化二锑)是锑的主要用途之一,锑白是搪瓷、油漆的白色颜料和阻燃剂的重要原料。硫化锑(五硫化二锑)是橡胶的红色颜料。生锑(三硫化二锑)用于生产火柴和烟剂。   锑是电和热的不良导体,在常下不易氧化,有抗腐蚀性能。因此,锑在合金中的主要作用是增加硬度,常被称为金属或合金的硬化剂。在金属中加入比例不等的锑后,金属的硬度就会加大,可以用来制造军火。锑及锑化合物首先使用于耐磨合金、印刷铅字合金及军火工业,是重要的战略物资。   锑可用作PET生产中的缩聚催化剂。含锑合金及化合物则用途十分广泛,锑化物可阻燃,所以常应用在各式塑料和防火材料中。含锑、铅的合金耐腐蚀,是生产蓄电池极板、化工管道、电缆包皮的首选材料;锑与锡、铅、铜的合金强度高、极耐磨,是制造轴承、齿轮的好材料,高纯度锑及其它金属的复合物 (如银锑、镓锑)是生产半导体和电热装置的理想材料。锑的化合物锑白是优良的白色颜料,常用在陶瓷、橡胶、油漆、玻璃、纺织及化工产业。   随着科学技术的发展,锑现在已被广泛用于生产各种阻燃剂、搪瓷、玻璃、橡胶、涂料、颜料、陶瓷、塑料、半导体元件、烟花、医药及化工等部门产品。 中国锑的储量占世界的37%,是少数具有定价权的国有资源之一,而上市公司中的辰州矿业产锑居世界第二,约占全球供应的10%,同时占全球供应的10%就天天涨10% 。

铅冶炼工艺对铅精矿的要求

2018-09-20 09:53:10

1、主金属含量不宜过低,通常要求大于40%。含量过低,对整个铅冶炼工艺来讲,单位物料产出的金属铅量减少,从而降低了生产效率。2、杂质铜含量不宜过高,通常要求小于1.5%。铜过高,烧结块中铜含量会相应升高,在鼓风炉还原熔炼过程中,所产生的锍量增加:一则使溶于锍中的主金属铅损失增加,二则易洗刷鼓风炉水套,缩短了水套使用寿命,并易造成冲炮等安全事故。另外,含铜太高,也易造成粗铅和电铅中铜含量超标。3、锌的硫化物和氧化物均有熔点高、粘度大的特点,特别是硫化锌。如含锌过高,则在熔炼时,这些锌的化合物进入熔渣和铅锍,会使它们熔点升高,粘度增大,密度差变小,分离困难。甚至因饱和在铅锍和熔渣之间析出形成横隔膜,严重影响鼓风炉炉况,妨碍熔体分离,故锌含量不宜过高,一般要小于5%。4、砷、锑等杂质含量也有严格的要求,通常要求As+Sb小于1.2%,如过高,则经配料烧结后,在鼓风炉中形成黄渣的量会增加,而且金属铅的流失量会相应增大,更严重的是会造成粗铅、阳极铅含砷、锑过高;此外在电解精炼过程中,使铅溶解速度变慢,并且阳极泥难以洗刷干净。这样既影响电流效率,又影响生产效率。 另外,MgO、Al2O3等杂质会影响鼓风炉渣型,故一般要求MgO<2%,Al2O3<4%。

704、717型树脂从含金硫精矿的氰化矿浆中吸附金的试验

2019-03-05 10:21:23

717型树脂是我国出产的乙烯型强碱性氯型阴离子交流树脂,曾试用于从含金硫精矿的化矿浆中吸附金。实验用精矿的金粒度一般为5~45μm,与黄铁矿关系密切。因为金粒微细,矿浆被席矿至100%-0.038mm(400目)。化浸出后矿浆固液难以别离,故用图1所示的流程向拌和化的矿浆(液固比为4∶1)中按20kg∕t的量参加717型树脂,逆流吸附6h,树脂含金1.30mg∕g,吸附同收率98.52%。载金树脂在0.2mol∕LNaOH与2mol/LNaCNS解吸液中,运用铅板阴板和石墨阳极,在槽电压2.6~3.2V,面积电流171A/m2条件下电解解吸20h,解吸后树脂含金0.008mg∕g,金的解吸率为99.40%。精矿含金31.33g∕t.过程中金的总回收率93.25%。图1  717树脂从精矿化矿浆中吸附金的流程 我国,还曾进行过国产704乙烯型弱碱性阴离子交流树脂从含金硫精矿的化矿浆中吸附金的实验。在矿浆磨矿粒度97.5%-0.074mm(200目),矿浆浓度33%,含0.08%~0.1%NaCN、0.045%CaO,pH9.5条件下化吸附6h的扩展实验室实验中,金的溶解率97.74%,吸附回收率97.32%。每克干树脂吸附金属量(mg)为:金24.17,银0.815,铜2.07,铁6.10,锌0.825,镍0.305。

