您所在的位置: 上海有色 > 有色金属产品库 > 绿铬矿 > 绿铬矿百科

绿铬矿百科

铝:其实很“绿”

2018-12-20 17:02:55

铝被称为“永不消逝的金属”,尽管生产高能耗,在使用过程和整个生命周期里却是绿色环保的  一提起铝,人们总会联想到“高能耗”。生产一吨铝平均需要耗电1.2万—1.3万千瓦时,铝的生产过程的确是高能耗的。但人们有所不知,由于铝有质量轻、耐腐蚀、易加工、可回收等诸多优良性能,在使用过程和整个生命周期里,实际上是节能减排的绿色金属。  在使用过程中,以载重车辆为例。目前我国载重挂车保有量约300万辆,虽然占汽车保有量的比例不高,但其燃油消耗量却占汽车燃油总消耗量的25%以上。2010年,我国汽车燃油消耗量约1.38亿吨,其中载重挂车年燃油消耗量高达4000万吨。因此,降低载重挂车重量,是交通领域实现节能减排的必然选择。如果将我国现有300万辆载重挂车的70%改为铝制挂车,一年可以减少燃油消耗766万吨,减少二氧化碳排放2200万吨。同时,普通运输车可载100吨货物,全铝挂车由于自重轻,就可载重110吨。这就在不增加油耗和排放、不超载的情况下,提高了运输效率。  铝被称为“永不消逝的金属”。由于铝的表面有致密的氧化物保护膜,耐腐蚀性极强,不会生锈,从理论上讲可以全部回收进行再生循环利用,而且再生铝跟原铝的品质性能没有差别。自从1886年铝产品开始生产以来,全球总共生产了7.61亿吨铝,其中有5.29亿吨目前仍在使用中。而且,铝在回收利用时,其能耗仅为初次加工能耗的5%,可谓“出生耗能、终生节能”。因此,判断一种产品是否高能耗,应考察其全生命周期。  长远来看,铝的发展前景很好。铝企业自身要继续推进节能减排,进一步降低能耗,淘汰落后产能。更重要的是,要通过科技进步,创造出更多高品质、适用的铝产品,满足其他行业和普通消费者的需求。比如,由河南中孚实业(600595)牵头完成的“低温低电压铝电解新技术”项目,实现了吨铝直流电耗11900千瓦时以下,比国外先进水平低800千瓦时。科技创新不仅为铝工业的生产降低了成本和能耗,还为铝产品的运用提供了更多的可能性,拓宽了铝产品的消费市场。

我国铬矿简介

2019-03-14 10:38:21

概述铬是重要的战略物资之一,因为它具有质硬、耐磨、耐高温、抗腐蚀等特性,在冶金工业、耐火材料和化学工业中得到了广泛的使用。在冶金工业上,铬铁矿首要用来出产铬铁合金和金属铬。铬铁合金作为钢的添加料出产多种高强度、抗腐蚀、耐磨、耐高温、耐氧化的特种钢,如不锈钢、耐酸钢、耐热钢、滚珠轴承钢、弹簧钢、工具钢等。金属铬首要用于与钴、镍、钨等元素冶炼特种合金。这些特种钢和特种合金是航空、宇航、轿车、造船,以及国防工业出产炮、、火箭、舰艇等不行短少的材料。在耐火材料上,铬铁矿用来制作铬砖、铬镁砖和其他特殊耐火材料。铬铁矿在化学工业上首要用来出产,进而制取其他铬化合物,用于颜料、纺织、电镀、制革等工业,还可制作催化剂和触媒剂等。铬铁矿是我国的缺少矿种,储量少,产值低,每年消费量的80%以上依托进口。   一、矿藏质料特色 铬具有亲氧性和亲铁性,以亲氧性较强,只要在复原和硫的逸度较高的情况下才显现亲硫性。在内生效果条件下铬一般呈三价。六次酸位的Cr3+和Al3+Fe3+的离子半径相挨近,故它们之间能够呈广泛的类质同象。此外,可与铬类质同象替代的元素还有Mn、Mg、Ni、Co、Zn等,所以在镁铁硅酸盐矿藏和副矿藏中有铬的广泛散布。在表生带激烈氧化条件下(碱性介质),Cr3+氧化成Cr6+方式的铬酸根离子,使不活动的铬离子变成易溶的铬阴离子发作搬迁。遇极化性很强的离子(如Cu、Pb等),则构成难溶的铬酸性矿藏。在自然界中现在已发现的含铬矿藏约有50余种,别离归于氧化物类、铬酸盐类和硅酸盐类。此外还有少数氢氧化物、盐、氮化物和硫化物。其间氮化铬和硫化铬矿藏只见于陨石中。具有工业价值的铬矿藏都归于铬尖晶石类矿藏,它们的化学通式为(Mg、Fe2+)(Cr、Al、Fe3+)2O4或(Mg、Fe2+)O(Cr、Al、Fe3+)2O3,其Cr2O3含量为18%~62%。有工业价值的铬矿藏,其Cr2O3含量一般都在30%以上,其间常见的是: 1.铬铁矿 化学成分为(Mg、Fe)Cr2O4,介于亚铁铬铁矿(FeCr2O4,含FeO32.09%、Cr2O3 67.91)与镁铬铁矿(MgCr2O4,含MgO20.96%、Cr2O3 79.04%)之间,一般有人将亚铁铬铁矿和镁铬铁矿也都称为铬铁矿。铬铁矿为等轴晶系,晶体呈细微的八面体,一般呈粒状和细密块状集合体,色彩黑色,条痕褐色,半金属光泽,硬度5.5,比重4.2~4.8,具弱磁性。铬铁矿是岩浆成因矿藏,产于超基性岩中,当含矿岩石遭受风化损坏后,铬铁矿常转入砂矿中。铬铁矿是炼铬的最首要的矿藏质料,富含铁的残次矿石可作高档耐火材料。 2.富铬类晶石 又称铬铁尖晶石或铝铬铁矿。化学成分为Fe(Cr,Al)2O4,含Cr2O3 32%~38%。其形状、物理性质、成因、产状及用处与铬铁矿相同。 3.硬铬尖晶石 化学成分为(Mg、Fe)(Cr、Al)2O4,含Cr2O3 32%~50%。其形状、物理性质、成因、产状及用处也与铬铁矿相同。   二、用处与技能经济指标 铬铁矿石按工业用处划分为冶金级、化工级、耐火级和铸石级。 1.冶金级铬矿石的工业要求 冶金级铬矿石首要用于冶炼各种铬铁合金。用来冶炼铬铁合金的铬矿石又按不同的冶炼用处分为4个等第(表3.4.1)。除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。 除了上述成分要求外,用于高炉冶炼碳素铬铁的块度要求为40~75mm,电炉冶炼碳素铬铁的块度为40~50mm。冶金级铬铁矿石还可用来冶炼金属铬,现在我国冶炼金属铬的办法有火法和湿法两种。选用湿法冶炼金属铬要求:铬矿石或精矿含Cr2O3≥38%、Cr2O3/FeO>2、SiO2<12%、Al2O3<10%,此外矿石粒度小于180意图应占80%以上。 2.耐火级铬矿石的工业要求 在耐火材料工业中,铬矿石首要用来制作镁铬砖、铬砖和铬铝砖等。用于出产耐火材料的铬矿石分为两个等第。一级品用作天然耐火材料,质量要求:Cr2O3≥35%、SiO2≤8%、CaO≤2%。二级品用作出产铬砖、铬镁砖,质量要求:Cr2O3≥30%~32%、SiO2≤11%、CaO≤3%。以上两个等第,矿石块度都要求在50~300mm之间,并且矿石中不允许有大于5~8mm的夹石。 3.化工级铬矿石的工业要求 在化学工业上,铬矿石首要用来出产重铬酸盐(铬盐),再用它作质料出产其他铬化合物产品。铬盐用铬矿石工业要求:Cr2O3≥30%、Cr2O3/FeO≥2~2.5,SiO2少数。 4.铸石级铬矿石的工业要求 用以出产辉绿岩铸石的铬矿石,其质量要求:Cr2O3≥10%~20%,SiO2≤10%。   三、矿业简史 铬元素是法国化学家福克林(L.N.Vauqulin)于1798年发现的。铬铁矿石于1799年初次发现于俄罗斯的乌拉尔山区,该矿的发现与开发成为18世纪国际铬铁矿的首要直销来历,那时铬首要用在化学工业上。1827年在美国的马里兰州发现铬铁矿之后,在宾夕法尼亚州和弗吉尼亚州又相继发现了铬铁矿,从而使美国成了其时国际铬铁矿有限的供给国之一。1860年土耳其发现了一个大矿床,供给国际市场。直到1906年印度和罗得西亚发现铬矿停止,土耳其一直是铬铁矿直销的首要来历。到现在停止,国际上已有40余个国家和地区发现了铬铁矿,总储量达37亿t,产值达1000万t以上。我国虽然在1949年曾经在吉林、宁夏、河北等地发现过一些铬铁矿的头绪,但并没有做过深化的调查和研讨,全国仅知有2个矿点,一为吉林开山屯,一为宁夏小松山,前者已被日本侵略者掠取殆尽。新中国建立今后,因为工业展开的需求,开端了铬铁矿的寻觅与勘查作业。50年代初东北重工业部组队赴开山屯、地质部组队进入宁夏小松山及河北高寺台、大庙一带展开了作业。60年代在北京密云、甘肃肃北进行了铬铁矿普查作业,最终发现了密云县放马峪铬铁矿和肃北的大路尔吉铬铁矿。可是我国铬铁矿资源的真实打破应该说是在新疆和西藏发现铬铁矿之后。新疆展开铬铁矿作业是在50年代后期,1958年进行放射性丈量时发现了萨尔托海铬铁矿,1959~1964年又用重力、磁力和钻探办法找到了鲸鱼铬铁矿。1964~1966年地质部在新疆组织了会战。1970年鲸鱼矿山建成投产,这是其时我国仅有正规建井开辟的铬铁矿矿山。西藏铬铁矿是在50年代末、60年代初发现的,通过多年作业,探明晰我国最大的铬铁矿矿床——罗布莎铬铁矿,并使西藏成了我国铬铁矿的首要产地。

铬矿选矿方法

2019-01-18 09:30:20

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3 1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。 下图为甘肃大道尔吉铬矿跳汰一摇床选别流程图。

绿碳化硅

2017-06-06 17:50:02

 碳化硅分为黑色碳化硅和绿色碳化硅两种。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅含SiC99%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。黑碳化硅含SiC约98.5%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和 有色金属 等。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。

