您所在的位置: 上海有色 > 有色金属产品库 > 粗碲除硒

粗碲除硒

抱歉!您想要的信息未找到。

粗碲除硒专区

更多
抱歉!您想要的信息未找到。

粗碲除硒百科

更多

铅阳极泥的除硒、碲

2019-03-05 09:04:34

大都工厂在火法熔炼前经预先焙烧除硒、碲,但有些工厂则于贵铅氧化熔炼中造渣收回。后者与铜阳极泥分银炉氧化熔炼造碲渣的操作类似。阳极泥预先除硒、碲的办法,一般经回转窑或马弗炉焙烧除硒,再从焙烧渣中浸出碲。 一、回转窑焙烧除硒碲。 该作业进程是将铅阳极泥与浓硫酸混合均匀,于回转窑中进行硫酸盐化焙烧。开端温度300℃,最终逐渐升至500~550℃,使硒呈二氧化硒蒸发遇水生成亚。焙烧除硒和亚的复原与处理铜阳极泥相同。 焙烧渣经破碎,用稀硫酸浸出,可使70%左右的碲进入溶液,然后加锌粉置换取得碲泥。碲泥再经硫酸盐化焙烧使碲氧化,然后用浸出。并用电解法从浸出液中出产电解碲,碲的总收回率约50%。 二、马弗炉焙烧除硒碲。 阳极泥与浓硫酸混合均匀,置于焙烧炉内涵150~230℃下进行预先焙烧。然后将焙烧物料转入马弗炉内,在420~480℃温度下进行焙烧除硒。硒的蒸发率可达87%~93%。焙烧渣破碎后用热水浸出,并用锌粉置换取得碲泥,然后再进行提纯。

铋的碱性精炼除碲、锡

2019-01-07 17:37:58

一、碱性精炼机理 图1为Te-Bi系状态图。图1  Te-Bi系状态图 从图1可见,在585℃,碲与铋组成中含Bi 52.2%时,出现化合物Bi2Te3结晶:在266℃含Te 2.4%(原子),出现(Bi+Bi2Te3)共晶;在413℃含Te 90%(原子),出现(Bi2Te3+Te)共晶;在540℃时,出现BiTe包品反应;在420℃时,在较宽的区域内出现均质的Bi2Te包晶反应;在312℃时,在较窄的区域内出现均质的包晶反应。碲在铋中的溶解度,在272℃时为2.6%(原子),在300℃时为4%(原子)。 Sn-Bi系状态图如图2所示。图2  Sn-Bi系状态图 铋与锡组成的低熔点合金在液态完全互溶,共晶点温度139℃,组成为含铋43%(原子)或含铋57%(重量)。当温度139℃时,铋在锡中溶解度为13.1%(原子),而锡在铋中的溶解度为0.2%(原子)。 碱性精炼的目的是为了回收碲与锡。 碱性精炼除碲,可以看作是一种改良的哈里斯(Havris)法,即以鼓入之压缩空气为氧化剂,以NaOH为吸收剂。加入NaOH可减少过程中铋以Bi2O2形式损失,同时NaOH与碲的氧化物的反应比Ri2O3与碲的氧化物的反应更为强烈,使碲可以在低于Bi2O3的氧势下氧化。 已被压缩空气氧化之碲,反应为:              对尚未被压缩空气氧化之碲,其反应为:      由于NaOH熔点为318℃,碲熔点为452℃,TeO2熔点为733℃,将碱性精炼温度控制在500~520℃,可保持反应在液态进行,而反应产物呈浮渣分离。 在除碲的同时,少量锡也能与NaOH反应,生成亚锡酸钠:碱性精炼除锡,是在铋液中加入NaOH、NaCl与NaNO3,其中NaNO3是强氧化剂,而NaOH是有效的吸收剂,NaCl加入后,有助于提高NaOH对锡酸钠的吸收能力,降低碱性浮渣的熔点和粘度,减少NaNO3的消耗。其反应为:   分析反应的气相成分为N2 77%、NH3 23%,说明锡的氧化主要按第一反应进行。 某厂碱性精炼中碲、锡的去陈程度如图3所示。图3  碲、锡的去除程度 二、碱性精炼实践 为了防止碲与锡在碱性精炼中同时入渣,采用先除碲,后除锡的工艺,以利于分别回收碲与锡。 将氧化精炼除砷、锑后的铋液,降温至500~520℃,加入料重1.5%~2%的固体碱,熔化后,鼓入压缩空气除碲,固体碱分几次加入,除碲精炼时间一般控制在6~10小时,至加入之固体碱在压缩空气搅动下不再变干,则为除碲终点。除碲后的铋液,含碲降至0.05%以下,在以后的精炼工序中,还能进一步有效地除碲,所以无需过多地延长除碲操作时间,以免产出大量贫碲渣,降低铋的直收率。碲渣呈淡黄色,重量约为料重的3%~5%。 捞出碲渣后,降温至400~450℃,加入NaOH与NaCl,熔化后覆盖在铋液表面,用鼓入的压缩空气搅拌15~20分钟后加入NaNO3,再搅拌30分钟后捞出干渣。碱的加入量为Sn∶NaOH∶NaCl∶NaNO3=1∶2∶0.6∶0.5。操作反复进行三次,第一次加入量占总加入量的3∕5,第二次为1/5,第三次为1/5。锡渣量约为料重的1%~3%。 某厂碱性精炼产出之碱渣成分如下表所示,从中分别回收碲与锡酸钠。 表  碱性精炼渣成分(%)