低品位含金硫精矿生物预氧化提金技术研究

2019-02-20 10:04:42

一、前语 跟着金矿资源的不断挖掘,易处理矿石日益削减;现在难处理金矿的金占国际黄金储量的60%。所谓“难处理”是指用传统化浸出不能有用提取矿石中的金。形成金矿难浸的要素有矿藏学、化学和电化学三方面的原因。 咱们研讨的目标为青海锡铁山含金硫精矿,该样品的首要矿藏成分为黄铁矿(约95%)和少数硅酸盐物质,其间黄铁矿(FeS2)是载金矿藏,这种含金的包裹体非常细微,常称为微细包裹体或亚微细包裹体。直接化浸出时浸出剂的水溶物无法直接与金粒触摸。因而需要对该类含金硫精矿进行生物预氧化处理。 生物预氧化难处理金矿技能在20世纪90年代得到了飞速展开,细菌氧化工艺日益老练,其工业使用也得到了敏捷遍及。生物预氧化难处理金矿的菌群数量以及细菌对硫化矿的氧化才干都受环境影响。影响菌群数量的环境要素有温度、营养物质、酸度、培养基(动力)以及溶解金属离子。根据温度规划,对生物预氧化进程起效果的微生物首要能够分为以下3类:(1)嗜中温细菌。最佳成长温度为30~45℃,包含氧化亚铁硫杆菌、氧化硫硫杆菌、氧化铁微螺菌。(2)中等嗜热细菌。最佳成长温度为45~55℃,如硫化芽孢磺杆菌。(3)高温嗜热菌。最佳成长温度为60~85℃,包含叶硫球菌、叶硫球古细菌。现在生物氧化工艺首要有:难处理金精矿拌和浸出,难处理原矿拌和浸出、原矿堆浸三种办法。金精矿拌和浸金收回率最高,浸出周期短,少于4~6天,耐酸罐和混合体系出资花费较少,首要操作费用用于精矿生成、拌和和充气。典型工艺有BIOX工艺和Bac Tech工艺。但跟着资源的日益贫化,矿石档次下降,在用其他办法从经济上不能有用地提取时,原矿堆浸越来越引起人们留意,典型工艺流程是:原矿破碎、筑堆、成团或不成团、接种细菌。典形工艺有MINBAC工艺和Geobi-Otics工艺。2008年长春黄金研讨院在难浸金精矿生物氧化提金研讨方面获得了新的打破,使金的收回率到达了95%左右,细菌的最高耐砷才干到达22g/L。生物预氧化技能的几个特色:(1)工业规划越来大。从1986年的10t小厂,现已展开到日处理浮选精矿750t的规划,根据现在把握的资料,往后国际各地还将连续建成更大规划的细菌氧化厂。(2)细菌工作温度越来越高。从曾经的35~40℃现已进步到45~50℃,而且正在试验工作温度达60℃的细菌,从中高温菌向极点高温菌展开。(3)氧化时刻越来越短。从曾经的6~10天现已缩短到5天,下降了出产本钱,进步了矿山的经济效益。(4)习惯矿种越来越杂乱。现已从简略的硫化物,展开到含砷、含硫、含碳等低档次杂乱难处理金矿石。(5)工程技能、工程设备及工程材料日益先进。比方拌和体系、供气体系、冷却体系、操控体系、酸平衡体系等都有较大的进步。(6)跟着高温菌种的选用,越来越多的金属可用生物冶金办法提取,如铜、金、银、铀、镍、钴、锌等等,而且将获得很大的经济效益 二、试验办法 把不同性质的含金硫精矿样品分红有代表性的两部分,一部分保存,另一部分用湿筛法分红不同粒级,分析贵金属和有价金属元素含量。 生物预氧化试验是在2.5L拌和罐中进行的,拌和速度为170r/min,温度为33℃。开端的细菌培养液每毫升含菌种106单位。定时测定浸出液的pH值、氧化复原电位及Fe2+和总铁的量。细菌氧化渣在低温下枯燥后,称重,分析其贵金属的含量。氧化的固体用碱性液中和到pH值为10左右,并稀释化液,以便提取金,根据化验核核算得到金的提取率。 三、成果与评论 (一)pH值与矿石氧化率的联系 细菌预氧化初始pH值对氧化率有必定的影响,屡次试验发现,当初始pH值调到1.8左右时,对后续的氧化最有利。 (二)细菌接种量与矿石氧化率的联系(见图1)添加细菌接种量在必定程度上可使细菌提早进入对数成长期,缩短矿石氧化时刻。因而,考察接种量对矿石氧化率的影响,以断定恰当的细菌接种量。 从试验成果能够看出,当接种量小于20%时,添加接种量可有用缩短细菌成长阻滞期时刻,进步终究矿石氧化速率;当接种量大于20%时,添加接种量对缩短细菌成长时刻的效果显着下降。因而,在试验或出产进程应经过核算确保细菌接种量大于20%。 (三)矿浆浓度与矿石氧化率的联系(图2) 众所周知,矿浆浓度能烈影响矿浆中的气体传输速率,添加矿浆浓度将添加溶液黏度,减小气体传输速率,一起拌和进程中剪切力也添加;以上种种都对细菌的成长和繁衍极为晦气;但下降矿浆浓度将减小出产才干,添加能耗等。因而,有必要断定恰当的矿浆浓度。 从试验成果能够看出,较低的矿浆浓度有利于细菌成长和矿石氧化,但跟着矿浆浓度的添加,矿石氧化速率逐渐下降,当矿浆浓度高于15%时,影响极为显着。试验进程中也发现,20%矿浆浓度的浸出前期,溶液中细菌数量显着小于低矿浆浓度的细菌数量。供鉴国内外难处理金矿预氧化经历,主张在出产进程中操控矿浆浓度在10%~15%之间。(四)矿石粒度与矿石氧化率的联系(见图3)减小矿石粒度能添加矿石表面积,有利于细菌在矿藏表面的吸附与繁衍,加速矿石的氧化速率。故此展开矿石粒度对细菌氧化速度的影响性试验,以断定磨矿时刻和磨矿粒度。 从试验成果看,矿石粒度对细菌氧化功率影响显着,但磨矿过细测导致磨矿能耗大、本钱高。针对本试验所用样品性质而言,主张磨矿5min左右,即操控矿石粒度-0.047mm(-300目)不低于80%。 (五)氧化时刻与矿石氧化率的联系 氧化时刻与矿石氧化率有亲近的联系,矿石从开端氧化到逐渐氧化彻底,其间时刻是关建要素。考察氧化时刻与矿石氧化率的联系,其意图在于为出产实贵供给一个简略的断定根据,断定何时能到达预订氧化率标准。不同氧化时刻矿石的氧化率见表1。从试验成果看,氧化时刻与矿石氧化率有着极为亲近的联系。在矿藏氧化前期,矿藏表面积大、可供细菌吸附的区域多、细菌敏捷繁衍、矿石氧化速度逐渐加速;跟着矿石的逐渐氧化,矿藏颗粒不断缩小、表面积削减,矿石氧化速度逐渐下降。 (六)矿石氧化率与金浸出率的联系(见图4)因为本试验矿样为黄铁矿包裹型难处理金矿;因而,黄铁矿的氧化率对金的浸出率有显着的影响。黄铁矿氧化后,其包裹的金才干彻底褐露出来,天然金才干与溶液中的离子络合进入溶液。为削减氧化时刻、节省出产本钱,一起确保矿石中的金能较好的收回,考察矿石氧化率与金浸出率的联系就非常必要。这儿只列出试验条件,详细试验过程拜见相关文献。 试验成果表明矿石氧化率和金浸出率线性相关,化时刻对金浸出率影响小;进一步证明该矿石为黄铁矿包裹型难处理金矿。此类矿石在外层包裹的黄铁矿被氧化、褐露天然金后,化浸出是非常简单的。因为氧化后的矿石粒度细,离子分散简单;化时刻对浸出率的影响较小。在确保足够的离子和溶解氧的情况下,金浸出率只与矿石氧化率相关。 四、定论 试验成果表明,生物预氧化处理该难浸金精矿的适合条件为:pH=2.0、接种量10%(体积分数)、磨矿细度-0.047mm(-300目)的占80%、通气量0.1L/(L·min),在此条件下,细菌效果21天后,Fe的氧化率可到达90%以上。 五、展望 生物预氧化提金法是一种有潜力的工业技能。关键是开发耐热功能杰出的菌种,在难处理金精矿方面获得较高的经济效益,并下降工程实践的难度。我国含砷难处理金精矿资源丰富,但因为高效的提金技能产业化刚处于起步阶段,故许多已开始探明储量的难处理金矿不能彻底开发。为此,在争夺引入国外先进技能的一起,应尽快将我国选冶技能方面已获得打破性发展的科研成果大力面向产业化。