使用铬矿选矿废料作耐火原料

2019-01-21 18:04:55

由于镁质原料价格昂贵,迫使寻找它的新来源,其中包括寻找工艺特性。金彼尔铬矿选矿废料就属于这种新来源。用化学分析、岩相分析、X-射线照相分析、重量变化分析研究了煅烧前后的废料,并按现有方法测定了某些性能指标。 不烧废料的化学组成列于表1。MgO与SiO2的比波动于1..03~1.37之间。值得注意的是灼减很大(13.47%~16.77%),这要求无论是在生产补炉粉料时还是在生产耐火材料时,必须进行预先煅烧。 表1  铬矿选矿废料的化学组成重量百分数%MgO/SiO2灼减SiO2Fe2O3CaOMgOCr2O3Al2O313.4730.4610.803.0333.000.938.241.0814.4630.468.071.1231.411.9812.71.0316.7729.207.863.0339.901.491.341.3716.1231.286.790.5641.601.291.141.3415.5330.007.580.2833.435.482.381.2815.5433.277.450.2840.001.00-1.2015.2033.417.501.1241.200.951.301.2714.9032.407.800.8438.603.632.051.1914.3832.04-1.1238.301.05-1.19 优质硅酸镁岩特有的高耐火度,(1730~1780℃),说明废料在耐火材料生产中使用是有前途的。 从烧成前的废料试样外观上看为浅绿、淡灰色,均质、密实。 在显微镜下研究表明,试样具有蛇纹岩或蛇纹岩化的纯橄榄岩所特有的网状结构,由形成密网的3MgO·2SiO2·2H20蛇纹石浅绿色鳞片状纤维物质(主要是纤维变体-纤维蛇纹石)组成。在网的结点上不均匀地分布有尺寸为0.06~0.24mm的2(MgO、FeO)SiO2橄榄石无色有棱角非均质颗粒。橄榄石折射指标: Ng=1.680~1.690,Np=1.640~1.650。在橄榄石颗粒周围,常看到细分散氢氧化铁(针铁矿型)不透明薄膜。不透明的磁铁石与透明的褐色含铬尖晶石(Mg,Fe2+)O(Cr,Fe3+,Al)2O3相遇时,呈少有的较粗颗粒的八面体和尺寸为0.08~0.32mm的有棱角的颗粒形式存在。 废料的大致矿物组成(体积比):蛇纹石80%~85%,橄榄石10%~15%,夹有氢氧化铁的磁铁矿3%~5%,含铬尖晶石2%~3%。 原废料总试样的x-射线相分析也表明,主要物质是蛇纹石(纤维蛇纹石,少量叶蛇纹石),有不多量的橄榄石,还发现有微量的舍铬尖晶石和针铁矿。 废料的热重量分析(图1)表明,有3个蛇纹石特有的基本热效应。70℃时的吸热效应与吸附水排出有关;620℃时:矿物结构受到破坏,同时OH-基排除,由分解产物形成x-射线非晶形的镁橄榄石和顽辉石。770℃时的放热效应是由新形成的矿物相结晶作用引起的。图1  铬矿选矿原废料的热谱图 180℃和375℃时的吸热效应与细分散针铁矿的存在有关。在180℃时,处于吸附水与结构水之间的中间位置的水被排出。在375℃时,针铁矿(α-FeOH)发生脱水和其转变为α-Fe2O3。α-Fe2O3向ρ-Fe2O3的多晶转变的第二次吸热赦商与770℃时的蛇纹岩吸热效应同时发生。 在热解重量分析曲线上有4个最大失重阶段:20~150时为3.5%,180~380℃时为3%,380~770℃时为11.75%,770-1000℃时为0.25%。 废料的某些性能指标的变化数据列于表2和表3。表中的数据表明,灼减是随烧成温度的提高而减少。 表2  铬矿选矿废料的某此性能材料粒度mm烧成温度℃重量百分数%灼减SiO2Fe2O3Al2O3Cr2O3CaOMgOFeO耐火度℃密度g/cm33~0不烧17.234.24.711.310.630.5040.9-1730-<0.06不烧19.232.74.161.582.130.8739.7---3~014000.3641.06.221.052.080.3648.01.9117503.2653~015000.1241.74.050.660.830.6549.43.3217803.289 表3  国外耐火材料指标热处理温度℃不烧65070090012001400150015801650活性MgO的重量百分数%-14.313.415.17.78未测开口气孔率%3.626.025.126.818.815.817.714.914.831.918.420.423.9体积密度g/cm32.352.102.002.112.502.582.642.642.042.542.36灼减%1722.52.661.480.660.120.100.10 在废科试样加热过程中,像普通的蛇纹岩一样,在200~300℃时开始脱水,900℃时结束。这些过程促使材料松散,而且在700~900℃时气孔率达到最大值,当温度更高时困蛇纹岩密实而使气孔率降低,在1300~1400℃时气孔率达到最小值。当温度在1500℃左右时,蛇纹岩可能会因密度增加而发生膨胀。 X-射线相分析表职,在7OO℃下烧成后,试样非晶形化强烈。在衍射图上有镁橄榄石线,这证实了热谱图的数据。反射较弱,图象模糊,结构不完整。正方晶格的参数:a=0.4760nm,b=1.0201nm,c=0.5992nm。还有微量富氏体、叶蛇纹石,β-Fe2O3、H2O、含铬尖晶石和其它相。在1400℃下烧成后的试样为浅红、淡灰色有棱角的烧结的多孔碎块。在显微镜下发现,这些碎块主要由无色有棱角等轴颗粒和尺寸为0.04~0.3mm的镁橄榄石片状晶体组成,这些晶体大部分不用玻璃胶结膜、互相贴合(表4),即直接结合。镁橄榄石折射指标是标准的。 表4  煅烧后废料试样的相组成烧成温度℃体 积 比%镁橄榄石斜顽辉石镁铁矿镁磁铁矿含铬尖晶石玻璃140075~8010~155~10-1~31~2150075~803~55~103~51~31 在细晶粒镁橄榄石物料中很不均匀地分布着被浅绿-浅褐色玻璃薄膜粘结的尺寸为0.004~0.02mm的a-MgSiO3斜顽辉石小颗柱晶体和八面体晶体;很少见到尺寸小于3~15mm的Mg Fe2O4铁矿圆形等轴颗粒。 在试样中很不均匀地分布着不多数量的尺寸为0.02~0.12mm的含铬尖晶石稍透明的角状颗粒。气孔大多数是不规则的等轴形状,尺寸为0.02~0.3mm,偶而是宽度为0.02~0.05mm的弯曲纵裂纹状。 1500℃下烧成后的试样,与1400℃下烧成的试样不同,为较黑的颜色,气孔率大。从显微镜上看,它们很象1400℃下烧成后的试样,但不同之处是镁橄榄石折射指标稍高(Ng=1.695,Np=1.660±0.003),这证明有同晶形FeO杂质存在。在普通圆形等轴的镁橄榄石晶体中常常观察有很小的闭气孔(按直径计3μm以下)。此外,不同之处是镁铁矿晶体稍大(25μm以下),在镁橄榄石颗粒表面上有不透明的镁磁铁矿(Mg,Fe)Fe2O4树技状晶体和为数不多的斜顽辉石及玻璃。 在匈牙利Πayrnt硅和Ξpnen式重量变化分析仪上,在加热速度为10/min时得到的1400℃和1500℃时烧成的试样热分析曲线(图2)很相似,表明这些试样是热惰性的。 1500℃时烧成后的废料的x-射线相分析也表明镁橄榄石晶体是主要成份。这个相的曲绒表现得强烈、尖锐、清晰。晶格参数:a=0.477nm;  b=1.020nm, c=0.5992nm。除上述相外,在试样中尚有为数不多的紫苏辉石(Mg,Fe)2Si2O6和磁铁矿,还有微量的硅酸二钙。图2  1400℃时烧成后的废料热谱图 研究结果可知铬矿选矿废料般烧时的性能如下: 正如前面提及,蛇纹石是未烧废料的主要矿物相。在蛇纹岩煅烧时,主要产生下列反应: 3MgO·2Si02·2H20→2MgO·SiO2+MgO·SiO2+H20       (1)      (镁橄榄石)   (斜顽辉石)  770℃和大于770℃时蛇纹岩的热谱图上的放热效应是其晶格改组而生成镁橄榄石的结果。正象上面提到,镁橄榄石曲线首先是在700℃时观察到的,在温度1150℃和更高时生成大量的镁橄榄石,这证实了岩相研究。 随着温度的提高,蛇纹石和橄榄石中所含的氧化铁(l)氧化(约在800℃时),此时橄榄石分解,部分生成偏硅酸盐(辉石),可能也析出为数不多的硅石(玻璃)。 在1200℃以上温度时生成的氧化铁(2)部分地转变成磁铁矿,继而与析出来的镁橄榄石反应而生或顽辉石和镁铁矿: 2Mg0·Si02+Fe2O3→MgO·SiO2+MgO·Fe2O3      (2) 橄榄石与氧化铁(3)反应,生成顽辉石和镁铁矿中的二价铁的固溶体:2(Mg,Fe)O·SiO2+Fe2O3→(Mg,Fe)O·SiO2+(Mg,Fe)O·Fe2O3       (3)镁橄榄石也与磁铁矿反应、并析出橄榄石和有镁铁矿的固溶体: 2MgO·SiO2+Fe3O4→2(Mg,Fe)O·SiO2 +(Mg,Fe)O·Fe2O    (4) 原有的含铬尖晶石与废料的硅酸镁组份反应生成固溶体。 蛇纹石脱水,氧化铁(2)氧化,固溶体生成,使选矿废料个别变体的性能不同,而且视蛇纹石化的程度和氧化铁含量而有不同的性能。 煅烧时看到的废料性能的变化涉及到,除加热时废料密实外,橄榄石颗粒中氧化铁发生再结晶、在蛇纹石区段生成微粒硅酸盐晶体(镁橄榄石),当它们互相作用时(在1450℃时)生成的镁铁矿分解出硅酸盐颗粒,这使气孔率略有增加。硅酸盐强烈再结晶(1450~1500℃),对制品烧结有不良影响。 铬矿选矿废料的最佳烧威温度应当是1400~1450℃。在此温度下,氧化铁已大大氧化和再结晶,而硅酸盐再结晶程度不大。 所进行的研究表明,金彼尔铬矿选矿废料的主要性能与优质的硅酸镁岩相似,这就决定了可能的使用范围,尤其是可用于生产补炉混合料、镁橄榄石质的耐火材料。 结论 对金彼尔铬矿选矿废料及其烧成对的性能进行了综合研究。研究表明,废料的矿物组成是蛇纹石和含量不大的含铬尖晶石。 烧成时废料的性能与蛇纹岩观察到的性能相同。根据性能指标,金彼尔铬矿选矿废料可以作为硅酸镁原料用于耐火材料工业。

