您所在的位置: 上海有色 > 有色金属产品库 > 由锌焙砂

由锌焙砂

抱歉!您想要的信息未找到。

由锌焙砂专区

更多
抱歉!您想要的信息未找到。

由锌焙砂百科

更多

锌焙砂在稀酸中的溶解

2019-02-21 15:27:24

氧化物的酸、碱浸出许多遵守缩短中心模型,一个典型的实例是锌焙砂在稀酸中的溶解。它依据每种参加溶解进程的化学物质的离子扩散系数及离子搬迁率,使用方程式(1)和式(2)进行核算。核算假定溶解速率由传质操控,因此所用的核算进程只能用于不触及化学反响的状况。    (1)    (2) 求解方程(1)和式(2)需求几个边界条件,它们规则了模型中各参数的值,并将各物质的通量经过浸出反响的计量联系相关起来。 关于硫酸浸出体系,核算所用的数据包含H+,HSO4-,SO42-及Zn2+的离子扩散系数和离子搬迁率,下列平衡的平衡常数与活度系数稀酸浸出氧化锌的数学模型核算中所用的传质数据列于下表。物质等效离子电导 Λi0∕(Ω-1·cm2·equ-1)离子扩散系数 D∕(cm2·s-1)离子搬迁率 u∕(cm2·V-1·s-1)H+348.99.3×10-53.6×10-3Zn2+53.87.2×10-65.6×10-4SO42-79.01.0×10-5-8.2×10-4HSO4-100.002.7×10-5-1.6×10-3 几个边界条件为 在固液界面即r=rt时,                  Ci=Cis          (3) 因为浸出进程最慢的过程是经过边界层的传质,能够假定在界面上到达化学平衡,然后得到下列边界条件     (4)     (5)     (6) 式中, 、 、 别离表明反响(a)、(b)(c)的平衡常数;Qa、Qb、Qc别离为用浓度表明时反响(a)、(b)、(c)的平衡常数;γi是物质i的活度系数。 在溶液体相即r=∞,                E=0    (7) Ci=Cib   (8) 体相浓度用质量平衡和体相的化学平衡求算    (9)    (10)    (11)    (12)    (13) 式中,[H2SO4]与[ZnSO4]是t时刻硫酸和硫酸锌的净浓度。 计量联系            (14) 硫酸根通量                        (15) 数学模型由对每种物质组成的写出的方程式(2),方程式(1)和上面导出的边界条件组成。一旦知道了各物质的通量,就可核算ZnO的溶解速率。 假如半径rt的球形粒子含有Nmol的ZnO,则    (16) 式中,Mw为ZnO的分子量。 因为稳态下边界层内没有物质堆集,一切溶解的锌都必须传递到溶液体相中去。因此,反响速率能够与锌和酸经过边界层传质的速率相关如下    (17) 式中JZn-流离表面的锌的净通量;     JH-流向表面的酸的净通量。 由式(16)和式(17)得出    (18) 方程式(18)用有穷区间法数值积分得到rt对时刻的函数。关于单尺度粒子,rt与反响分数α的联系为    (19) 即为式(20)的缩短粒子模型,r0为固体粒子的初始半径。    (20) 粒子尺度散布的景象可作相似处理,m个初始半径r0k的单尺度分数每个组成总质量的分数wk。浸出的程度分粒级核算    (21) 总的浸出率由下式断定    (22) 为了查验模型及核算的正确性,需求研讨硫化锌精矿的焙砂在硫酸、高氯酸、硝酸和等4种酸中溶解的速率。选定的拌和条件使一切的固体粒子都悬浮且溶解速率与拌和速率无关。在高氯酸及硝酸溶液中试验曲线与模型核算得到的猜测曲线符合杰出,而在硫酸溶液中在浸出率80%曾经符合尚可,这以后的溶解曲线符合不抱负的原因是因为固体粒子的溶解并非如假定的那样均匀并始终保持球形,实际上发现部分浸出的焙砂粒子有大而深的孔。简化的模型没有考虑锌的氯合物的构成合氯离子的吸附,因此不能用来猜测浸出焙砂的溶解速率。而用新近树立的未考虑电搬迁对传质的奉献的模型即便关于0.1mol∕L高氯酸浸出的动力学也严峻违背,反映了电搬迁在传质中不行忽视的效果。