粗锑电解精炼除铋

2019-01-31 11:06:04

铋是粗锑中较常见的杂质之一,对锑的功能影响很大。在锑精粹标准中,要求铋含量低于0.005%。现有的粗锑火法精粹工艺中,前人没有针对粗锑脱铋进行专门研讨。锑的熔盐电解精粹阴极法能够较好地脱除铋,但因为其具有一些无法战胜的缺陷,如操作温度高、脱除的杂质种类少、电解槽结构杂乱、电解质的净化和循环使用难等,在工业上推行使用还需进一步改善。 粗锑水溶液电解精粹所选用的电解液系统分为碱性系统和酸性系统两大类。碱性系统首要是碳酸钠一系统和锑的硫化碱系统。因为碱性系统缺陷较多,如阴极只能得到海绵锑、堆积层薄、不能用于含贵金属粗锑的电解等,未能得到推行。现在,工业生产中首要选用-硫酸系统。酒石酸系统和柠檬酸系统因为报价昂贵,使用规模小。针对系统电解液再生困难,阴极易发生爆锑等缺陷,北京矿冶研讨总院在杂乱锑铅精矿矿浆电解进程中选用-氯化铵系统替代系统,较好地完成了锑铅别离,有用地避免了阴极上爆锑的生成。但该系统阳极易发生,对电解车间的环境晦气。 因为锑铋的标准电极电位附近,传统的水溶液电解精粹理论以为锑铋在电解中互相不容易彻底别离。因而,本文作者针对从铅阳极泥产出的金属锑具有含铅铋高、贵金属富集等特色,进行水溶液电解精粹除铋的实验研讨。在室温文高电流密度的条件下,选用H2SO4-NH4F-SbF3电解液系统,草酸以增加剂方式参加到电解液系统中,能够有用脱除杂质铋,取得的精锑到达国标一号。粗锑中As、Pb、Bi、Fe和Ag等杂质均能够有用被脱除,并经过阳极泥的处理得到收回。 一、实验 (一)粗锑阳极的成分分析 阳极选用云南蒙自某冶炼厂所产粗锑浇铸而成,质量为300g,首要成分见表1。 表1  锑阳极的化学分析成果(二)电解液组成 选用H2SO4-NH4F-SbF3电解液系统,电解液由蒸馏水制造,其成分见表2。 表2  电解液根本成分(三)仪器及试剂 仪器为:WYJ-1550型可调式直流稳压稳流电源,DT-1000型电子天平,C59-A型电流表,HH-6型数显恒温水浴锅,医用蒸馏水机,EPMA-100型扫描电子显微镜。 试剂为:三氧化二锑,硫酸,,,草酸等,均为分析纯。 (四)实验办法 电解作业在150mm×85mm×100mm聚氯乙烯原料的电解槽中进行,经过可调式直流稳压稳流电源和电流表操控电流密度,选用水浴锅恒温25℃。阳极选用粗锑板,用涤纶袋维护;阴极选用不锈钢板,有用尺度为45mm×60mm,用聚氯乙烯软质通明胶布封边。电流密度为400A/m2,异极距为50mm,电解24h后出槽。电解设备装置示意图如图1所示。图1  电解设备示意图 阴极锑电解24h后,剥板,破碎,研磨成-200目金属粉末。用2∶1及硝酸加热溶解粉末后,用酒石酸络合掩蔽锑,EDTA络合掩蔽其他金属离子,用2-(5--2-偶氮)-5-二乙基(5-Br-PADAP)-Bi-NaOH极谱催化波系统直接测定其间的铋含量。电解后液中铋离子的浓度经过化学法分析测定。阳极泥用蒸馏水冲刷搜集,减压过滤后,滤饼在60℃干燥箱里烘干,研磨成粉末后选用化学法分析成分。 二、成果与评论 经过改动电解的温度、电流密度、增加剂浓度等要素,调查其对电解进程中铋散布的影响。依据粗锑中杂质的标准电极电位及其电化学行为,杂质可分为3类:(1)比锑的电性更正的杂质,首要是银和硫。因为粗锑中含有砷和硫,99%以上的银在电解进程中不溶解而转入阳极泥中。(2)电极电位与锑挨近的杂质,首要是铜,砷,铋。铜在粗锑中的含量很少,且电解液中存在NH4+离子,构成的铜络合物更难在阴极放电分出;砷、铋与相应的增加剂构成溶解度很低的合作物,大部分留在阳极泥中。(3)负电性杂质,首要是铅和铁。铅与SO42-生成硫酸铅,从阳极上脱落到阳极泥中,然后下降阳极泥的电阻,有利于电解的进行;当电解液中的草酸坚持必定浓度时,90%左右的铁以Fe3(SO4)4·14H2O的形状进入阳极泥中,10%左右的铁进入电解液。 (一)温度对电解进程的影响 在无增加剂的条件下,坚持电解液的根本组分、电流密度及极距离不变,改动电解温度,改动规模为25~55℃,电解24h,调查温度的改动对杂质铋电化学行为的影响,成果如图2所示。图2  温度对杂质铋电化学行为的影响 从图2中能够看出,升高温度促进了酸对阳极泥的化学作用,阳极中的杂质铋很多溶解进入电解液中,其在阳极泥中富集的数量削减,在电解液中的含量升高,终究进入阴极锑,下降阴极锑的质量。 (二)电流密度对电解进程的影响 在未加增加剂的条件下,坚持电解液的根本组分、电解温度及极距离等条件不变,改动电流密度,改动规模为100~500A/m2,电解24h,调查电流密度的改动对杂质铋电化学行为的影响,成果如图3所示。图3  电流密度对杂质铋电化学行为的影响 由图3中能够看出,跟着电流密度的增大,铋进入阳极泥的含量升高,进入电解液的铋离子浓度下降,终究阴极锑的铋含量也大幅度下降。这可能是因为在高电流密度下,阳极中的砷和锑易被氧化成五价,此刻,铋将以难溶的铋和锑酸铋方式进入阳极泥。 (三)草酸增加量对电解进程的影响 1、草酸增加量对杂质铋电化学行为的影响 在25℃,电流密度为400A/m2,异极距为50mm的条件下,调查草酸增加量对杂质铋电化学行为的影响,成果如图4所示。图4  草酸增加量对杂质铋电化学行为的影响 由图4可知,跟着草酸浓度的升高,进入阳极泥的铋含量升高,电解液中的铋离子浓度下降,阴极的铋含量也下降。当草酸浓度大于5g∕L后,铋离子浓度改动趋势不显着。若电解液中草酸浓度过高,将导致草酸根离子在阴极放电,影响阴极堆积层的质量。 2、草酸对锑阴极堆积描摹的影响 当草酸作为除铋剂参加电解液时,微量的草酸也的阴极镀层电子探针图。从图5(a)和图6(a)能够看出,锑的晶体均呈三角棱锥结构,旁边面为高指数面且包括有台阶,电结晶按螺旋位错成长机理进行。图5(b)和图6(b)别离显现了三角棱锥旁边面台阶的形状。增加草酸取得的锑镀层,其三角棱锥旁边面的微观台阶密度显着比纯电解液锑镀层的小,但台阶面可观察到显着的波纹状微观台阶。这可能是因为增加了草酸后,阴极上杂质金属原子削减,微观台阶难靠拢成为微观台阶的原因。若向电解液中增加10g∕L草酸会引起阴极锑堆积描摹的纤细改动,但不影响电解的顺利进行。归纳考虑各方面要素,以为适宜的草酸增加量为10g∕L。图5  纯电解液阴极锑板电子探针图图6  增加10g∕L草酸阴极锑板电子探针图 三、定论 (一)高的电流密度和低的电解温度有利于杂质铋的脱除。 (二)若向电解液中增加10g∕L草酸,铋会以难溶金属络合物形状进入阳极泥,阴极锑中铋的含量下降到0.005%以下。 (三)阴极镀层的SEM图标明,锑电结晶按螺旋位错成长机理进行,其晶体呈三角棱锥结构,旁边面为高指数面且包括有台阶。增加草酸对阴极锑堆积描摹有纤细影响,但不影响电解的顺利进行。