铬矿冶炼工艺了解

2019-01-04 09:45:31

增产降耗是铁合金生产永恒的话题,碳素铬铁生产亦是如此,尤其是近来铬矿资源馈乏,生产使用的铬矿往往品种杂乱,配矿单一,给工艺控制造成较大难度,稍有不慎则炉况恶化,生产不能顺行,技术经济指标难以控制。重庆铁合金(集团)有限责任公司近年来使用过十余中铬矿,在应对上述不利因素方面作了较多的探索。我们发现铬矿石中MgO与Al2O3的含量能直接反映铬矿的冶炼性能,针对不同的MgO/Al2O3值采取应对措施,效果明显,是碳素铬铁生产取得良好指标的关键。 1铬矿特性大致分类 1.1铬矿中的MgO/Al2O3值 传统上将铬矿石按粒度分为块矿和粉矿,按理化性能分为难熔矿和易熔矿。在生产实践中,我们发现铬矿的冶炼性能主要与其中MgO及Al2O3含量紧密相关。众所周知,矿石的粒度过小会影响炉料透气性,但可以通过一定的措施进行改善(如增大焦炭粒度、多加回炉渣铁等),矿石的熔化性能也可以通过改变其入炉粒度在一定程度上得到改善。而铬矿中如果MgO及Al2O3含量严重失调,则会使炉况不顺,生态平衡产业指标下滑。在生产实践中我们以铬矿的MgO/Al2O3值作为衡量铬矿冶炼性能的一个重要指标。一般我们将MgO/Al2O3〈1称为低镁铝比矿,MgO/Al2O3〉1.5称为高镁铝比矿,MgO/Al2O3=1~1.5为中度镁铝比矿。 1.2MgO/Al2O3值与铬矿冶炼性能 MgO属碱性氧化物,在溶液中可电离成为Mg2+及O2-,具有较强的导电能力,因此,如果炉料中MgO含量过高,将会使炉料及所形成的炉渣比电阻减小,导电能力增强,电流急剧增大,电极上抬,刺火严重,反应区缩小,炉渣流动性差,产量下降,电耗上升;Al2O3属高熔点氧化物,当其含量过高时,炉料及炉渣比电阻增大,容易使符合使用不足,电极深埋,料面死火,炉温低,产量下降,回收率低,炉渣粘稠,炉衬易损坏.当炉料中MgO与Al2O3的含量达到一定的比例时,形成一种平衡,此时炉料的导电性能\熔化性能以及炉渣的熔点\黏度等都能达到一种良好的状态。在生产过程中我们注意到,无论何种铬矿进行配搭,当炉料MgO/Al2O3 1.5以后,则会呈现前述MgO过高的炉况,而MgO/Al2O3值越高情况越严重。根据铬矿中不同的MgO/Al2O3值,生产中应该采取相应的对策。 2参数选择 2.1二次工作电压 对高MgO/Al2O3矿,应选择较低的二次工作电压;对低MgO/Al2O3矿宜选择较高的二次工作电压。以500kvA电炉为例,当MgO/Al2O3>1.4,二次电压选择为105~110V;当MgO/Al2O3 2.2极心圆直径 高MgO/Al2O3矿及块矿,应选择较大极心圆直径;低错误!链接无效。及粉矿,则应该选择较小极心圆直径。 2.3炉膛深度 通过长期实践摸索我们感觉到,在碳素铬铁生产中,较深的炉膛有利于增加料层厚度,预热炉料,深埋电极,保持炉缸温度,减小热散失,取得较好的技术指标。中小型矿热炉参数一般是通过米库林斯基简易计算法来确定,在计算值的基础上将炉膛加深20%能取得较好的效果。 3渣型与碱度过控制 碳素铬铁生产为有渣冶炼,控制合适的渣型是生产的关键环节。渣型不应是一个固定的形态,不应该只按百分含量去调整其中的氧化物成分,调配渣型最直观的依据是MgO/Al2O3值和碱度。 3.1MgO/Al2O3 在矿种的搭配上,应努力将炉料的综合MgO/Al2O3值调至适中的范围内,我们的实际体会是:如果将MgO/Al2O3值调配在1.05~1.2范围内,再配以合适的碱度能取得较理想的效果,此种渣型导电性能适中,有利于电极深插而用足负荷,炉况稳定,料面火焰均匀,产量高,电耗低,各项指标良好。如果矿石中MgO/Al2O3 3.2炉渣碱度 除了MgO/Al2O3以外,炉渣碱度(MgO+CaO)/SiO2也是一个重要指标.碱度主要是以硅石的配入量来调节,但不能单纯强调碱度,必须要将碱度与MgO/SiO2值进行综合考虑,当MgO/SiO2较大时可适当控制较低碱度,而MgO/SiO2值小时应控制较高碱度,以使炉渣具有恰当的熔点\黏度和导电性能。一般情况,如果MgO/SiO2值在1.05~1.2范围内,碱度控制为1.1~1.25能取得较好效果。 4合金成分控制 合金成分控制主要是指合金中C\Si\S等杂质元素的控制,这些元素在合金中的含量与铬矿的性能及生产技术经济指标有较直接的关系。 4.1[C] 根据铬铁生产精炼脱碳机理,炉内降碳需要两大条件:①要具有较高而且稳定的炉内温度②必须在炉缸高温区存在有足够量的残存Cr2O3。必须同时具备这两个因素,精炼脱碳反应才能进行,产品的含碳量才能有所降低。因此,块矿\高MgO/Al2O3矿能生产出含炭较低的碳素铬铁,反之,粉矿\低MgO/Al2O3矿所生产的铬铁含炭都较高。而生产含炭低的碳素铬铁产品因需要保持较高的炉温和炉缸残存Cr2O3,需造高熔点渣,单位电耗都较高。 4.2[Si] 合金中硅含量与炉温及还原剂用量直接相关,[Si]含量高将使还原剂用量增加,单位电耗升高,但过低的[Si]含量不利于[C]\[S]控制,如果矿石中MgO/Al2O3低时,[Si]过低会导致负荷使用不足。因此合金中[Si]的控制应考虑矿石中MgO/Al2O3值,MgO/Al2O3值高时宜控制较低的[Si],反之,应将[Si]控制得稍高。 4.3[S] 合金中的硫主要是由焦炭代入,在生产过程中控制合金含[S]量的有效手段主要有两方面: 4.3.1调配合适的渣型。适当增加炉渣中CaO的含量,有利于增强炉渣的脱硫能力,增大硫在炉渣中的分配率,降低合金的含硫量。 4.3.2控制合适的合金成分。合金中的[Si]及[C]含量增加,会在一定程度上降低[S]含量。生产过程中的脱硫将增加冶炼的负担,需要控制较高的合金[Si],较高的炉渣(CaO),使焦耗\电耗增加,因此应严格限制入炉原材料中的硫含量。 5结束语  MgO/Al2O3值是铬矿的一个重要指标,在生产中应根据矿石中MgO/Al2O3值,对电炉电气参数\渣型及合金成分等方面采取相应的控制措施,方能取得良好的生产技术经济指标。

铬矿的选矿方法

2019-01-16 17:42:05

我国对贫铬矿的选矿,曾采用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3<20%),也用水力充分选管选别过摇床中矿。在实验室研究了干式强磁选、湿式强磁选、浮选和各种化学选矿法。但在生产技术中采用重选法,个别矿山采用强磁选,浮选法等选矿法目前技术还不成熟。1967年以来,我国先后建起了河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,采用重选选别,前3个随着开采的结束相继停产。现有索伦山选厂,是1985年筹建的,设计规模年产精矿粉3000~4000t,入选矿石品位25%,重选后精矿品位41%,但尾矿品位达10%,后改为强磁选流程,于1986年投产。

铬矿石的选矿方法

2019-02-13 10:12:33

我国铬矿石中常见的铬尖晶石矿藏有铬铁矿[(Mg,Fe)Cr2O4]、铝铬铁矿[(Mg,Fe)(Cr,Al)2O4]和富铬尖晶石[Fe(Cr,Al)2O4]等;脉石矿藏首要有橄榄石、蛇纹石和辉石等;有时伴生少数钒,镍、钴和铂族元素。在岩矿鉴守时应该侧重查明铬尖晶石的化学成分,由于它决议着精矿档次和铬铁比。     铬铁矿石的选矿首要选用重选办法。出产上常选用摇床和跳汰选别。有时重选精矿用弱磁选或强磁选再选,进一步进步铬精矿的档次和铬铁比。     铬尖晶石含铁较高或与磁铁矿细密共生的矿石,经选矿后得到的精矿中,铬档次和铬铁比都偏低,能够考虑作为火法出产铬铁的配料运用,或用湿法冶金处理。例如法、氢氧化铬法、复原锈蚀法、氯化焙烧酸浸或电解法等。用湿法冶金处理初级铬铁精矿已有出产实践。     铬铁矿石中伴生的铂族元素如呈硫化物、砷化物或硫砷化物状况,能够用浮选法收回。矿石中的橄榄石和蛇纹石,能够考虑归纳收回,供出产耐火材料、钙镁磷肥或辉绿岩铸石等运用。

铬矿直接还原合金化

2019-01-24 09:36:33

铬是冶炼不锈钢、内热钢、合金工具钢、合金结构钢以及多种类型铸铁的重要合金元素。随着国民经济的发展,需要更多的不锈、内热、高强度的钢材,铬合金的消耗量也迅速增加。我国铬矿资源短缺,大型富矿少,小矿品位低、贫而杂,大量开采经济上不合理,得不到充分利用。国内有些厂家曾做过铬矿还原直接合金化的工业性试验,铬矿还原率平均为90%,但所采用的铬矿粉为进口铬矿、铬精矿等。因受资源的限制,难以满足大工业生产的需要。铬矿大部分依靠进口,致使铬合金供应紧张,价格高。 为充分利用有限的铬矿资源,降低钢材的生产成本,采用内蒙古乌拉特中旗所产的低品位铬矿,进行铬矿直接还原合金化的试验研究,实验室和半工业性试验证明,铬矿直接还原合金化是可行的。它可以代替高碳铬铁用于炼钢,反应速度快,经济合理,收得率高。在3t电弧炉上冶炼35CrMo钢的工业性试验中,铬矿中的铬的收得率在89.6%~96.7%,平均为92.92%。 1、铬矿中铬的回收率为89.6%~96.77%,平均为92.92%。 2、还原铬矿入炉后25min左右,已得到较好的还原,不延长炼钢冶炼时间。 3、用还原铬合金剂炼钢,钢中增碳量与使用高碳铬铁基本相符。因此,可以代替高碳铬铁使用。 4、还原铬合金剂生产工艺简单,技术容易掌握,生产率高,能改善劳动条件,避免了冶炼铬铁造成的环境污染。 5、采用本还原铬合金剂冶炼35CrMo钢,可使吨钢成本下降,经济效益显着。 6、可提高铬的总回收率约10%,解决了矿山日益增多的廉价铬矿粉的利用问题。