铝青铜的性能用途

2019-05-28 09:05:47

铝青铜可热处理强化,其强度比锡青铜高,抗高温氧化性也较好;有较高的强度杰出的耐磨性用于强度比较高的螺杆、螺帽、铜套、密封环等,和耐磨的零部件,最杰出的特色便是其杰出的耐磨性。为含有铁、锰元素的铝青铜有高的强度和耐磨性,经淬火、回火后可进步硬度,有较好的高温耐蚀性和抗氧化性在大气、淡水和海水中抗蚀性很好,可切削性尚可,可焊接不易纤焊,热态下压力制作杰出。由于含铝量的差异,使得特种铝青铜有着比合金钢更加高的强度和挨近合金钢的硬度,被广泛用于力结构件、传动件等。机械功能铝青铜强度高,耐磨性和耐蚀性好具有杰出的切削磨削功能,可焊接,易热制作成型。应用范围首要用于制作支架、齿轮、轴套、衬套、接收嘴、法兰盘、摇臂、导阀、泵杆、凸轮、固定螺母等高强度和耐磨的结构零件;用于铸造高载荷的齿轮、轴套、船用螺旋桨等。铜带厚度0.052.0铜板厚度0.5120铜管壁厚0.530直径4150铜排最小3*12最大12*170铜棒Φ1.0312特殊规格六角铜棒S880空心黄铜管S2050空心六角铜棒S2050QAl94铝青铜板,耐蚀铝青铜板产品参数产品状况M(软)、Y2(1/2硬)、Y(硬)、T(特硬)等各种状况;可向客户供给棒、板、带、箔规格;可到达SGS绿色环保认证标准,契合RHOS指令;可为客户代工分条、裁板、整平事务欢迎广大客户订货; lvqingtongxingneng红铜年代红铜由硫化物提炼得来

由含钒铀矿提钒工艺实例

2019-02-19 12:00:26

美国科罗拉多的钒铀矿是美国钒的首要来历。前期以出产钒为主,铀是副产品。1943年后调整为以出产铀为主。矿石中的钒除钒钾铀矿(K2O·2UO3·V2O5·3H2O)外,还有钒云母[3(AIV)2O3·K2O·18SiO2·2H2O]及含钙钒酸盐。含U3O8约0.24%~1.23%,V2O5约0.07%~1.16%。矿石可不经焙烧,直接用碱液(Na2CO3、NaHCO3)浸取,可是浸取率低,原因在于钒云母中的钒不溶于碱溶液。为此需在氧化气氛下850℃加碱焙烧,然后再在高压釜中120℃,0.21MPa压力下浸取4~6h。钒、铀的浸取率别离可到达70%~80%、90%~95%。 美国阿特拉斯矿藏公司,选用新工艺处理米维达铀矿,工艺流程如图1所示。图1  阿特拉斯矿藏公司莫亚比铀厂工艺流程 矿石破碎至19mm,依据质料的不同,分酸浸、碱浸两条路线处理。 一、碱浸 参加Na2CO3 50~60g/L,溶液进湿球磨、水力旋流器分级,然后进稠密机。溢流回来,加碱,调理至Na2CO3 50~60g/L,再用于球磨。底流分两组,每组串联7个高压釜浸取,120℃、0.35MPa、6h。排出料浆与进料进行热交换,头两个高压釜用直接蒸汽加热。浸取后的矿浆用鼓式过滤机过滤,残渣送尾矿池。滤液进入4个串联的拌和槽,通蒸汽加热,增加NaOH,生成Na2U2O7沉积,经浓缩过滤,得铀产品。滤液通CO2气后,作为浸取液,送往提钒车间。 二、酸浸 将矿石与水在湿球磨及分级机中细磨,液固比5/1,进浮选槽回收得铜精矿。浮选后进入一段浸取槽。浸取后进入水力旋流器分级。溢流经弄清、过滤得清液。底流进2级浸取槽,用蒸汽加热,参加H2SO4,逗留21h。排料经耙式分级机,溢流用作一级浸取用液;底流过滤、洗刷后,残渣送尾矿池。1、2级的清液兼并送萃取工序。 三、萃取 萃取液加酸,调pH值至1.0~1.2。送4级混合弄清槽用叔胺先萃取铀。萃取有机相为: 成分     1号柴油     叔胺     异癸醇 %         92.5        5        2.5 萃取后有机相用碳酸钠碱液反萃得铀产品。萃取铀后的萃余水相,参加金属铁粉,使溶液的电动势降至150mV以下,使铁离子悉数还原为二价,部分钒也被还原为四价,以便进步钒的萃取率。加调停pH=2,在5个混合弄清槽中逆流萃取。有机相为 成分     1号柴油     二-2-乙基-乙基磷酸     异癸醇 %          91                 6                  3 萃钒后的萃余液排入尾矿池。含钒有机相用15%H2O4反萃。反萃液送沉积槽,通蒸汽加热,参加NH4Cl、NH4OH沉钒得钒酸铵。最终将钒酸铵枯燥、熔化成薄片出售。