意大利曼西阿诺锑、铅、锌、汞矿石的浮选

2019-02-12 10:08:06

曼西阿诺浮选厂所用矿石主要为辉锑矿,一起存在方铅矿、闪锌矿、辰砂、黄铁矿、白铁矿和砷矿藏,脉石矿藏主要为方解石,所用浮选流程见下图,其浮选条件及选锑目标列于下表。   表  意大利曼西阿诺选厂的浮选条件及生产目标  项目异丁基黄药二硫化磷酸盐甲基异丁基醇水玻璃NaOH浮选剂用量g·t-112530095080600160生产目标/%原矿含 Sb2~4、Pb 0.15、Zn 0.25、Hg 0.04、As 0.95、Fe 3~8 精矿含Sb 53、Pb 1.5、Zn 3~5、Hg 0.3、As 0.8 回收率Sb 84.6、Pb 43.3、Zn 60、Hg 31.3、As 3.7、Fe 5.3    图  意大利曼西阿诺选矿厂流程图

某铜铅多金属矿浮-重联合选矿工

2019-02-20 10:04:42

西藏甲马区域某铜铅多金属硫化矿为低铅硫化铜矿,矿藏天然类型杂乱,矿藏结构结构多样,意图矿藏共生关系亲近,彼此包裹现象严峻,尴尬处理矿。结合出产实践,比照全浮选与浮-重联合工艺的铜铅别离效果,归纳考虑决议选用浮选-重选流程别离铜铅,投入出产后,效果满足。 一、矿石性质 (一)矿藏组成 该铜铅多金属硫化矿的金属矿藏首要为黄铜矿,含量为9%,辉铜矿和斑铜矿的含量总计1%,方铅矿含量为2%,闪锌矿含量为1%,黄铁矿含量为4%,其他毒砂、赤铁矿均为微量。首要脉石矿藏为柘榴石、透辉石、透闪石、方解石、硅灰石等。 (二)矿石的特性 岩矿判定标明,黄铜矿、方铅矿、闪锌矿为首要意图矿藏,均出现它形粒状,或共生在一起,或独自散布在脉石矿藏中,彼此间有告知包裹现象。这些包裹粒度绝大多数在0.043mm以下,在磨矿进程中很难解离。辉铜矿呈细微晶粒在粗粒黄铁矿晶体内,或与黄铜矿、方铅矿、闪锌矿共生,或沿黄铜矿裂隙告知呈显微细脉。黄铁矿有两种,一种粒度较小,一般在0.2mm以下,呈自形~半自形粒状,以立方体为主,一种粒度较大一般在0.5~6mm呈自形~半自形~它形粒状,以立方体为主,多见内部环带,环带间可见较多的辉铜矿及少数黄铜矿、方铅矿、闪锌矿包体,也可见其一部分和意图矿藏共生,散布严格地受内部环带的操控,是黄铁矿结晶后顺裂隙和环带结构空隙贯入的。 (三)化学组成 原矿的化学分析及矿石中铜的物相分析别离见表1和表2。 表1  原矿化学成分/%表2  矿石中铜的化学物相分析成果二、选矿工艺流程比照 (一)全浮选流程 矿石中硫化矿含量不高,能供收回的矿藏有铜、铅、银,铜铅共生亲近,且彼此包裹。选用全混合浮选能够较早的在较粗的磨矿细度下尽早的抛尾,具有金属收回率高、药剂用量少、工艺简略的长处。混合浮选流程对矿石的类型改变适应性较强,经历老练,能够学习。通过对不同磨矿细度,不同药剂、药剂用量实验,断定最佳流程如图1所示。图1  浮选铜铅别离流程 在此流程中选用低剂配方,硅酸钠+羧甲基纤维素+TE28来替代硫酸锌+按捺锌浮铜,削减污染,报价低廉。用Z-200做捕收剂,尽管对进步铜精矿档次有利,可是报价高,选矿目标进步起伏不大(用乙黄药时铜档次29.94%,Z-200时铜档次30.99%),故依然选用乙黄药做捕收剂。铜铅混合精矿别离前的脱药,活性炭的效果最佳,可是其用量很灵敏,成果标明,活性炭用量500g/t左右时,铜精矿的档次可达27%以上,铜精矿中铅档次可降至4%以下,详细目标如表3所示。 表3  浮选别离铜铅实验成果1)档次为g/t。 从表3能够看出,尾矿的产率为87.05%,其间铜、铅、银的档次别离为0.19%,0.14%,10.98g/t,全浮选抛尾量大,比较成功。铜、铅精矿的档次别离从原矿的2.88%,1.05%进步到27.17%,9.26%,进步起伏大,浮选进程较成功。铜精矿的含铅量比较高,原因或许是矿藏颗粒包裹体的粒度太小,解离难度大。 (二)浮-重联合流程 考虑到铜、铅矿藏密度相差较大,具有重选的或许。在全浮选-部分混合预精选后,对精三的铜铅精矿进行重选别离,其间铜铅精矿重选部分的流程见图2,浮选部分同图1。图2 铜铅精矿重浮别离流程 在浮-重联合选别流程中,再次比照了不同磨矿细度下的实验成果,其间磨矿细度-74μm占75%和60%的各项目标如表4所示。 表4  浮重联合流程别离铜铅成果1)档次为g/t。 从表4能够看出,通过浮-重联合作业,铜、铅档次均到达要求,铜精矿中铅含量进一步下降,别离效果显着。-74μm60%的磨矿细度下,目标和75%细度下的铜精矿目标不同不大,从实践考虑,选用-74μm60%磨矿细度。 三、定论 选用浮-重联合选别工艺,处理含铜2.88%、铅1.02%、锌0.29%、硫3.60%、银49g/t的铜铅多金属硫化矿,铅精矿产率为0.43%,档次61.12%,银档次726.88g/t,互含铜档次3.83%。铜精矿的产率为12.79%,档次21.05%,银档次286.30g/t,互含铅4.59%,铜的收回率可达93.40%,银的总收回率为81.11%。相对于全浮选流程,浮-重联合流程具有工艺简略、出资低、设备少、出产成本低、环保、处理才能大等长处。使用于实践出产,各项目标安稳,效益显着。 参考文献 [1] 王淀佐.浮选剂效果原理及使用[M].京:冶金工业出版社,1982:201-222. [2] 胡为柏.浮选[M].北京:冶金工业出版社,1989:301-314. 作者单位 西北有色地质勘查局(刘立军、卫亚儒) 西安建筑科技大学(谢建宏)