锂辉石与绿柱石浮选分离

2019-01-21 09:41:35

锂辉石与绿柱石浮选分离:由于锂辉石常与绿柱石伴生,它们的浮选分离一直是一项选矿难题。我们采用对于含锂的铍矿石(含0.096%BeO,0.26%Li2O)可获得铍精矿品位9.24%BeO,回收率80.82%。付产锂精矿品位5.03%Li2O,回收率43.22%;对于含铍的锂矿石(含0.05%BeO,0.93%Li2O)可得锂精矿品位6.0%Li2O,回收率88.15%,付产铍精矿品位8.50%BeO,回收率69.84%。

绿碳化硅价格

2017-06-06 17:50:03

2010年国内绿碳化硅 价格 仍将持稳。国内碳化硅 市场价格 在经历2008年到2009年暴涨、暴跌、持续下跌、反弹的 走势 之后,2010年国内绿碳化硅 价格 仍将持稳。我国绿碳化硅产能在55万吨左右,其中青海、四川、新疆为主产区,产能占80%以上。&nbsp;&nbsp;绿碳化硅主要用于线切割 行业 。2008-2009年,绿碳化硅 走势 也同样经历了先涨后跌的 走势 。因原料和国家政策的刺激,绿碳化硅 价格 下滑略微滞后于黑碳化硅。直至2009年底,随着原料和电价的上涨,绿碳化硅 价格 逐步回升。进入2009年,因 市场 需求不旺,一级碳化硅难以承受库存压力, 价格 继续走低。5月份,丰水期优惠电价的实施,为碳化硅 价格 下滑再一次提供动力。二级黑碳化硅在满足国内 市场 的同时,多数出口到国外 市场 ,供应略显紧张,因此二级碳化硅全年 价格 波动较小。&nbsp;&nbsp;2009年底,国家统一上调电价。西北各地区根据实际情况上调电价,其中甘肃地区电价上调0.08元/千瓦时,宁夏地区上调0.05元/千瓦时,青海地区电价上调超过0.03元/千瓦时,一时间碳化硅 价格 迅速上涨,最低上调200元/吨,最高上调500元/吨。此时,原料无烟煤和石油焦 价格 开始上涨,涨幅接近30%。碳化硅 价格 开始反弹,但下游 市场 需求仍处于低迷状态。2010年,我国有关部委将着力开展提升优化传统 产业 、抑制过剩产能扩张,开展节能降耗、减排治污,淘汰落后产能等工作。&nbsp;&nbsp;我国碳化硅总产能约155万吨,产能严重过剩。2009年,西北地区黑、绿碳化硅产能均有增长,但各地区均存在部分落后产能。2010年,各地区将采取实质性措施提高 产业 集中度。其中,青海省政府决定在2010年底前,淘汰6300KVA以下的冶炼炉;宁夏地区将继续对铁合金、碳化硅等 行业 实施能耗电价联动机制,最大限度地降低高载能产品单耗;甘肃省也将继续对小功率冶炼炉进行整顿。在国家对高耗能 行业 进行控制的情况下,下一步相关部门将对电价、 行业 准入标准进行相应调整,或推动碳化硅成本增加, 价格 走高。&nbsp;&nbsp;&nbsp;&nbsp;目前国内绿碳化硅 价格 趋于平稳。

加强新疆萨尔托海铬矿管理与保护

2019-01-24 09:37:11

新疆萨尔托海铬矿是我国唯一的耐火材料级铬矿生产基地。国家投入了大量勘查资金,经地质工作者三十多年的辛勤劳动,已探明储量的矿群有14个,累计探明储量上百万吨,Cr2O3含量在32%以上的富矿约占50%。 新疆有色金属工业公司铬矿于1970年投入开采.从1 989年开始,1个地方国营铬矿,4个乡镇集体铬矿相继在萨尔托海矿区建矿投产。自1970年至1991年共采出铬矿石35万t。主要销往上海、东北及洛阳耐火材料厂,为我国冶金工业的发展做出了贡献。 铬矿不仅做耐火材料,还用于冶炼不锈钢,各种合金钢,制取各种铬盐。 我国铬矿资源短缺,每年需花外汇进口大量铬矿石。铬矿价格较高,当地将开采铬矿作为脱贫致富的途径。新疆铬矿生产发展迅速,但也存在许多亟待解决的问题。 一、存在的主要问题 (一)资源浪费严重 萨尔托海铬矿赋存状态复杂,呈透镜状,土豆状、鸡窝状,矿休一般较小。有的围岩破碎,给采矿带来一定困难。 由于地方国营和乡镇集体矿技术力量薄弱,管理不善,有些小的矿体被丢弃。冒顶压矿现象时有发生,如某矿以包代管,民工在采矿过程中为了自己多收益,违章作业,使采场暴露面超过规定要求,爆破中装药过量,结果造成大冒顶,使4000多t特富矿压于地下无法回收。 (二)铬矿销售中自找门路,经济效益受到影响 铬矿销售中无统一管理,各矿山企业派人四处奔跑,自找销售门路,互相压价。据有关部门反映,如果统一管理,每吨富矿可卖800元,目前只卖500元,使各矿山企业经济效益受到影响。 (三)地方国营,乡镇集体铬矿积压粉矿急待处理 有色金属工业公司铬矿有一简陋的选矿厂,用于处理粉矿,但处理能力很低,每天只处理2~3t。五个地方国营、乡镇集体铬矿均无选矿厂,积压粉矿万余吨,他们曾想将粉矿卖给有色金属工业公司选矿厂,但因给价太低,积压粉矿至今未能进行选矿处理。 (四)采富弃贫 由于缺乏统一规划,无开采设计和计划,致富心切,某矿储量5.7万t,富矿仅1.7万t.已采出1.4万t,目前富矿已采完。由于自己无选矿厂,剩下的含Cr2O3 25%以下的贫矿,开采困难,要求闭坑。其他矿山企业丢弃低品位铬矿石现象也有存在。 二、加强铬矿资源管理与保护的措施 (一)建立铬矿区统一管理协调机构 1989年以来,萨尔托海铬矿区存在多种经济成分的矿山企业,由于技术水平和管理水平低,存在资源浪费严重、销售中互相压价等问题,固此,组建矿区统一管理协调机构势在必行。有色金属工业公司铬矿有建矿二十多年的历史,技术力量雄厚,管理水平较高,因此依托有色金属工业公司铬矿,在技术上、管理上帮助地方小矿,解决一些问题,在销售上统一组织,统一价格,协调各矿之间的关系,将更有利于铬矿的发展。 (二)建立铬矿选厂,提高铬矿资源利用率 冶炼不锈钢、各种合金钢及制取各种铬盐所用富矿(或精矿)最低工业指标Cr2O3含量≥32%,而萨尔托海铬矿在采矿过程中产生大量粉矿,且矿石Cr2O3量越高,矿石越脆,粉矿量越多,全矿区每年产生粉矿约5000t.均需选矿后方可销售。萨尔托海矿区低品位铬矿储量占50%,必须经过选矿,产品方能达到工业指标。1971年地矿局中心实验室对该矿区21号矿群钻孔样做过选矿实验,入选样品Cr2O3含量22.80%,精矿Cr2O3含量32%,选矿回收率70%。经过选矿实验,证实萨尔托海低品位铬矿是可选的,而且经济上合理。建立具有一定规模的铬矿选矿厂将有利于提高资源利用率。 (三)深入宣传贯彻《矿产资源法》,提高矿区干部、工人依法办矿,科学采矿的自觉性 深入宣传《矿产资源法》的基本精神,宣传“矿产资源属国家所有”、“矿产资源不可再生”、“我国铬矿资源短缺情况”;宣传“十分珍惜,合理开发利用和有效保护矿产资源”的基本方针。提高矿区干部和工人依法办矿,科学采矿的自觉性。 (四)加强技术培训,提高干部、工人的技术素质 鉴于地方国营、乡镇集体矿山企业没有采矿专业技术人员,第一线采矿工人绝大多数是从内地自流来疆的,对干部工人进行技术培训是非常必要的。发挥有色金属工业公司铬矿技术优势,结合萨尔托海铬矿区地质特征,矿体赋存状态,讲授采矿技术及管理方面的知识,对干部、工人分期分批进行培训,不断提高技术水平和管理能力。 (五)加强对矿山企业矿产资源开发利用监督检查 地、县两级矿管部门要经常深入矿区,对各矿山企业矿产资源开发利用进行监督检查,对严重破坏、损失浪费矿产资源者要依法惩处。坚决制止以包代管的管理办法,要求各矿山企业建立健全有关规章制度,其主要领导干部对合理开发利用和保护矿产资源负全部责任,并制定干部轮流下井值班的制度,亲自指导生产,按规章制度开采管理,发现问题及时解决。 (六)加强对萨尔托海有限的铬矿资源的保护 要统筹规划,合理划分资源,使中央、地方和乡镇矿协调发展。要体现国营骨干矿山的主体地位。新疆有色金属工业公司铬矿已建矿20多年,技术力量雄厚,采矿设施,后勤机修已具规模,开采回采率高,安全措施好,必须为该矿留有足够的后备资源,因此,对地方国营、乡镇集体矿山企业的采矿规模应维持现状,不再扩大采矿点。对有限的铬矿资源的开发利用,由自治区有色金属工业公司提出统一规划,合理布局,报自治区计委会同地矿主管部部审批,以达到合理开发利用与有效保护矿产资源的目的。 萨尔托海铬矿区,由有色金属工业公司铬矿牵头,地矿主管部门协助,使各种经济成分的矿山企业加强执作,提高技术水平,加强管理,统一销售,萨尔托海铬矿将会取得更好的经济效益、社会效益和资源效益。