铜阳极泥的焙烧除硒

2019-03-05 10:21:23

铜阳极泥之所以要首要焙烧除硒,是鉴于火法熔炼阳极泥时,因为硒的存在一方面会导致金属与炉渣两相间构成一层含银很高的硒冰铜,而收回硒冰铜中的银却需求延伸吹风氧化时刻,然后延伸出产周期。若不延伸吹风氧化时刻,就会添加贵金属在炉渣与硒冰铜中的返料,下降直收率。另一方面,硒会涣散于炉渣、冰铜和贵铅中,给硒的收回带来困难。因而,凡从铜阳极泥中收回硒的工厂,多选用预先除掉硒的办法。 国内外工厂多运用焙烧法惯例工艺来除掉铜阳极泥中的硒。这种工艺一般有:硫酸盐化焙烧蒸硒,苏打烧结焙烧浸出除硒,阳极泥制粒氧化蒸发焙烧苏打层吸收硒,氧化蒸发焙烧除硒和直接熔炼阳极泥由烟气或碱渣中收回硒等。因为焙烧除硒能一同使铜氧化,为下步浸出脱铜打基础,故又可把焙烧除硒作业当作阳极泥脱铜的预先处理阶段。 现将一般运用的氧化焙烧、苏打烧结焙烧和硫酸盐化焙烧除硒的工艺分述如下。 一、氧化焙烧 氧化焙烧一般是在烧重油的小平炉或有烧煤火床的小反射炉、或马弗炉中进行的。为使阳极泥中的硒尽可能彻底氧化,炉膛内阳极泥层的厚度一般不大于100mm,并需进行周期性搅动和坚持炉内满足的抽力。在充沛供入空气的条件下,每炉培烧时刻为6~8h。 氧化焙烧的意图是为了使大部分硒氧化呈氧化硒(SeO2)蒸发,并经过收尘体系(气体洗刷器或湿式电收尘器)予以收回。当炉温在500℃或低于此温度时,硒化物大部分转化为亚盐。 2MeSe+3O2 2MeSeO3 炉温上升到650℃或更高时,硒便生成二氧化硒并蒸发。 MeSe+O2 Me+SeO2↑ 依据氧化焙烧实践,炉温在450~500℃时,硒的蒸发率不会高于25%。但当炉温达650~700℃,并在后期升温到750~800℃时,能够蒸发除掉阳极泥中90%的硒。 氧化焙烧时,铜生成氧化铜或氧化亚铜。砷、锑首要生成难蒸发的五氧化物,少数生成三氧化物蒸发。碲与硒类似,但前者的氧化速度小,蒸发除掉不多。 氧化焙烧时,硒的收回率不只与二氧化硒的蒸发率有关,并且也与所用的收尘设备有关。这是因为焙烧蒸发的二氧化硒进入收尘器后,遇水便会溶解而生成可溶性的亚。当炉气中所含的(从阳极泥中来的)金属铜粉、没焚烧完的煤粉和二氧化硫及其生成的硫酸以及收尘设备的金属铁等与亚效果发作的一系列副反响,把亚复原成金属硒,或生成不溶性的硒化物沉积,而下降硒的收回率。且焙烧烟尘中往往导致贵金属的丢失。因而,氧化焙烧法已多不必。 二、苏打烧结焙烧 苏打烧结焙烧法硒的收回率高达90%以上。但因为碲亦大部分生成,当用热水浸出时,碲会和硒一道进入溶液而难以别离不易取得高纯度的硒。故本法不适于处理含碲高的阳极泥。 苏打烧结焙烧,是将预先烘干的阳极泥(约含10%水),参加阳极泥分量40~50%的工业碳酸钠(苏打),经混合均匀后,于氧化气氛中进行烧结。此刻,硒、碲被氧化成二氧化物与苏打反响生成易溶于水的亚钠与: SeO2+Na2CO3=Na2SeO3+CO2 TeO2+Na2CO3=Na2TeO3+CO2 激烈的氧化气氛,还会生成少数的钠和碲酸钠。 经烧结后的产品用热水浸出,浸出液送制取硒。为了使硒化物最大极限地溶于热水,并使碲化物尽可能少进入溶液,要求烧结进程中严格控制炉温不高于450℃。 除硒后的浸出渣,再用10%~12%的稀硫酸浸出除铜。除铜浸出渣送火法熔炼。 苏打烧结焙烧除硒较之氧化焙烧好。它操作简洁,设备简略,而硒的收回率也高。 三、硫酸盐化焙烧 硫酸盐化焙烧除硒,是处理铜阳极泥运用最广泛的办法。它不但能除掉阳极泥中90%以上的硒,还能最大极限地使阳极泥中的铜等硫酸盐化,便于下步浸出除铜。硫酸盐化焙烧运用最广的设备为马弗炉和反转窑。马弗炉适于小批量间歇性出产,而反转窑则适用于大批量接连出产。 硫酸盐化焙烧的首要意图,是为了使硒、碲、铜等转化为SeO2、TeO2和CuSO4,并使沸点低的SeO2优先蒸发成粗硒予以收回。然后再进行焙烧渣的浸出除铜和用浸出碲。 焙烧进程中,SeO2的提高温度为315℃,温度愈高,硒的蒸发速度愈快。但为了不使TeO2一同蒸发,也不使易溶于水的CuSO4分化成难溶的CuO(分化温度为650℃),故硫酸盐化焙烧温度一般控制在450~550℃之间。 