由钨精矿直接制取碳化钨

2019-03-05 12:01:05

首要分为高温熔体萃取和气体喷入碳化两阶段。 一、高温熔体萃取 将钨精矿(黑钨精矿或白钨精矿与黑钨精矿的混合物)与Na2SiO3、NaCl混合,在1050~1100℃下熔融,并发作以下反响:       所得Na2WO4·8NaCl相与硅酸盐相不互溶,故按密度分层,基层为氯化物-钨酸盐相,上层为硅酸盐相。将两相用倾析法别离后,一般98%~99%的WO3及少数铁锰杂质进入钨酸盐,其典型条件为: 配料:黑钨精矿∶NaCl∶Na2SiO3=33∶47∶20,当以白钨为质料时,一般应加Al2O3和NaF作熔剂,但将白钨与黑钨接1∶3~3∶1份额参加也可防止加熔剂。 温度和保温时刻:1050~1100℃,2h。 氯化物-钨酸盐相成:25%~30% WO3,约0.24% FeO,约0.3% MnO。 硅酸盐相成分:约0.5% WO3,约36%(FeO+MnO)。 二、气体喷入碳化 将氯化物-钨酸盐相补加NaCl调整份额后,在1050~1090℃,通入天然气发作如下反响:得WC,WC先后用10%HCl和3%NaOH洗去杂质。 典型条件为:氯化物-钨酸盐相成分:含25%~30%WO3(即Na2WO4为31.7%~38%)。 反响温度:1050~1070℃。 CH4中碳利用率:2.2%左右(半工业规划数据,下同)。 WO3进入WC的回收率:90%左右。 WC粉总成本:比传统办法少30%左右。 上述碳化产品经磨细后,经65℃下用6mol∕L的浸出3次,以除掉杂质,则所得产品的成分大致为:总碳5.99%~6.14%;游离碳0.06%~008%;S:0.003%~0.014%;O:0.53%~0.55%,Al:0.001%~0.005%;Ca:0.005%~0.01%;Cr:0.05%~0.3%:Cu:0.007%~0.01%;Fe:0.001%~0.05%;Mg:0.001%~0.01%;Mo:0.01%~0.1%;Si:0.001%~0.01%;Ni:0.03%~0.1%,其粒度为1~20μm占85%~90%。

选矿过程由哪些基本作业组成?各有什么目的?

2018-12-12 09:40:07

选矿过程包括三个基本作业:⑴准备作业,包括破碎筛分、磨矿分级,目的是使有用矿物单体解离和满足选别粒度要求;⑵选别作业,目的是将有用矿物与脉石分离,得出产品;⑶脱水作业,目的是脱去产品中的大量水分,以便存放、运输和冶炼。

钨铜使用注意事项

2019-05-27 10:11:36

钨铜运用留意事项; 开封时请承认产品没有短缺、裂缝或其他异常情况。 钨铜比重比钢铁产品大。运用时请充沛留意,防止产品坠落砸伤手或脚。 车床整形制作、磨床制作后的产品外观不相同,属正常幻想。1.切削制作钨铜合金在制造尖角薄壁时可能会因为碰击或过大的制作负荷力而发作短缺。钨铜合金产品在进行通孔钻削时请留意在行将通孔时进给负荷力,防止发作制作短缺。钨铜合金无磁性,精选公司烦请能够客户在作业之前承认产品已固定结实。2.放电制作、线切割制作钨铜产品放电以及线切割速度相对缓慢,属正常现象。钨铜合金归于金属粉末结晶,电镀前处理请防止强酸、强碱性清洁,避免表面金属颗粒掉落影响电镀作用。

先进技术让铝土矿由“贫”变“富”