南非普里蒂铬矿的生产

2019-02-20 11:03:19

普里蒂铬控股有限公司(Purity Chrome (pty)Ltd.)是联合冶金工业(Consolidated Met-allurgical Industrles,简称CMI)公司的子公司,坐落南非德兰士瓦省勒斯腾堡城外1km处,是在布什维尔德式杂岩体(Bushveld Com-plex)上新建的一个厂商,这儿已有几个地下矿山在出产。该厂商包含一座地下矿和一个铬选矿厂。 1989年6月,F.F.阿立克萨每(Alexan-der)采矿服务公司签订了完结2000m矿山开辟工程的合同。一同,戴维(Davy)南非公司(戴维世界财团的一个公司)签订了选矿厂的规划、施工和试出产合同.选矿厂的规划是由设在约翰内斯堡的戴维南非公司办事处完结的,规划还包含悉数配套工程和供电工程。 1990年5月,矿山开端挖掘;8月,普里蒂公司接收了悉数采矿出产经营,10月,约翰内斯堡联合投资公司的分公司-CMI购买了普里蒂铬及铬铁厂商。至今,该厂商已采出矿石l00多万吨。 1992年9月,普里蒂铬矿在所有铬矿中首要被列入ISO9002质量确保单位名单。这一质量体系确保保护和恪守全面质量办理体系,为了确保终究产品的质量和运用户满足,公司整体雇员都要参加体系的规划和监控、出产和办理。 一、地质和矿藏学 铬铁矿(FeO·Cr2O3)是仅有有经济价值的铬矿藏。铬首要用于出产铬铁合金,而铬铁合金是出产不锈钢和特殊钢的重要质料。别的,铬还用于出产耐火材料、制革、染色、镀铬和颜料工业。 铬铁矿在布什维尔德式杂岩体中的赋存办法为:古铜辉岩和纯橄榄岩的副产矿藏、斜长石中的包体,可是最有经济价值的是布什维尔德式杂岩体临界区中的假层状铬铁岩层。这些矿层在杂岩体中的倾角均匀为80~250。 尽管该区域现已发现有20多条矿层,可是给了编号的只要13条首要矿层,即:      上部矿层群:1号和2号;      中部矿层群:1~4号;      下部矿层群:1~7号; 其间,下部矿层群的主矿屡(LG6或Magazine矿层)被视为最有经济价值的可采矿层。 普里蒂铬矿坐落布什维尔德式杂岩体的西矿带LG6矿层上,挖掘厚度约1.8m,其间有40cm的中间废石夹层。 理论上,铬铁矿是FeO·Cr2O3,但布什维尔德式杂岩体的矿藏首要是由三种同晶型尖晶石组成的杂乱尖晶石,即由(FeMg)O·Cr2O3、(FeMg)O·Al203和FeO·Fe2O3组成,一部分是由Al203和Fe2O3代替Cr2O3,另一部分是由MgO代替了FeO。普里蒂铬矿的Cr2O3尖晶石含量约为47.2%。图1  典型钻孔断面图 二、采矿 普里蒂铬矿LG6矿层的挖掘厚度为1.8m,南北向歪斜,倾角12.50。矿层由三部分组成:30cm的铬铁矿、40cm的中间辉岩夹层和110cm的铬铁矿,矿层的挖掘厚度和倾角有利于完结机械化采矿。选用房柱法挖掘,矿柱在倾向和走向的尺度分别为13m和5m,矿房宽度一般为15m。回采率规划为75%~80%。每挖掘lOOm.留一排部分矿柱,作为辅佐支护。 掘进了两条暗斜井.一条作为铲运机的运送道,另一条装置胶带运送机运送矿石,一同作为人行道。沿歪斜每隔lOOm装置一条东西向的运送机,为了缩短铲运机的运送时刻,把卸载点设在距作业面30m处。采矿实施两班制作业,白班进行作业面凿岩和装药,凿岩选用普通的手持式风动凿岩机,为硝铵-柴油混合物粒状。夜班只进行装矿和整理采场,有7台Toro 150D铲运机整理矿岩。 现在,矿山实施每周5天作业制,日出矿量为2000t,年出矿46万t。估计矿山寿数为16年(不包含矿产权归于JCI的北部矿区),如果把北部矿区核算在内,矿山寿数还能够延伸18年。图2  普里蒂铬矿房柱采矿法示意图 矿柱:沿倾向l3m,沿走向5m;矿房宽度:15m, 为了安全,实践尺度小于15m 三、选矿厂 (一)给矿预备 矿石由原矿运送机从斜井运至1.5m×3.6m的榜首段除大块筛,筛孔为100mm。筛上物料进入颚式破碎机,破碎产品由循环运送机回来原矿运送机,-1OOmm的筛下产品由一台头部可上下升降的运送机运到容量为4000t的露天矿堆,这台运送机装有绞车,能够升高或下降,以减步损耗。厂区序号说   明质料运搬0原矿运送机1除杂磁铁2榜首段除大块筛3矿堆给矿运送机4榜首段颚式破碎机5破碎产品循环运送机6矿堆7矿堆积矿振荡给矿机8矿堆出矿歪斜运送机9分级筛10块矿缓冲仓11碎矿缓冲仓12蜗形重介质选矿体系计量给矿机13蜗形重介质选矿体系给矿运送机14动态旋涡重介质选矿体系计量给矿机15动态旋涡重介质选矿体系给矿运送机16粉矿仓17粉矿运送泵蜗开重介质选矿车间21~44蜗形重介质选矿车间37块状铬铁矿产品仓38块状铬铁矿运送机动态旋涡重介质选矿车间46~47动态旋涡重介质选矿车间56屑状铬铁矿运送机65屑状铬铁矿产品仓65屑状铬铁矿产品溢出部分螺旋选矿车间70~100螺旋选矿车间85冶金级产品堆86化工级产品堆 图3  普里蒂选矿厂流程示意图及首要设备表 露天矿堆的矿石由两台45t/h的振荡给矿机给到歪斜运送机上,运送到1.5m×3.6m的双层分级筛上,筛下有两个缓冲仓。 矿石通过湿式筛分,分红三部分;-100~+20mm(块矿)和-20~+0.8mm(碎矿),这两部分分别给入两个重介质选矿体系,-0.8mm(粉矿),送入螺旋选矿车间。 (二)蜗形重介质选矿体系 分级筛筛出的+20mm产品先在一台1.2m×3m的给矿预备筛上进行脱砂,然后进入蜗形分选机。这种分选机是一种高效设备,其产品的收回和排料办法新颖。产品和废石排至l.2m×4.8m的双层分流脱水喷洗筛上,收回硅铁介质。运用的介质是cyclone 60(旋流器60),筛分后的块状铬精矿由产品运送机送到200t容量的产品仓内,废石排至中间废石堆堆存. 在筛子脱水段收回的介质直接回来正常重介质泵池,再泵回蜗形重介质分选机前的介质分配箱,稀介质泵送至0.9m×O.9m的筒形磁选机,收回介质.收回的介质给入超浓介质泵池,通过脱磁线圈,进入离心浓缩机,再回来正常介质泵池。 浓度由核子浓度计操控,浓度计带动风动分流器作业。从磁选机中脱出的水在旋流器内脱砂,其溢流用作脱水喷洗筛的冲刷水。 (三)动态旋涡重介质选矿体系 分级筛筛出的-20~+0.8mm产品先在0.9m×2.4m给矿预备筛上脱泥,然后给入动态旋涡分选机(DWP)。 DWP的特点是给矿靠重力给入分选机,而旋流器不同,要求给矿和介质在压力效果下给入。在DWP中,重的下沉物料(一般是磨蚀性物料)简直立刻沉降,通过上边的切向排料口排出。在出口处,速度和离心力适当低,磨损极小。悬浮物料凭借旋涡向下运动,在抵达旋涡出口管之前,不再与金属触摸。因为设备内磨损率低,所以一直保持高的别离功率。图4  选矿厂总布置图 右侧:重介质选矿车间,中间:破碎筛分车间,左边:产品堆图5  蜗形重介质分选机 产品和废石被排至1.2m×4.8m的分层脱水喷洗筛上,收回硅铁介质。DWP体系运用的介质是磨细的100D硅铁,正常介质与稀介质的收回同蜗形体系类似,只要浓缩是一段完结。 从脱水喷洗筛取得的屑状铬精矿由产品运送机运到lOOt的产品仓内,废石排到中间废石堆堆存。图6  戴维动态旋涡重介质选矿体系图7  螺旋选矿机 (四)螺旋选矿车间 分级筛的筛下矿浆进入螺旋选矿车间的给料泵池内,泵入分配箱,分配给23台MET双头粗选螺旋选矿机中。粗选精矿进入精选螺旋(22台双头)的分配箱。精选精矿进入24流分配箱,分配至二次精选段。二次精选精矿通过脱水,成为化工级精矿;二次精选的中矿脱水后为冶金级精矿;二次精选的尾矿则回来精选段。精矿堆的排水流入集水池,由密封水泵收回。晾干的精矿由前装机装运。图8  螺旋选矿车间的精矿脱水和粉精矿堆 粗选螺旋选矿机的尾矿首要通过浓缩旋流器浓缩,使其浓度到达扫选螺旋选矿机所要求的浓度,然后进入扫选矿浆分配箱,扫选用5台MET双头螺旋选矿机,扫选尾矿运送至尾矿库。中矿产品(包含扫选精矿和精选尾矿)一同泵送至浓缩旋流器,然后进入精选矿浆分配箱。 三个选矿体系的悉数精矿运往坐落勒斯腾堡的联合冶金工业公司铬铁冶炼厂。三个体系的收回率分别为:蜗形选矿-78%、DWP-92%、螺旋选矿-90%。各种产品规格列于下表。 产品规格产品粒度mm产率%Cr2O3 %SiO2 %块状精矿-100~+202039.08.0屑状精矿-20~+11538.010.0冶金级精矿-0.84545.52.0化工级精矿-0.82046.40.8 蜗形体系和DWP体系处理每吨给矿的硅铁均匀损耗分别为160g和240g。