阳极泥与浓硫酸混合后于马弗炉或反转窑内焙烧,首要发作下列一些反响: Cu+2H2SO4=CuSO4+2H2O+SO2↑ Cu2S+6H2SO4=2CuSO4+6H2O+5SO2↑ 2Ag+2H2SO4=Ag2SO4+2H2O+SO2↑ Se+2H2SO4=SeO2↑+2H2O+2SO2↑ Te+2H2SO4=TeO2+2H2O+2SO2↑ 经焙烧提高的SeO2,与烟气同时导入吸收塔(或气体洗刷器或湿式电收尘器),SeO2即溶于水而生成亚: SeO2+H2O=H2SeO3 阳极泥与硫酸反响时生成的很多SO2,凭借水的效果,使吸收塔中的亚复原生成元素硒沉积: H2SeO3+2SO2+H2O=Se↓+2H2SO4 生成的元素硒,因含有很多杂质,俗称粗硒。粗硒用热水洗刷至洗液呈中性后,烘干送制纯硒。 (一)马弗炉焙烧除硒。马弗炉分为电热、煤气加热或烧煤的。某厂运用的烧煤马弗炉,把作业分为焙烧和蒸硒两个进程。将含水30%左右的湿阳极泥,参加阳极泥分量70%的浓硫酸,混匀后于炉内焙烧4h。焙烧温度前期为200~250℃,中期为250~300℃,后期为250~200℃。经焙烧后的阳极泥成黑绿色峰窝状。 焙烧后的物料置于不锈钢盘中(料层厚度为35~45mm),于炉温500~550℃蒸硒12h,产出黄绿色含硒不大于0.05%的蒸馏渣。 蒸发的二氧化硒和炉气,由真空泵导入铅锑合金吸收塔。吸收塔内的吸收液含硫酸不大于500g/L,温度高于90℃,并通入二氧化硫气体,使亚复原成粗硒。 (二)反转窑焙烧除硒。某些厂运用的圆筒形钢体反转窑长6~9m,直径0.7~0.8m。依据出产实践,窑体愈长,阳极泥在窑内逗留的时刻就愈长,硫酸盐化效果也愈好。 反转窑窑体的倾斜度为1.6%,由2~3对托轮支承,电动机经过链轮传动,转速为1.13r∕min。为避免阳极泥很多粘结于窑体内壁上,窑内设有振打架,跟着窑体的滚动借重力滚动起振打效果。窑头(图1)和窑尾(图2)两头密封,用螺旋给(排)料器接连进料和出料。图1  反转窑窑头及加料体系(单位:mm) 1-窑体;2-窑头;3-链轮;4-支承架;5-料斗; 6-螺旋给料器;7-伞型齿轮及电机;8-托轮;9-减速机;10-振打架图2  反转窑窑尾及排料体系(单位:mm) 1-窑尾;2-窑体;3-螺旋排料器;4-振打架 阳极泥烘干至含水10%左右,于不锈钢斗车中参加浓硫酸泡料。实践出产中,浓硫酸的参加量首要视阳极泥中的含硒量而定,即含硒小于5%时,为阳极泥分量的60%~70%;含硒5%~10%时为70%~80%。含硒大于10%的阳极泥,一般与含硒低的阳极泥混合处理。泡好的料吊运至窑头加料斗,由螺旋给料器接连均匀地送进窑内焙烧。 焙烧由设在窑体下部的煤气焚烧嘴。分4至5段直接加热。如长6m的反转窑,自窑头至窑尾各段温度别离约为350℃、450℃、550℃和500℃。最高的第三段温度应严格控制不得超越640℃。炉料在窑内的逗留时刻约2h。焙烧后,进入窑尾的料由螺旋排料器排出,以确保窑尾密封。 焙烧炉气由真空泵导入吸收塔。吸收塔为含7%锑的铅锑合金所铸成(图3)。窑体两边各设一列,每列4只串联收硒。两列替换运用。吸收塔内盛入含硫酸150~200g∕L的开端液,终究含酸不多于500g∕L。作业进程中,借真空泵的抽力,使1号吸收塔内坚持2452~3432Pa(250~350mmH2O)的负压,窑体内坚持147~196Pa(15~20mmH2O)的负压,以便炉气能顺畅进入吸收塔。提高发生的二氧化硒于吸收塔中与水和硫酸效果生成亚,并与炉气中的二氧化硫效果艘复原成粗硒。为了使亚尽可能彻底复原,按阳极泥含硒量的多少另往1号吸收塔内供入气态二氧化硫2~5kg∕班。吸收塔放出的废液,于废液槽内加热至60℃以上,通入二氧化硫使亚进一步复原至滴入少数不呈赤色反响停止。另一厂对吸收塔放出的废液,选用铜片置换,取得的粗硒再回来蒸馏,置换液送制硫酸铜。图3  全体铸铅吸收塔(单位:mm) 经焙烧(蒸馏)后的阳极泥(俗称蒸馏渣),应呈灰白色,如色彩发红,则阐明硒的蒸发不彻底,应回来再蒸馏。运用长6m、直径0.7m的反转窑,每昼夜约处理阳极泥0.9~1.3t。产出的蒸馏渣,送浸出脱铜。