一种从铅阳极泥中回收银、金、锑、铜、铅的方法

2018-11-29 16:45:49

一种从铅阳极泥中回收银、金、锑、铜、铅的方法,其特征依次按如下步骤进行:1.用液固比为3∶1~6∶1,3N~5.5N的盐酸在60~90℃下浸出1~2h,除去阳极泥中的铜、锑、经水解回收锑,用铁屑置换出铜;2.滤渣中加入渣重3~10%的氯酸钠,用液固比为3∶1~5∶1,0.3N~1N的盐酸和渣重2~12%的氯化钠在60~90℃下浸出1~3h后过滤,滤液用草酸或亚硫酸铁或二氧化硫还原出海绵金;3.将氯酸钠浸出渣用液固比为3∶1~6∶1,3N~5N的氨水在20~60℃下分二次浸出1~3h后过滤,滤液加过量1.2~2倍的水合联氨还原得出海绵银,滤渣为含铅56~70%的二氯化铅;4.将海绵银溶于试剂级硝酸后经脱氯剂如活性炭或活性铝吸附过滤,再经蒸发、结晶、过滤、烘干得分析纯级硝酸银。

一种从铅阳极泥中回收银、金、锑、铜、铅的方法!

2019-03-14 10:38:21

一种从铅阳极泥中收回银、金、锑、铜、铅的办法,其特征顺次按如下过程进行:1.用液固比为3∶1~6∶1,3N~5.5N的在60~90℃下浸出1~2h,除掉阳极泥中的铜、锑、经水解收回锑,用铁屑置换出铜;2.滤渣中参加渣重3~10%的,用液固比为3∶1~5∶1,0.3N~1N的和渣重2~12%的氯化钠在60~90℃下浸出1~3h后过滤,滤液用草酸或铁或二氧化硫复原出海绵金;3.将浸出渣用液固比为3∶1~6∶1,3N~5N的在20~60℃下分二次浸出1~3h后过滤,滤液加过量1.2~2倍的复原得出海绵银,滤渣为含铅56~70%的二氯化铅;4.将海绵银溶于试剂级硝酸后经脱氯剂如活性炭或活性铝吸附过滤,再经蒸腾、结晶、过滤、烘干得分析纯级。