锂辉石和绿柱石的选矿分离

2019-02-20 15:16:12

锂辉石和绿基石都是铝硅酸盐类矿藏,常常共生在同一伟晶岩矿床中;因为它们的矿藏都是非磁性的,而且相对密度挨近,而且与脉石矿藏的相对密度附近。所以,选用磁选和重选办法很难别离绿基石和锂辉石,只要选用浮选别离办法才行。另一方面,因为囱榴石、角闪石、电气石、黑云母和白云母等与绿基石和锂辉石的可浮性附近,致使绿基石和锂辉石的富集和别离又比较困难。   绿基石和锂辉石的浮选别离一般有混合浮选和优先浮选(优先浮选绿基石、再选锂辉石,优先浮选锂辉石、再选绿基石,或许优先浮选部分锂辉石、然后锂铍混选再别离)两种准则流程,可以选用阳离子捕收剂和阴离子捕收剂进行浮选。   (1)优先浮选      当选用阳离子捕收剂时,硅酸盐矿藏都具有比较好的可浮性,所以,在别离绿基石和锂辉石时,需求增加调整剂才行。   ①优先浮选锂辉石、再选绿基石(先按捺绿基石、优先浮选锂辉石,再活化绿基石并进行浮选) 当优先浮选锂辉石时,首要选用和木素磺酸盐按捺绿基石和脉石;木素磺酸盐在绿基石和脉石矿藏表面形成亲水薄膜,然后阻挠捕收剂(例如油酸)在其表面的附着和吸附。可是,木素磺酸盐对锂辉石矿藏颗粒的影响比较小,所以可以确保锂辉石的优先浮选。   例如,在低碱介质中,将碳酸钠碱木素(使用碱溶解木素磺酸盐)参加球磨机并长期效果,此刻,绿基石和脉石矿藏遭到按捺,选用氧化白腊皂、环烷酸皂和柴油浮选锂辉石。该浮选尾矿选用、和活化绿基石并按捺脉石,相同选用氧化白腊皂和柴油浮选绿基石。   ②优先浮选绿基石、再选锂辉石(先按捺锂辉石、优先浮选绿基石,再活化锂辉石并进行浮选) 先脱除易浮矿藏,然后在、和碳酸钠调整的高碱介质中按捺锂辉石,选用脂肪酸(例如氧化白腊皂和柴油)浮选绿基石;浮选尾矿选用活化,再选用脂肪酸(例如氧化白腊皂和柴油)浮选锂辉石。   当选用阴离子捕收剂时,调整剂对锂辉石的按捺递减次序为:、木素磺酸盐、磷酸盐、碳酸钠、钠、硅酸钠、淀粉等,这些调整剂对绿基石的按捺效果不同很大,在中性和弱碱性介质中,多量(1千克/吨以上)的、木素磺酸盐、磷酸盐、碳酸盐等具有激烈的按捺效果,而少数的硅酸钠、淀粉等对绿基石的按捺效果不明显。在强碱性介质中,这些药剂的按捺效果遍及削弱,可是对锂辉石的按捺效果却遍及增强。   ③优先浮选部分锂、然后进行锂铍混选再别离 将和碳酸钠作调整剂并参加球磨机,选用脂肪酸皂优先浮选部分锂辉石,该浮选尾矿中参加和钙离子进行活化,再选用脂肪酸皂混合浮选锂辉石-绿基石,混合粗精矿选用碳酸钠、和酸、碱性水玻璃加温(例如85℃)处理,浮出绿基石精矿。   (2)混合浮选      某浮选尾矿含0.08%BeO的锂辉石,在30%固体浓度下,选用0.91千克/吨拌和5分钟(pH=3.8),拌和的矿浆在螺旋分级机中清洗过多的酸后,在30%的固体浓度下,与0.41千克/吨的硅酸钠、0.14千克/吨和0.41千克/吨油酸拌和5分钟,进入粗选槽,在Ph=7.3 时,进行一次粗选和三次精选,得到精矿含1.25%Be0和4.45%Li20,其回收率分别为89.1%和65.8%。   (3)锂和铍粗精矿的精选别离 锂和铍粗精矿中一般含有云母、长石和石英等,需求进一步精选除掉。脱除办法是将混合粗精矿与硫酸(例如用量为4.50千克/吨左右)一同拌和,清洗掉脂肪酸,然后,再与1千克/吨左右的硫酸、90克/吨左右的醋酸铵拌和,进行脱除云母,可得到含云母94%的精矿,其尾矿再进行锂辉石精选。   锂辉石精选时是将上述尾矿与700克/吨左右的油酸一同拌和,进行一次粗选和二次精选,可得到回收率大约为84%、含6.6 %Li20 的锂辉石精矿,此刻,80%左右的绿基石被按捺到尾矿中,然后再进行尾矿中绿基石的富集。此刻,再选用900克/吨左右的进行拌和,然后清洗掉过量的酸;之后,选用136克/吨的和218克/吨的油酸调浆,并进行绿基石的浮选,所得粗精矿在pH=7条件下进行两次精选,可得到含6.37 %BeO的绿基石精矿,其作业回收率为76%,对锂辉石浮选尾矿的回收率为66 %。

贫铬矿的选矿及加工技术

2019-02-22 16:55:15

我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr203 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。前者用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。中国科学院还研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr203产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据。

烧结铬矿冶炼高碳铬铁的探索

2019-01-24 09:37:09

一、前言 我国属于铬矿资源贫乏地区,大部分铬矿依靠国外进口。因此,研究供应充足、价格便宜的粉状铬矿生产高碳铬铁的工艺流程具有重要意义。 目前,粉状铬矿冶炼高碳铬铁的工艺流程主要有直接入炉冶炼和预处理-冶炼两种。前一种根据冶炼设备不同,有矿热炉冶炼和等离子扩冶炼两种不同工艺;后一种根据预处理方式不同,有烧结-冶炼、制球-冶炼和压块-冶炼三种不同工艺。 比较而言,烧结铬矿的热稳定性和还原性较好,烧结-冶炼流程的工艺成熟,矿耗和能耗低,经济效益好,各广家采用较多。对烧结工艺和烧结矿的物化性能进行了详细的论述;本文着重介绍不同配比方案的试验情况。并旦在此基础上。对烧结铬矿冶炼高碳铬铁的炉内状况作一分析。 二、矿热炉冶炼高碳铬铁炉内基本状况 (一)炉内物料特征区域 在正常的冶炼情况下,矿热炉冶炼高碳铬铁炉内有八大物料特征区域。从上至下分别是散料层、融熔层、残熊层、带焦渣层、炉渣层、残矿层、出炉金属层和积铁层。各区域的化学反应类型强度,炉料和炉气的组成、状态不同,并且在一个冶炼周期内其变化是时间的函数。 (二)炉内主要化学反应 矿热炉冶炼高碳铬铁所涉及的主要化学反应可概括为三种类型:它们是矿物氧化成份的还原反应、成渣反应和金属液的脱碳、脱硅反应。 1、还原反应2、成渣反应3、脱碳、脱硅反应(三)炉料和炉气运动规律 在矿热炉内炉料和炉气相向运动,互为阻力,彼此依存,互为消长。 1、炉料下降取决于如下力学关系     P=P有效-△P     式中P为决定炉料下降的力;         P有效为有效重力,由下式决定:         P有教=P料-(P摩+P液)         P料为炉料拄本身重力;         P摩为炉衬对炉料和料块内部之间的磨擦阻力;     △P为炉气通过炉料的总压差,近似表示上升炉气对炉料的阻力或支撑力,其影响因素可概括为如下通式:f为阻力系数,在矿热炉条件下,其为无因次常数; w为一定温度和压力下,炉气通过炉料层的实际流速,m/s; ρ为气体实际密度,Kg/m3; H为炉料层的高度,m; D为散料颗粒间通道的当量直径,由下式决定: D=4ε/s,(m) S为单位容积散料总表面积,即此表面积: ε为料层空隙率,即料层空隙体积与散料堆体积之比。 2、炉气上升是因为炉料柱存在着上下压差△P。由式(3)变形可知,炉气上升的影响因素有炉科的当量直径D和炉料层的高度H等。 三、试验 (一)试验条件  1、 设备主要参数 生产试验在3000KVA的矿热炉内进行 表1  电炉设备的主要参数变压器容量一次测电压二次电压电极直径极心圆直径炉膛直径炉膛高度3000KVA10KV105V600mm1400mm3070mm1552mm 2、原料化学成份和粒度 表2  试验所涉及的主要原料的化学成份和粒度原料化学成份(%)粒度(mm)名称Cr2OaFeOSiO2CaOMgOAl2O3固定碳水份矿151.1714.366.392.6311.6711.83-2.5≤50矿250.1712.366.442.8017.339.43-3.0≤30矿331.3720.8413.41.1215.649.18-3.2≤30矿451.6714.446.42.5411.5811.88-11.5粉状焦炭------83.8119.86~18 注:矿1、矿2、矿3和矿4分别为烧结铬矿、高品位块状铬矿、低品位块状铬矿和粉状铬矿。 (二)试验方案 表3  按因素转换法安排试验,方案方案精矿配比(kg)入炉铬矿综合成份(%)矿1矿2矿3矿4Cr2OaFeOSiO2MgOAl2O3CaO一3000200043.2516.959.1913.2610.772.03二3500150045.2516.308.4312.3611.042.18三300010010047.3114.067.7912.4511.312.31四010919020043.6413.199.0714.3812.652.06 注:铬矿配比以500kg为基准。 (三)试验过程参数 表4  试验过程的主要操作参数及炉渣平均成份方案平均有功功率kwh平均视在功率kwh焦矿比t/t功率因子%炉渣情况Cr2OaSiO2CaOMgO碱度一277639600.19190.146.8730.012.5327.801.01二275537870.17691.0410.3026.622.7526.101.08三264937190.19690.8213.0522.592.7323.871.16四272333810.10089.117.2524.672.1123.461.24 (四)试验结果 表5  各方案的合金平均成份和技术经济指标方案合金主要成份平均百分比技术经济指标CrSiC日产电耗回收率矿耗焦耗成本一59.943.067.8319.2863333.788.801.9090.36522582二61.262.517.8518.5203373.778.832.1010.36992282三62.861.858.2921.9242786.993.511.6530.32422282四61.761.878.2318.2533400.488.651.9020.37812362   注:1、成本指每吨铁的电耗、矿耗和焦耗的费用之和,即工艺成本。  2、日产、电耗、矿耗、焦耗和成本的单位分别为吨/天、kws/t、t/t、t/t和元/t。 四、讨论 (一)烧结铬矿冶炼高碳铬铁的特点 矿热炉冶炼高碳铬铁过程充满着矛盾。例如炉料下行与炉气上行的矛盾;炉温与反应速率的矛盾;焦矿比与电极有效工作端的矛盾;冶炼强化与顺行的矛盾等等。在一定的设备和原料条件下,这些矛盾制约着冶炼的强化、生产率和综合效益的提高。 烧结铬矿结构疏松多孔,表面积大,反应性能好,同时其具有一定的残焦含量(见表2)。因此,在烧结铬矿冶炼高碳铬铁时,焦炭的利用率高、配入量小,焦矿比低,有利于冶炼负荷的控制。 同时,烧结铬矿具有一定的高温强度且内部存在着大量的微孔隙,料层空隙率占大,由式(4)可知,其散料颗粒间通道的当量直径D大,料层透气性能好,在强化冶炼条件下,有利于炉况的稳定。 烧结铬矿的这些性能特征为提高入炉铬矿的综合品位进行强化冶炼提供了可能性。根据试验情况,由于烧结铬矿的加入冶炼,在保持较低的视在功率和较高的功率因素的情况下,与方案四比较,方案一、方案二和方案三入炉铬矿的平均综合品位和平均日产分别提高1.62%和9.08%.冶炼强化效果明显。 另外,烧结铬矿表面积大,根据传热方程: Dq=a×F×△T×d 在一定的初始温度差△T的奈件下,炉气和炉料单位时间内交换的热量Q大,排出炉外的炉气的温度低,能量利用率高,冶炼的负荷要求和电耗低(见表4、5)。 (二)烧结铬矿的配入量问题 方案一和方案二试验结果表明,在铬矿配比中烧结铬矿的比例不能过大。烧结铬矿透气性能好,颗粒间通道的当量直径D大。由式(3)可知在矿热炉冶炼条件下,D增大,则炉气的流速w提高,炉气在炉内停留时间变短。这导致炉气和炉料热交换不充分,排出炉外的炉气的温度高炉气带走的热能总量多,电耗增加。 同样,由式(3)可知,烧结铬矿的用量增加。炉气的速率W提高,炉气的密度ρ减小。加上炉气与炉料热交换不充分,上部炉料的温度过低。主要在散料层和融熔层上部进行的反应,实际分下面二步进行: 3(FeO-Cr2O3)+3CO=3Fe+3Cr2O3)+3CO2 3CO2+3C=6CO 其在温度低、炉气(主要成份为CO)密度小的情况下,反应的速率和限度大大降低。此加重了残焦层等区域的反应负担,甚至大量残矿和残焦到达炉子下部反应区,使带焦渣层、炉渣层和残矿层成为一个混合渣层。 因为大量的呈固体颗粒状的残矿和残焦的存在,混合渣溶点高,流动性差,下部反应区的反应条件恶化,矿和焦大量流失,矿耗增加。 另外,由于烧结矿具有一定的C含量且表面积大反应性能好,其配入量过大,入炉的焦矿比降低,比较而言,负荷给不足,视在功率和有功功率都有所降低(见表4)。 (三)有关搭配铬矿的问题 方案三在:方案一的基础上,使用高品位的粉状铬矿代替50%的低品位块状铬矿,日产和回收率分别提高13.68%和4.71%,电耗下降16.40%,获得好的技术经济指标。这表明方案一的透气性能指标较其炉内反应强度过剩。 与方案一比较而言,方案三入炉铬矿的综合品位提高4.06%,这有利于提高炉内反应强度,增加单位时同内的炉气流量,从而使冶炼强化透气性能指标的过剩量减少,有利于炉况的活跃和稳定。同时,入炉铬矿的综合品位提高,层渣量减少,炉渣带走的铬元素总量和热量减少,矿耗和电耗下降(见表5)。 粉状铬矿代替块状铬矿,散料颗粒间通道的当量直径D减小,炉气速率下降,炉气和炉料热交换充分,有利降低电耗。另外,低价位的粉状铬矿的加入,在保证炉况正常的情况下,亦有利降低成本,提高综合效益。 五、结论 (一)烧结铬矿冶炼高碳铬铁是可行的。 (二)烧结铬矿冶炼高碳铬铁,搭配一定量的块矿、粉矿是获得好的经济效益所必需的。