铜阳极泥的氧化焙烧除硒

2019-03-05 10:21:23

氧化焙烧一般是在烧重油的小平炉或有烧煤火床的小反射炉、或马弗炉中进行的。为使阳极泥中的硒尽可能彻底氧化,炉膛内阳极泥层的厚度一般不大于100mm,并需进行周期性搅动和保持炉内满足的抽力。在充沛供入空气的条件下,每炉培烧时刻为6~8h。 氧化焙烧的意图是为了使大部分硒氧化呈氧化硒(SeO2)蒸发,并经过收尘体系(气体洗涤器或湿式电收尘器)予以收回。当炉温在500℃或低于此温度时,硒化物大部分转化为亚盐。 2MeSe+3O2 2MeSeO3 炉温上升到650℃或更高时,硒便生成二氧化硒并蒸发。 MeSe+O2 Me+SeO2↑ 依据氧化焙烧实践,炉温在450~500℃时,硒的蒸发率不会高于25%。但当炉温达650~700℃,并在后期升温到750~800℃时,能够蒸发除掉阳极泥中90%的硒。 氧化焙烧时,铜生成氧化铜或氧化亚铜。砷、锑首要生成难蒸发的五氧化物,少数生成三氧化物蒸发。碲与硒类似,但前者的氧化速度小,蒸发除掉不多。 氧化焙烧时,硒的收回率不只与二氧化硒的蒸发率有关,并且也与所用的收尘设备有关。这是因为焙烧蒸发的二氧化硒进入收尘器后,遇水便会溶解而生成可溶性的亚。当炉气中所含的(从阳极泥中来的)金属铜粉、没焚烧完的煤粉和二氧化硫及其生成的硫酸以及收尘设备的金属铁等与亚效果发作的一系列副反应,把亚还原成金属硒,或生成不溶性的硒化物沉积,而下降硒的收回率。且焙烧烟尘中往往导致贵金属的丢失。因而,氧化焙烧法已多不必。