2019-01-14 11:15:16

高品位铝土矿少、中低品位铝土矿多是制约我国铝工业健康持续发展的一大瓶颈。有没有一种“妙方”让中低品位铝土矿由“贫”变“富”,从而被成功地利用起来呢?中国地质科学院矿产综合利用研究所经过多年的技术攻关,终于把这一梦想变成了现实。    该所在组织实施中低品位矿石利用选矿工艺技术研究项目过程中,以重庆市南川、武隆地区中低品位铝土矿为研究对象,针对这类难利用矿石的性质,进行了工艺矿物学研究和综合利用工艺技术研究。通过试验研究,中国地质科学院矿产综合利用研究所开发出适合该矿石特点的综合利用工艺技术,为这类低品位铝土矿的开发利用提供了技术支撑。    他们通过进行多流程、多方案的筛选试验,采用选择性磨矿-粗细粒分级-正浮选工艺流程,使技术指标达到较佳水平。小型闭路试验获得精矿铝硅比为8.23、回收率达91.42%的技术指标。    该项目推荐选择性磨矿-粗细粒分级-正浮选工艺为适宜于重庆地区中低品位铝土矿选矿的工艺技术方案。该工艺实现了粗粒富集合体的预先回收,通过再磨后的分级工艺,使中、细粒目的矿物充分解离,利用正浮选工艺加强回收细粒级产品,保证了精矿产品的回收率。    据该所课题组技术人员介绍,该技术易于实施,具有设备投资省、流程结构简单、选矿成本低廉、环保经济的特点,可在同类低品位铝土矿矿石的开发利用中推广应用。