锂辉石和绿柱石的选矿分离和富集方法

2019-02-26 16:24:38

锂辉石和绿基石都是铝硅酸盐类矿藏,常常共生在同一伟晶岩矿床中;因为它们的矿藏都是非磁性的,而且相对密度挨近,而且与脉石矿藏的相对密度附近。所以,选用磁选和重选办法很难别离绿基石和锂辉石,只要选用浮选别离办法才行。另一方面,因为囱榴石、角闪石、电气石、黑云母和白云母等与绿基石和锂辉石的可浮性附近,致使绿基石和锂辉石的富集和别离又比较困难。图1 锂辉石绿基石和锂辉石的浮选别离一般有混合浮选和优先浮选(优先浮选绿基石、再选锂辉石,优先浮选锂辉石、再选绿基石,或许优先浮选部分锂辉石、然后锂铍混选再别离)两种准则流程,可以选用阳离子捕收剂和阴离子捕收剂进行浮选。图2 绿基石 (1)优先浮选 当选用阳离子捕收剂时,硅酸盐矿藏都具有比较好的可浮性,所以,在别离绿基石和锂辉石时,需求增加调整剂才行。 ①优先浮选锂辉石、再选绿基石(先按捺绿基石、优先浮选锂辉石,再活化绿基石并进行浮选) 当优先浮选锂辉石时,首要选用和木素磺酸盐按捺绿基石和脉石;木素磺酸盐在绿基石和脉石矿藏表面形成亲水薄膜,然后阻挠捕收剂(例如油酸)在其表面的附着和吸附。可是,木素磺酸盐对锂辉石矿藏颗粒的影响比较小,所以可以确保锂辉石的优先浮选。 例如,在低碱介质中,将碳酸钠碱木素(使用碱溶解木素磺酸盐)参加球磨机并长期效果,此刻,绿基石和脉石矿藏遭到按捺,选用氧化白腊皂、环烷酸皂和柴油浮选锂辉石。该浮选尾矿选用、和活化绿基石并按捺脉石,相同选用氧化白腊皂和柴油浮选绿基石。 ②优先浮选绿基石、再选锂辉石(先按捺锂辉石、优先浮选绿基石,再活化锂辉石并进行浮选) 先脱除易浮矿藏,然后在、和碳酸钠调整的高碱介质中按捺锂辉石,选用脂肪酸(例如氧化白腊皂和柴油)浮选绿基石;浮选尾矿选用活化,再选用脂肪酸(例如氧化白腊皂和柴油)浮选锂辉石。 当选用阴离子捕收剂时,调整剂对锂辉石的按捺递减次序为:、木素磺酸盐、磷酸盐、碳酸钠、钠、硅酸钠、淀粉等,这些调整剂对绿基石的按捺效果不同很大,在中性和弱碱性介质中,多量(1千克/吨以上)的、木素磺酸盐、磷酸盐、碳酸盐等具有激烈的按捺效果,而少数的硅酸钠、淀粉等对绿基石的按捺效果不明显。在强碱性介质中,这些药剂的按捺效果遍及削弱,可是对锂辉石的按捺效果却遍及增强。 ③优先浮选部分锂、然后进行锂铍混选再别离 将和碳酸钠作调整剂并参加球磨机,选用脂肪酸皂优先浮选部分锂辉石,该浮选尾矿中参加和钙离子进行活化,再选用脂肪酸皂混合浮选锂辉石-绿基石,混合粗精矿选用碳酸钠、和酸、碱性水玻璃加温(例如85℃)处理,浮出绿基石精矿。 (2)混合浮选 某浮选尾矿含0.08%BeO的锂辉石,在30%固体浓度下,选用0.91千克/吨拌和5分钟(pH=3.8),拌和的矿浆在螺旋分级机中清洗过多的酸后,在30%的固体浓度下,与0.41千克/吨的硅酸钠、0.14千克/吨和0.41千克/吨油酸拌和5分钟,进入粗选槽,在Ph=7.3 时,进行一次粗选和三次精选,得到精矿含1.25%Be0和4.45%Li20,其回收率分别为89.1%和65.8%。 (3)锂和铍粗精矿的精选别离 锂和铍粗精矿中一般含有云母、长石和石英等,需求进一步精选除掉。脱除办法是将混合粗精矿与硫酸(例如用量为4.50千克/吨左右)一同拌和,清洗掉脂肪酸,然后,再与1千克/吨左右的硫酸、90克/吨左右的醋酸铵拌和,进行脱除云母,可得到含云母94%的精矿,其尾矿再进行锂辉石精选。 锂辉石精选时是将上述尾矿与700克/吨左右的油酸一同拌和,进行一次粗选和二次精选,可得到回收率大约为84%、含6.6 %Li20 的锂辉石精矿,此刻,80%左右的绿基石被按捺到尾矿中,然后再进行尾矿中绿基石的富集。此刻,再选用900克/吨左右的进行拌和,然后清洗掉过量的酸;之后,选用136克/吨的和218克/吨的油酸调浆,并进行绿基石的浮选,所得粗精矿在pH=7条件下进行两次精选,可得到含6.37 %BeO的绿基石精矿,其作业回收率为76%,对锂辉石浮选尾矿的回收率为66 %。

绿柱石精矿质量指标(YB746—75)

2019-01-03 14:43:37

绿柱石精矿质量指标(YB746—75)精矿种类等级BeO质量分子数%杂质质量分子数%Fe2O3Li2OF浮选精矿1≥10≤2≤1.2≤0.52≥8≤3≤1.5≤1.03≥8≤4≤1.8≤1.0手选精矿1≥10≤4≤1.5≤0.52≥8≤5≤1.5≤1.5

铬矿石冶炼的常见方法

2019-03-07 09:03:45

铬矿是稀有矿产,得到不易。郑州鑫海机械制造有限公司介绍,我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr203 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在,我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。 火法冶炼中的电炉法用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。中国科学院还研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr203产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据。

我国贫铬矿选矿工艺概述

2019-02-20 15:16:12

我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr2O3<20%),也用水力分选管选别过摇床中矿。在实验室研讨了干式强磁选、湿式强磁选、浮选和各种化学选矿法。但在出产实践中首要选用重选法,单个矿山选用强磁选。 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。前者用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。中国科学院还研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr2O3产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据。

绿碳化硅的生产工艺与应用

2019-01-18 09:30:13

绿碳化硅微粉生产方式与黑碳化硅基本相同,只是对原材料的要求不同。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成,经冶炼成的结晶体纯度高,硬度大,其硬度介于刚玉和金刚石之间,机械强度高于刚玉。生产工艺 绿碳化硅制造方法同黑色碳化硅,但采用的原材料纯度要求较高,也在电阻炉中2200°C左右的高温下形成,绿色,呈半透明状,六方晶形,其Sic含量较黑色为高,物理性能与黑色碳化硅相近,但性能略较黑色为脆,也具有较好的导热性与半导体特性。 按形状可分为平形砂轮、斜边砂轮、筒形砂轮、杯形砂轮、碟形砂轮等;按结合剂可分为陶瓷砂轮、树脂砂轮、橡胶砂轮、金属砂轮等。砂轮的特性参数主要有磨料、粘度、硬度、结合剂、形状、尺寸等。 由于砂轮通常在高速下工作,因而使用前应进行回转试验(保证砂轮在最高工作转速下,不会破裂)和静平衡试验(防止工作时引起机床振动)。砂轮在工作一段时间后,应进行修整以恢复磨削性能和正确的几何形状。

锂辉石和绿柱石的选矿选别方法

2019-02-26 09:00:22

锂辉石和绿松石的选矿办法有手选法和浮选法,浮选办法有正浮选和反浮选,正浮选是常常选用的办法,其实质是将矿石磨细,优先浮选锂辉石,在或许碳酸钠的碱性矿浆中,通过高浓度、激烈拌和、屡次洗矿脱泥后,参加脂肪酸(例如油酸)或许其皂类作捕收剂直接浮选锂辉石;通过三次精选,可以获得档次大于5%LiO2、回收率为70%~75%的锂辉石精矿。我国新疆某矿原矿含1.3%LiO2,通过常温浮选,锂辉石精矿档次为4%~5%、回收率为85%~90%。 锂辉石的反浮选流程是在石灰调整的碱性介质中,选用糊精、淀粉等按捺锂辉石,选用阳离子捕收剂(例如糊精胺的醋酸盐醇)浮出硅酸盐类脉石矿藏,槽内产品即为锂辉石精矿,必要时选用HF树脂酸盐起泡剂进一步脱出铁矿藏。 (1)手选法依据外观特征(色彩、光泽和晶形)选别。 (2)浮选法 ①酸法(分混合法和优先法)酸法混合浮选流程是选用胺类醋酸盐浮出云母,再加活化绿基石和长石,混合精矿经洗矿(加人)和脱药,用石油磺酸盐浮选绿基石。酸法优先流程选用硫酸、硫酸铝等调浆,加阳离子捕收剂脱除云母,然后洗矿、浓缩,再加处理,在苏打介质中选用脂肪酸(例如油酸)和中性油类药剂浮选绿基石。 ②碱法碱法浮选流程是矿石在磨矿或浮选前选用碱(--碳酸钠或许-碳酸钠)进行预处理,并进行洗矿和脱泥,或许不经该进程,再参加(热)脂肪酸类捕收剂、乳化剂和起泡剂浮选绿基石。

对贫铬矿的选矿及加工技术

2019-02-22 16:55:15

我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr203 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。前者用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。中国科学院还研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr203产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据.