碲常识

2019-03-14 09:02:01

碲  碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。  碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。  碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。  镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。  稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。  稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。  我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

碲知识

2019-03-08 09:05:26

碲有结晶形和无定形两种同素异形体。结晶碲具有银白色的金属外观,密度6.25,熔点452℃,沸点1390℃。无定形碲(褐色),密度6.0,熔点449.5℃,沸点989.8℃。碲在空气中焚烧带有蓝色火焰,生成二氧化碲;可与卤素反响,但不与硫、硒反响。溶于硫酸、硝酸、和溶液。易传热和导电。 碲矿藏首要与黄铁矿、黄铜矿、闪锌矿等共生,首要碲矿藏有碲铅矿、碲铋矿、辉碲铋矿以及碲金矿、碲铜矿等。铜电解精粹所得的阳极泥是碲的首要来历。处理阳极泥的首要办法是硫酸化焙烧法,其他办法如苏打烧结法等运用较少。依据阳极泥中碲含量的凹凸,选用不同的处理办法:对含碲高的阳极泥,枯燥后在250℃下进行硫酸化焙烧,然后在700℃使二氧化硒蒸发,碲则留在焙烧渣中。对含碲低的铜阳极泥和铅电解阳极泥混合处理时,可进行还原熔炼。高纯碲的制取首要选用电解法。 碲在冶金工业中的用量约占碲总消费量的80%以上。参加少数碲,能够改进低碳钢、不锈钢和铜的切削加工功用。在白口铸铁中,碲用作碳化物稳定剂,使表面巩固耐磨。在铅中添加碲,可进步材料的抗蚀功用,可用来制造海底电缆的护套,也能添加铅的硬度,用来制造电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可用作温差电材料的合金组分,超纯碲单晶是一种新式的红外材料。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

粗铋的碱性碲渣回收碲

2019-01-31 11:06:04

粗铋碱性精粹产出的碱性碲渣,其成分已列于下表,其间含Te6~30%,是收回碲质料。 一、工艺流程 出产碲的流程如图1。图1  碲出产工艺流程图 二、首要技能条件 (一)球磨与浸出。碲渣装入湿式球磨机磨至100~120目,液固比为1∶1,每批球磨4小时,然后将球磨液泵至浸出罐,用水稀释至原体积的三倍,加温至80~95℃,拌和6小时后弄清。上清液成分为(克/升):Te30~32,Se2~3,Bi<0.1,Pb0.01~0.03,Fe<0.1,As0.1~0.3,Sb0.1~0.2,Ca<0.1,Zn<0.1,游离NaOH30~32。 (二)净化。净化的意图是除掉重金属杂质和SiO2。加Na2S使重金属杂质变成硫化物沉积,每升溶液参加Na2S量一般为1.5~2.5克,反应为: Na2PbO2+Na2S+2H2O=PbS↓+4NaOH 参加适量CnCl2,使SiO2生成硅酸钙沉积,其反应为: Na2SiO8+CaCl2=CaSiO8↓+2NaCl 操控溶液含NaOH量为25~35克/升,液温85℃以上,当滤纸呈棕灰色即为结尾。 (三)中和。中和的意图是使转化为TeO2,一起为了脱硒,加温至60~80℃,用稀硫酸(酸∶水=1∶4)中和至pH4.5~6,生成TeO2沉积,反应为: Na2TeO3+H2SO4=TeO2+Na2SO4+H2O 鼓风拌和、过滤、TeO2沉积用沸水洗刷后,其化学成分为(%):Te70~75,Se<0.1,Cu<0.1,Pb0.5~1.5,SiO24~5,Bi0.2~0.4,Sb0.2~0.3。 (四)煅烧。煅烧的意图是为了进一步脱硒。煅烧温度300~450℃,恒温1~3小时,当TeO2呈黄白色即为合格品。 (五)造液。TeO2能溶于NaOH溶液,反应为: TeO2+2NaOH=Na2TeO3+H2O 每千克TeO2参加0.55~0.65千克NaOH,液固比为5∶1,液温90℃,溶液密度大于1.36克/厘米3,静置两天后运用。 (六)电积。电解液为净化后的溶液。其化学成分为(克/升):Te180~220,NaOH80~100,Se<0.3,Pb<0.003,Cu<0.003。室温下电积,电流密度40~60安/米2;同极距为50~110毫米;槽电压1.5~2.8伏;电解液循环补加新液,使溶液含碲大于100克/升;阳极选用铁板,阴极选用不锈钢板;电解周期5~12天。 通直流电后,碲在不锈钢阴极板上分出,阳极开释氧气。 (七)铸型。出槽后,用木锤轻敲阴极,将分出碲敲碎落入不锈钢桶内煮洗,可先加少数草酸,煮洗36小时后,再用蒸馏水煮洗48小时。将洗净的分出碲烘干,坩埚熔铸,铸型温度为480~600℃可加少数硼砂扒渣,铸锭表面吹风冷却。 三、首要设备 (一)球磨机。φ600×1000毫米,转速45转/分。 (二)浸出罐,中和罐,净化罐。各一个,选用夹套式珐琅反应釜(φ1000×1500毫米),机械拌和。 (三)真空泵。SZ-2二台。 (四)电解槽。六个,钢板衬胶,790×600×640毫米。 (五)硅整流器。GZH3-40型一台,100安,50伏。 四、产品用处 碲用于半导体工业温差发电与温差致冷;作冶金添加剂,改进钢铁和铜,铅及其合金的功能;还用于有机化工组成作催化剂,用于玻璃、陶瓷工业作染色剂。 五、产品质量 一号精碲的化学成分(%):Te≥99.99,Cu≤0.001,Pb≤0.002,Al≤0.001,Bi≤0.001,As≤0.0005,Fe≤0.001,Na≤0.003,Si≤0.001,S≤0.001,Se≤0.002,Mg≤0.001。 六、其它办法收回碲 (一)还原法。还原法是将TeO2粉末配入面粉作还原剂,在坩埚内还原熔炼,待白色蒸气挥发完后,加硼砂扒渣。所产出之碲锭含碲99%,可用作冶金添加剂和玻陶染色剂。 (二)可溶阳极电解。阳极板由含碲99%的粗碲铸成,阴极选用不锈钢板,选用电解液,含NaOH 80~100克/升,Te 90~100克/升,室温,电流密度50~100安/米2,槽电压1.5~2伏。可产出1号精碲。