由纯钨酸钠溶液转型制备纯钨酸铵溶液

2019-03-05 09:04:34

一、有机溶剂萃取法转型 (一)基本原理 1、莘取剂。钨萃取工艺中,常用的萃取剂主要为有机胺和季铵盐,在有机胺中又分为伯胺、仲胺和叔胺萃取剂。 在胺类萃取系统中,有机相一般由胺、相调节剂和稀释剂组成。作为相调节剂的有醇类、酮类和磷酸三丁酯(TBP),但大都用醇类,作为稀释剂的多用火油。上述三种溶剂的份额视萃取条件而定。某些萃取系统萃钨的功能见表1。 表1  某些萃取剂萃钨的功能注:N235-三烷基胺;N263-季胺盐。 在用有机胺时,先用无机酸(常用H2SO4)与有机相效果,使胺生成胺盐,例如用2~3mol∕L H2SO4效果,则:用H2SO4≥5mol∕L效果时,则:2、萃钨进程。先用无机酸(如H2SO4)将Na2WO4溶液酸化至pH=2.5~3.0,钨以(HW6O21)5-、(H2W12O40)6-、(W12O39)6-等存在。当这些溶液与酸化后的叔胺触摸时,发作阴离子交流萃取反响。 关于叔胺萃钨(Ⅵ)的反响,在不同文献报导中有所不同,即萃合物中萃取剂与钨的摩尔比动摇于1∶3~1∶2之间。因而,有的作者提出了叔胺萃钨的通式,即在Na2WO4溶液pH=1~3条件下,用体积比为:% Alamine336∶癸醇∶火油为7∶7∶86的有机相萃钨(Ⅵ)的通式为:依据Kim等的数据,在此pH值范围内,通式中钨的阴离子为(W12O40H2)6-、(W6O21H)5-(低钨浓度下)和(W12O40)8-。 当Na2WO4溶液中存在着硅、磷、砷和钼时,在溶液pH=2.5~3.0的条件下,它们均与钨生成杂多酸阴离子被叔胺萃取,这样,不只玷污终究钨产品,并且还给萃取作业带来困难。例如杂多酸根(SiW12O40)4-、(PW12O40)3-、(AsW12O40)3-与叔胺生成的萃合物是密度大于1g∕cm3的黏性物质,当沉降到萃取器底部时会阻塞溢流口。因而,当有这些杂质时,先向料液中参加F-离子(以氟盐参加),以生成不被萃取的H2SiF6、HPF6等。 3、反萃进程。为了直接获得(NH4)2WO4溶液,工业上用(或含部分钨酸铵)反萃钨。关于不同的有机相萃合物组成,其反萃的反响别离如下:可见,虽然有机相中萃合物的组成不同,但都是1mol钨耗费2mol氮。所用的浓度一般为3~4mol∕L NH4OH,反萃终了的平衡水相应保持在pH=8.5左右。 (二)工业实践 用叔胺萃钨的准则流程参见图1。图1  从粗Na2WO4溶液制取钨化合物准则流程图 叔胺萃钨工艺中各阶段的条件及目标见表2。 表2  叔胺萃钨工艺中各阶段的技能条件及目标阶段称号技能条件目标各物料组成萃取比较(o∕a)=1,混合2~3min,温度25~40℃,3~5级逆流钨萃取率大于99%,萃余液中低于0.1g∕L WO3①有机相φ∕%:10叔胺+10仲辛醇+80火油,酸度(H2SO4)0.1~0.2mol∕L; ②Na2WO4料液:(WO3)90~100g∕L,pH=2.5~3 ③萃取洗剂和反洗剂为纯水; ④酸化剂为(H2SO4)0.1~0.2mol∕L ⑤反萃剂为(NH4OH)3~4mol∕L萃洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中WO3含量低于0.5g∕L反萃取比较(o∕a)=3(未计水相回流),混合10min以上,温度25~40℃,1级箱式回流反萃取率大于99%,反萃液中250~300g∕L WO3反洗比较(o∕a)=4~5,混合2~3min,温度25~40℃,3~5级逆流洗出液中低于0.5g∕L WO3酸化比较(o∕a)=5,混合2~3min,温度25~40℃,2~3级逆流    纳尔契斯克湿法冶金厂用萃取法处理白钨精矿苏镇压煮液的工艺条件、设备及成果如下。 工艺条件: 有机相φ∕%;20叔胺,20异辛醇,60火油; 料液组成/(g·L-1);(WO3)45~55;(Mo)0.03~0.05;(SiO2)0.03~0.06;(F-)0.1;(NaCl)50~60。 设备。萃取和有机相的洗刷在带有分配器的脉冲填料塔中进行,反萃取在混合弄清器中进行。钛材脉冲塔直径1.6m,填料区高10m,有两个弄清区,脉冲频率50次∕min,振幅20min,塔总体积30m3,生产才能按两相总计为50m3/h。脉冲塔中的比较约为1。在塔上部用水洗刷,其比较(o∕a)为(5~10)∶1,从塔出来的富钨有机相流入第二个填料塔(不必脉冲)顶用稳定剂处理,塔直径为1.3m。反萃用的混合弄清器的混合室和弄清室别离为5m3和16m3。反萃后的有机相送至第三个填料塔(不必脉冲)水洗,塔直径为1.6m。 钨和其他成分在流程中的分配见表3。 表3  钨和其他成分在流程中的分配    (g∕L)美国联合碳化物公司用苏镇压煮所得的Na2WO4溶液为55~110g∕L WO3,2.1~4.5g∕L Mo,pH=10.5~11.0。首要除掉钼。除钼后溶液含51. 8g∕L WO3,0.0012g/L Mo,0.75g∕L SiO2。有机相为5(V)%三癸胺-10(V)%十二醇-火油。在混合弄清器中3级逆流萃取。萃取比较O∕A为1,洗刷比较(O∕A)为 1∶0.75。然后用3mol∕L NH4OH反萃钨,比较(O∕A)为1∶(1~1.1)。将反萃液循环至(NH4)2WO4溶液中WO3浓度为225g∕L停止。这时反萃液中含0.4g/L SiO2以上。将溶液在55℃和2.7mol∕L NH4OH条件下弄清约1.5h,使SiO2沉积分出。萃取和反萃取均在50℃下进行。 中科院赵由才等曾研讨用伯胺及磷酸三丁酯(TBP)为萃取剂别离钨酸钠或钼酸钠溶液中的砷、磷、硅杂质,获得较满足的成果,估量被萃取杂质以杂多酸方式进入有机相,有待展开更多的作业。 二、离子交流法转型 乌兹别克斯坦某厂使用活动床经过AH-80П树脂将经典法净化所得的Na2WO4溶液转型为(NH4)2WO4,其准则流程见图2。图2  用AH-80П将Na2WO4溶液转型的流程 —树脂运动道路;----各种溶液运动道路 1-吸附柱;2-洗刷柱;3-解吸柱;4-再生柱:5-交流后液贮槽; 6-中和槽;7-(NH4)2WO4液贮槽;8-中和槽;9-过滤器 Na2WO4溶液含125g∕L WO3;0.01~0.08g∕L Mo;≤0.05g∕L P、As;115~135g∕L NaCl+Na2CO3;pH=2.5~3.0。溶液中钨主要以偏钨酸根离子形状存在。溶液由吸附柱1底部进入,AH-80П树脂(Cl-型)由上部进入吸附柱悬浮在溶液中并缓慢下沉,两者相对运动并进行离子交流进程,树脂与溶液的流比为1∶(4.2~5.0),吸附柱处理才能为0.2~0.45m3/(m2·h)。从吸附柱底部卸出的树脂当密度到达1.36~1.40g/cm3,则阐明已饱满送往洗刷,当密度小于1.36g∕cm3,则回来吸附柱持续吸附。树脂在吸附柱内与溶液触摸时刻达8~12h,交流后液含WO3 0.02g∕L,WO3吸附率达99.95%。饱满WO3的树脂在洗刷柱2内用pH=2的水洗去Na+后。再进入解吸柱3用15%~25%的解吸。解吸液中高浓度部分送蒸腾结晶APT,低浓度部分回来解吸。解吸后的树脂经60~80g∕L HCl再生成Cl-型后,进行再吸附。 依据测定当溶液中WO3浓度为15~20g/L时,AH-80П的全改换容量达1g干树脂吸附1610mg WO3,比经典的人工白钨酸分化再溶的工艺WO3回收率可进步1.3%~1.5%,耗费下降65%~70%,CaCl2耗费下降100%;电能耗费下降30%~40%。 在生产条件下,当用HNO3系统,则树脂亦可用BП-14K型。 三、沉积人工白钨-酸分化法转型 其实质是将净化除杂后的Na2WO4溶液首要参加CaCl2使Na2WO4转化为CaWO4沉积,而Na+留在溶液中,然后完成了Na+与WO42-的别离,反响为:生成的CaWO4(又称人工白钨)再与HCl效果转化为H2WO4,H2WO4进而用NH4OH溶解得(NH4)2WO4溶液。