硒知识

2019-03-08 09:05:26

硒属半金属,固态硒分无定形和晶体两种,无定形硒又分赤色粉状、玻璃状和胶体状三种。晶体硒有单斜晶体和六方晶体之分,其间以灰色六方晶体最为安稳。赤色的单斜晶体和灰色的六方晶体是硒的同素异形体。红硒在受热后,会敏捷变成灰硒。灰硒的熔点为2l7℃。灰硒的重要特性是它具有典型的半导体功用,能够用于无线电的检波和整流。硒整流器具有耐负荷、耐高温、电安稳性好等特色。 硒对光十分灵敏。据测定,在足够阳光的照射下,硒的导电率比在漆黑时要大一千倍。这样,硒被用来制作光敏电阻和光电管,在自动控制、电视制作等方面有着广泛的用处。硒还被制成光电池。硒及其化合物均有毒。 硒首要赋存在黄铜矿、黄铁矿、方铅矿中,有时也存在于辉钼矿、铀矿中,首要的硒矿藏有硒铜矿、硒铜银矿、硒银铅矿、辉矿。工业上硒一般是从铜电解精粹的阳极泥中提取。现在广泛选用的是硫酸化焙烧法,此办法的首要长处是硒的收回率高,适用于处理多种质料。此外,还有苏打焙烧法收回硒。关于高纯硒的制取办法有蒸馏法和氧化-还原法,后者广泛用于制备纯度大于99.992%纯硒。为制取纯度超越99.999%的高纯硒,可选用真空蒸馏法、离子交换法、硒化物热分化及二氧化硒气相还原法等。 工业纯硒约有55%用于玻璃的上色和脱色颜料。高质量信号用的透镜玻璃含硒2%,参加硒的平板玻璃用作太阳能的热传输板和激光器窗口红外过滤器。在冶金工业上,硒能够改进碳素钢、不锈钢和铜的切削加工功用。大约有30%的硒以高纯方式(99.99%)与其他元素作成合金。硒还用于制作低压整流器、光电池、热电材料以及各种复印复写的光接受器。其他15%的硒,以化合物方式用作有机组成的氧化剂和催化剂。硒及硒化物参加光滑脂中,可用于超高压光滑。 镓、铟、、锗、硒、碲和铼一般称为稀散金属,这7个元素从1782年发现碲以来,直到1925年发现铼才被悉数发现。这一组元素之所以被称为稀散金属,一是因为它们之间的物理及化学性质等类似,划为一组;二是因为它们常以类质同象的方式存在于有关的矿藏傍边,难以构成独立的具有独自挖掘价值的稀散金属矿床;三是它们在地壳中的均匀含量较低,以稀疏涣散状况伴生在其他矿藏之中,只能随挖掘主金属矿床时在选冶中加以归纳收回和运用。 稀散金属具有极为重要的用处,是今世高科技新材料的重要组成部分。由稀散金属与其他有色金属组成的一系列化合物半导体、电子光学材料、特殊合金、新式功用材料及有机金属化合物等,均需运用共同功用的稀散金属。用量尽管不大,但至关重要,缺它不行。因此广泛用于今世通讯技能、电子计算机、宇航、医药卫生、感光材料、光电材料、动力材料和催化剂等职业。 稀散金属在自然界中首要以涣散状况赋存在有关的金属矿藏中,如闪锌矿一般都富含镉、锗、镓、铟等,单个还含有、硒与碲;黄铜矿、黝铜矿和硫砷铜矿常常富含、硒及碲,单个的还富含铟与锗;方铅矿也常富含铟、、硒及碲;辉钼矿和斑铜矿富含铼,单个的还富含硒;黄铁矿常富含、镓、硒、碲等。现在,尽管已发现有近200种稀散元素矿藏,但因为稀疏而未富集成具有工业挖掘的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规划都不大。 我国稀散金属矿产资源比较丰富,已探明有稀散金属矿产储量的矿区:锗矿散布在11个省区,其间广东、云南、吉林、山西、四川、广西和贵州等省区的储量占全国锗总储量的96%;镓矿散布在21个省区,首要会集在山西、吉林、河南、贵州、广西和江西等省区;铟矿散布在15个省区,首要会集在云南、广西、内蒙古、青海、广东;矿散布在云南、广东、甘肃、湖北、广西、辽宁、湖南等7个省区;硒矿散布在18个省区,首要会集在甘肃,其次为黑龙江、广东、青海、湖北和四川等省区;碲矿散布在15个省区,首要会集在江西、广东、甘肃;铼矿散布在陕西、黑龙江、河南和湖南、湖北、辽宁、广东、贵州、江苏9个省。

铜阳极泥的硫酸盐化焙烧除硒

2019-03-05 10:21:23

硫酸盐化焙烧除硒,是处理铜阳极泥运用最广泛的办法。它不但能除掉阳极泥中90%以上的硒,还能最大极限地使阳极泥中的铜等硫酸盐化,便于下步浸出除铜。硫酸盐化焙烧运用最广的设备为马弗炉和反转窑。马弗炉适于小批量间歇性出产,而反转窑则适用于大批量接连出产。 硫酸盐化焙烧的首要意图,是为了使硒、碲、铜等转化为SeO2、TeO2和CuSO4,并使沸点低的SeO2优先蒸发成粗硒予以收回。然后再进行焙烧渣的浸出除铜和用浸出碲。 焙烧进程中,SeO2的提高温度为315℃,温度愈高,硒的蒸发速度愈快。但为了不使TeO2一同蒸发,也不使易溶于水的CuSO4分化成难溶的CuO(分化温度为650℃),故硫酸盐化焙烧温度一般控制在450~550℃之间。 阳极泥与浓硫酸混合后于马弗炉或反转窑内焙烧,首要发作下列一些反响: Cu+2H2SO4=CuSO4+2H2O+SO2↑ Cu2S+6H2SO4=2CuSO4+6H2O+5SO2↑ 2Ag+2H2SO4=Ag2SO4+2H2O+SO2↑ Se+2H2SO4=SeO2↑+2H2O+2SO2↑ Te+2H2SO4=TeO2+2H2O+2SO2↑ 经焙烧提高的SeO2,与烟气同时导入吸收塔(或气体洗刷器或湿式电收尘器),SeO2即溶于水而生成亚: SeO2+H2O=H2SeO3 阳极泥与硫酸反响时生成的很多SO2,凭借水的效果,使吸收塔中的亚复原生成元素硒沉积: H2SeO3+2SO2+H2O=Se↓+2H2SO4 生成的元素硒,因含有很多杂质,俗称粗硒。粗硒用热水洗刷至洗液呈中性后,烘干送制纯硒。 一、马弗炉焙烧除硒。 马弗炉分为电热、煤气加热或烧煤的。某厂运用的烧煤马弗炉,把作业分为焙烧和蒸硒两个进程。将含水30%左右的湿阳极泥,参加阳极泥分量70%的浓硫酸,混匀后于炉内焙烧4h。焙烧温度前期为200~250℃,中期为250~300℃,后期为250~200℃。经焙烧后的阳极泥成黑绿色峰窝状。 焙烧后的物料置于不锈钢盘中(料层厚度为35~45mm),于炉温500~550℃蒸硒12h,产出黄绿色含硒不大于0.05%的蒸馏渣。 蒸发的二氧化硒和炉气,由真空泵导入铅锑合金吸收塔。吸收塔内的吸收液含硫酸不大于500g/L,温度高于90℃,并通入二氧化硫气体,使亚复原成粗硒。 二、反转窑焙烧除硒。 某些厂运用的圆筒形钢体反转窑长6~9m,直径0.7~0.8m。依据出产实践,窑体愈长,阳极泥在窑内逗留的时刻就愈长,硫酸盐化效果也愈好。 反转窑窑体的倾斜度为1.6%,由2~3对托轮支承,电动机经过链轮传动,转速为1.13r∕min。为避免阳极泥很多粘结于窑体内壁上,窑内设有振打架,跟着窑体的滚动借重力滚动起振打效果。窑头(图1)和窑尾(图2)两头密封,用螺旋给(排)料器接连进料和出料。