钨矿物原料的分解—由钨精矿直接制取碳化钨

2019-02-13 10:12:38

首要分为高温熔体萃取和气体喷入碳化两阶段。    A  高温熔体萃取    将钨精矿(黑钨精矿或白钨精矿与黑钨精矿的混合物)与Na2Si03、NaCl混合,在1050~1100℃下熔融,并发作以下反响:            2(Fe、Mn)W04+3Na2Si03+16NaC1====(Na2W04·8NaCl)+Na2(Fe、Mn)2Si309    所得Na2W04·8NaC1相与硅酸盐相不互溶,故按密度分层,基层为氯化物-钨酸盐相,上层为硅酸盐相。将两相用倾析法别离后,一般98%~99%的WO3及少数铁锰杂质进入钨酸盐,其典型条件为:    配料:黑钨精矿NaCl:Na2Si03 =33:47:20,当以白钨为质料时,一般应加A1203和NaF作熔剂,但将白钨与黑钨按1:3~3:1份额参加也可防止加熔剂。    温度和保温时刻:1050~1100℃,2h。    氯化物-钨酸盐相成分:25%~30% WO3,约0.24% FeO,约0.3% MnO。    硅酸盐相成分:约0.5%WO3,约36%(FeO+MnO)。    B  气体喷入碳化    将氯化物-钨酸盐相补加NaCl调整份额后,在1050~1090℃,通入天然气发作如下反响:                               Na2W04+4CH4 ==== Na20+WC+3C0+8H2 得WC,WC先后用10% HCl和3%NaOH洗去杂质。    典型条件为:氯化物-钨酸盐相成分:含25%~30%W03(即Na2W04为31.7%~38%).    反响温度:1050~1070℃。    CH4中碳利用率:2.2%左右(半工业规划数据,下同)。    W03进入WC的回收率;90%左右。    WC粉总成本:比传统办法少30%左右。    上述碳化产品经磨细后,经65℃下用6mol/L的浸出3次,以除掉杂质,则所得产品的成分大致为:总碳5.99%~6.14%;游离碳0.06%~0.08%;S:0.003%~0.014%;0:0.53%~0.55%,A1:0.001%~0.005%;Ca:0.005%~0.01%;Cr:0.05%~0.3%;Cu:0.007%~0.01%;Fe:0.001%~0.05%;Mg:0.001%~0.01%;Mo:0.01%~0.1%;Si:0.001%~0.01%;Ni:0.03%~0.1%,其粒度为1~20μm占85%~90%。

由含钛高炉渣低温酸碱法制取富钛料

2019-02-27 08:59:29

攀西区域钒钛磁铁矿是国际闻名的多金属共(伴)生矿床,其间,钛资源储量占国际第一位。但到目前为止,矿石中钛资源的使用率却很低,约为15%左右。其首要原因就是原矿中约有50%以上的钛随铁精矿经高炉炼铁后进入炉渣成为含钛高炉渣。这种含钛高炉渣中TiO2含量高达20%~26%。攀钢在1970~1992年出产期间堆置在金沙江岸的西渣场的高炉渣就达3000多万t,若TiO2含量以20%计,仅西渣场的高炉渣中TiO2的含量就高达600多万t,尔后每年新增至少60万tTiO2。据此估量,到目前为止,攀枝花高炉渣中TiO2的总量已近2000万t左右,这无疑是一个巨大的钛资源瑰宝。但它却与高炉渣一同作为工业固体废弃物堆积,不只未能得到使用,还为当地构成极大的环境问题和经济负担。怎么开发使用这种人工二次资源的高钛型高炉渣,尤其是其间的钛资源已成为一个重要的火急课题。 几十年来,人们对高钛型高炉渣的归纳使用,尤其为提取其间的Ti02进行了很多的科学研讨。可是均因技能不可行、工艺进程杂乱、温压等工作条件要求高、设备杂乱、经济本钱过高或环保条件要求等种种原因,至今未能获得有用打破。 本文在分析研讨了含钛高炉渣的化学组成、物相组成、组构特征的基础上,选用实验进程简略、条件温文的二步低温酸碱法,即先酸溶后碱溶的方法,先去除高炉渣中的Ca、Mg、Al、Fe等酸溶性杂质,而Ti和Si则以H4Si04和H2Ti03的方式进入渣中;再经过碱溶去除Si02而得到富钛料。 一、实验 (一)设备与器件 实验设备为自拼装反响设备:ZDHW型调温电热套,JJ-1型守时电动拌和器,DRZ-9调理式测温控制器,6-13型箱式电阻炉,DL一1万用电炉,BS-2245型电子天平,202一OOAB型台式干燥箱,2XZ-1型旋片真空泵,温度计,冷凝管,四口烧瓶等。 (二)质料 实验用质料由攀枝花钢铁研讨院供给的空冷高钛型高炉渣,经破碎、筛分处理、磁选除铁后,再筛分、取粒度-120目(-0.125mm)的筛分样作为反响试样进行实验,其首要化学全分析成果见表1。 表1 含钛高炉渣样的化学组成(质量分数)/%TiO2A1203MgOCaOSiO2TFeV205Mn02P205S23.3511.097.0628.6425.442.820.200.750.0220.12注:数据由国土资源部四川省地勘局华阳检测中心测验分析。 (三)实验原理 1、酸解别离 从表1可知,含钛高炉渣中首要成分为TiO2、Si02、Ca0、Mg0、Al203和Fe203等,在用对含钛型高炉渣进行除杂处理的进程中,经过化学反响,其间的Ca0、Mg0、A1203和Fe203等易与构成强电解质的氯化物而溶解,而硅组分则构成固体沉积完成别离。 由于Ti02为氧化物,其酸、碱性都很弱,对应的钛酸盐和钛盐在必定条件下皆易发作水解,所以Ti02在反响进程中发作的首要化学反响有: Ti02+4HC1=TiC14+2H20(1) TiC14+4H20=H4Ti04↓+4HCl(2) H4Ti04=H2Ti03↓+H20 (3) 故钛在反响进程中终究以白色偏钛酸(H2Ti03)沉积的方式进入滤渣。 由式(1)~(3)可知,欲使钛以钛离子的方式安稳存在于滤液中有必要是在酸性条件下,需求耗费很多的酸,然后构成酸的糟蹋和本钱增高。而式(1)~(3)的总反响式可简写为: Ti02+H20=H2Ti03↓ (4) 由式(4)可知,Ti02在整个反响进程中能够当作并不需求耗费稀,若将钛富集于滤渣中,就能够在节省很多用酸的一起,到达富集钛的意图。这便是本文研讨的思路之一。 2、碱解别离 上述酸解别离进程得到滤渣的首要成分为钛和硅,其间Si首要以H4Si04的方式存在,其易与NaOH反响生成Na2SiO3。因而,将酸解后得到的渣与NaOH反响,其反响式为: H4SiO4+2NaOH=Na2SiO3+3H2O (5) 该反响不需求高温条件就可进行,然后完成硅与反响后仍以渣方式存在的钛的别离。 (四)实验进程量取必定体积、指定浓度的参加到四口烧瓶中,翻开冷凝水,开端拌和,加热到指定温度,将称好的反响试样参加四口烧瓶中,进行计时反响,一守时刻后,将反响液过滤,对滤液称量,搜集滤饼。量取必定体积的滤液,选用滴定法别离测定Ca、Mg、Al、Ti的含量。将酸解渣与NaOH溶液依照必定份额参加到四口烧瓶中,翻开冷凝水,开端拌和,加热到指定温度,反响一守时刻后,将反响液过滤,测定滤液中的硅含量,滤渣即为富钛料,工艺流程见图1。 二、成果与评论 (一)酸解反响进程的首要影响要素 酸解反响进程中,影响含钛高炉渣中元素浸出率的要素首要有反响时刻、温度、酸浓度以及酸渣比等。 图2是在酸的开端浓度为6mol/L,100℃条件条件下组分的浸出率与反响时刻的联系。由图2能够看出,反响时刻对含钛高炉渣中各元素浸出率的影响不尽相同。Ti02浸出率随反响时刻的添加而下降,这是由于开端反响时酸的开端浓度较高,生成TiC14的速率快,但跟着反响时刻的延伸,酸的耗费量添加,溶液中酸的浓度下降,导致TiCl4发作水解,溶液中的Ti4+含量下降。当反响4h后,Ti02的浸出率现已很低,只要2.79%左右;而Ca0、Mg0、A1203的浸出率则随时刻的添加而增大,反响达4h时浸出率到达最大。这以后除Mg0的浸出率下降较显着外,A1203和CaO的浸出率改变不显着。图3是反响温度对含钛高炉渣中元素浸出率影响的实验成果。由图3能够看出,温度对高炉渣的反响有较大的影响,跟着温度的升高,CaO、Mg0、A1203的浸出率都增大;而钛的浸出率则随温度的升高先上升后下降,到100℃时其浸出率还不到2%。这是由于在温度较高时,反响生成的TiCl4很多水解生成沉积而进入渣中,使得滤液中的Ti4+含量下降。超越100℃后,温度对反响的影响不大。 图4是酸浓度对元素浸出率影响的实验成果。由图4可知,在酸浓度较低时,反响不充分,而酸浓度增高,会使溶液中的Ti4+含量过高,不利于Ti02与其他杂质组分的别离。因而浓度为5~6mol/L较为适宜,此刻Ti02的浸出率较低,不到3%,而CaO、MgO、A1203的浸出率较高。 依据高炉渣中各组分的含量分析值,假定CaO、MgO、Al203等氧化物与均能彻底反响,能够计算出100g高炉渣需耗费的质量为110g,即理论酸渣比为1.1︰1。而实际上酸渣比会低于这个值。但如果酸渣比太小,CaO、MgO、Al203等浸出率不高。图5为酸渣比对各元素浸出率的影响成果。由图5可知,酸渣比为0.9~1.0之间,CaO、MgO、Al203的浸出率较高,而Ti02的浸出率则随酸渣比的添加而进步。(二)碱溶反响进程的影响要素 经过前述酸解进程处理后别离得到滤渣和滤液。Ca0、Mg0、Al203首要进入滤液,而Ti02和Si02则进入滤渣中,完成了含钛高炉渣中首要杂质组分与Ti02和Si02的别离。再将滤渣与NaOH进行碱溶反响,完成Ti02与SiO2的别离。碱溶反响别离实验中,调查了反响时刻、温度以及碱渣比与组别离离提取率的联系,对滤液测定Si02的浸出率,而对滤渣测定Ti02的百分含量,所得成果别离如图6~8所示。由图6~图8可见,滤渣中的Ti02和Si02的别离提取率均随反响时刻的添加、反响温度的升高和碱渣比的添加而进步。归纳分析其反响条件以反响时刻2h,碱渣比为0.5,温度为100℃为宜。在此条件下,对Ti02和Si02进行别离,可得到富态料含Ti0273%以上,Si02的浸出率在85%左右。 三、结语 (一)选用二步低温酸碱法能够有用地将含钛高炉渣中的首要组分进行别离提取,制备出了Ti02含量达73%以上、可用作钛出产以及其他出产用钛质料的富钛料。 (二)在酸解进程中,适于得到Ti02的浸出率低,而Ca0、Mg0、Al203的浸出率高的较佳反响条件为浓度5~6mol/L,反响时刻4h,酸渣比为0.9~1.0,温度为100℃。在此条件下得到Ca、Mg、Al的浸出率别离为20%、64%和70%左石,而Ti02的浸出率不超越3%。 (三)在碱溶反响进程中,使TiO2和Si02有用别离的较佳条件为反响时刻2h,碱渣比为0.5,反响温度为100℃,此刻可得到含Ti0273%以上的富钛料。