绿盾美佳铝包木门窗,品质装修新感受

2019-01-08 13:40:03

经济发展带来生活水平的提高,人们对物质的追求不再满足于吃饱穿暖。置换一套高品质的改善房,采用更舒适的品质家居,包括选择更有品质感的铝包木门窗,无一不体现出人们对品质生活的追求和向往。铝包木门窗性能优越,节能环保,外形美观,成为越来越多改善性装修和高端居室装修的首  选。绿盾美佳铝包木门窗凭借真材实料和精湛的工艺,在高端装修建材中崭露头角,并逐渐在门窗市场上开辟出一片天地。 目前,低碳环保的概念和相关政策相继出现,人们的消费观念也在改变。对于装修市场来说,节能环保的新型门窗正在受到越来越多人的关注和推崇。铝包木门窗在实木门窗的基础上,通过机械方法将隔热断桥铝合金型材固定在实木框体的外部,形成坚固的复合型框体,并采用多重密封技术,门窗的密封性更强。这种窗体不仅保留了实木窗的温馨自然的质感,也兼具了铝合金门窗坚固耐用的特性,因此成为新型门窗中的佼佼者。 四川绿盾美佳门窗有限公司成立于2007年,坐落在天府之国成都,是专业从事铝包木门窗制作、铝包木门窗批发的生产型企业。绿盾美佳工厂占地7000平方米,年生产能力50000平方米以上。截止2018年,绿盾美佳铝包木门窗在全国积累广泛的经销商和工程案例,在成都主要别墅区都有经典的装修案例,受到业主的一致好评。 为什么绿盾美佳铝包木门窗会有如此的魅力?实地了解过绿盾美佳铝包木门窗装修业主可以感受到,铝包木门窗自然典雅,舒适节能,让人过目难忘。绿盾美佳铝包木门的使用性能卓越,使用的原材料是进口原木,精工制作,多重密封技术,节能环保,又富有自然韵味,保温、隔音、隔热、防尘等性能出众,外观温馨典雅,为居室增添高雅感受。 绿盾美佳铝包木门窗自身独特的魅力使其拥有较大的发展潜力,为了紧跟时代的潮流,进一步挖掘铝包木门窗的安全节能特性,开发铝包木门窗、铝包木阳光房等门窗市场,绿盾美佳铝包木门窗积极开展一、二级市场双线发展,逐步赢得门窗市场份额。以品质开拓市场,用服务赢得客户,绿盾美佳铝包木门窗深信,只有质量与服务并驾齐驱,才会有自己的优势,才会有更好的未来。 绿盾美佳铝包木门窗作为有着十几年铝包木门窗生产经验的门窗品牌,坚持每一项门窗产品都注重质量品质,每一道生产工序都精益求精,为消费者带来高质量的门窗产品。绿盾美佳与众多知名地产业主合作,为业主的装修带来了高品质的新感受,相信在未来,绿盾美佳铝包木门窗将为更多注重品质的装修业主量身定制精工门窗产品,为高端装修带来全新感受。

耐火材料生产中使用的铬矿砂生产工艺介绍

2019-01-18 09:30:13

本工艺及设备配置的目的,主要是通过碎磨作业产出合适粒度级别的铬矿砂,再由摇床脱去杂质,脱水烘干后得到最终的成品铬矿砂: 矿石>>颚式破碎机破碎>>皮带机输送>>料仓>>棒磨机磨矿>>滚筒筛筛分>>摇床重选>>成品烘干。 1、矿石的破碎: 矿石给料到破碎机后,破碎后的颗粒控制在20mm以下,经由皮带输送机运送到棒磨机料仓,破碎机为间歇工作,料仓的大小以满足破碎机检修润滑时间为宜。 2、棒磨机给料: 棒磨机由电磁给料机控制均匀给料,给料方式为自动控制,料和水同时给入棒磨机,给料机安装在料仓底部,具有定量均匀给料和防止料仓堵塞的作用。 3、磨矿: 棒磨机为湿法磨矿,在棒磨机中装入与棒磨机筒体长度基本等长的钢棒,钢棒配比按照成品粒度为0.2mm~0.45mm配置,因棒磨机磨矿作业为线接触,可有效控制过粉碎,最大限度的产出合格成品。 4、筛分:棒磨机出料直接进入滚筒筛,滚筒筛分段配置筛网,内层为防护骨架,筛网包裹在骨架上,合格的粒度进入料池,由胶泵送至摇床分选,少数大颗粒由头部送出,人工送至棒磨机再磨。 5、重选:铬矿砂的选矿采用6S摇床重选,在有水的环境内,摇床床面振荡产生重力梯度场,根据物料比重的差异排除杂质,从尖灭角出矿带产出合格铬矿砂。 6、铬矿砂烘干:采用转筒烘干机,热量从进料端进入,顺流操作,热力散失后排出,进料段有内螺旋推进湿料,中段有扬料板防止板结。 随机配有进出料密封装置,如燃煤只需在进料端砌筑耐火砖炉子即可。 转筒烘干机为连续作业设备,最好连续生产,避免反复开机预热造成的热量散失。

中华人民共和国行业标准 铁合金用铬矿石 ZB D33 002-90

2018-12-10 14:18:49

1 主题内容与适用范围 本标准规定了铁合金用铬矿石的分类、技术要求、试验方法、检验规则、包装、标志和质量证明书。 本标准适用于生产铬系铁合金用的铬矿石。 2 引用标准 YB 879 铬矿石化学分析方法 GB 2007 散装矿产品取样、制样通则 GB 5689 冶金矿产品包装、标志和质量证明书的一般规定 3 分类 按铁合金用铬矿石的用途划分为两类: 第一类:精炼中、低、微碳铬铁,金属铬和铬盐用铬矿石; 第二类:冶炼高碳铬铁、硅铬合金以及转炉吹氧法生产的中、低碳铬铁用铬矿石。 4 技术要求 4.1 按化学成分第一类铁合金用铬矿石分为二个等级,见表1。 表 1等级化学成分,%Cr2O3Cr2O3/FeOSiO2MgOAl2O3SPC不小于不大于一级品48.03.06.016.010.00.0200.0080.10二级品45.02.59.018.012.00.0200.0100.10 注:金属铬用一级品铬矿石,其中MgO含量不小于22.0%。 4.2 按化学成分第二类铁合金用铬矿石分为二个等级,见表2。 表2等级化学成分,%Cr2O3Cr2O3/FeOMgOAl2O3SPC不小于不大于一级品42.03.018.012.00.0200.0080.20二级品38.02.522.015.00.0200.0100.20 4.3 需方对铬矿石化学成分有特殊要求时,可由双方商定。 4.4 精炼铬铁用铬矿石中不得混入炭质夹杂物(如焦炭、煤块和沥青等)以及磷酸盐矿物等。 4.5 精炼铬铁用铬矿石,其粒度为块状或粉状;冶炼高碳铬铁用铬矿石,其粒度为块状,其中小于10mm者不超过10%。 注:需方对粒度有特殊要求,由双方商定。 5 试验方法 5.1 铬矿石化学成分分析方法按YB 879的规定进行。 5.2 铬矿石取样、制样按GB 2007.1~2007.7的规定进行。 6 检验规则 6.1 铬矿石的质量由供方技术监督部门负责检验。 6.2 铬矿石按批交货,一次交货为一批,每批为一检验单位。 7 包装、标志和质量证明书 铁合金用铬矿石的包装、标志、运输、贮存和质量证明书按GB 5689规定执行。

铬渣处理工艺

2019-02-20 15:16:12

消除金属铬和铬盐出产进程中排出的废渣对环境的污染和使其得到综合运用的进程。铬渣是由铬铁矿参加纯碱、白云石、石灰石在1100~1200℃高温焙烧、用水浸出后的残渣。每出产1t铬酸盐约发生3~5t铬渣。 成分 铬渣的化学成分见下表。 铬渣的矿藏组成首要有方镁石(MgO)、硅酸二钙(β–2CaO•SiO2)、铁铝酸钙(4CaO•Al2O3•Fe2O3)、亚铬酸钙(α–Ca(CrO2)2)、铬尖晶石((Mg•Fe)(CrO2)2)、四水(4Na2CrO4•4H2O)等。其间,有很大一部分相似水泥的物相组成,故铬渣也有水硬性,在空气中吸水结块。损害 铬渣中的首要毒物为水溶性的四水,是强氧化剂,毒性强。铬渣堆置不只占有土地,并且细粒随风飘扬构成空气污染;铬渣露天堆积,受雨雪淋浸,所含的六价铬被溶出进入地下水或进入河流、湖泊中,污染环境。我国某铁合金厂的铬渣堆场,未采纳相应的防渗方法,致使地下水六价铬离子含量猛增到150~180mg/L,超越饮用水标准数千倍,构成严峻的污染公害,下流污染规模增加到15~20km2,污染区域几个村庄的日子用水,全赖由外面引入自来水或用车送水直销;各种农作物也都遭到不同程度的污染。六价铬、铬化合物以及铬化合物的气溶胶,能以多种形式损害人畜健康。因而,铬渣的堆存场有必要采纳铺地防渗和加设棚罩。 处理和运用 避免铬渣污染的方法是进行解毒处理。在有复原剂的酸性条件下,或在有碱金属硫化物、硫氢化物的碱性条件下,或在有硫、碳和碳化物存在的高温、缺氧条件下,六价铬都可复原为毒性较小的三价铬。铬渣的运用首要有六方面。 1、制烧结砖。将铬渣枯燥、破坏,按铬渣粉40%和粘土60%的份额混合配料,制坯、焙烧。在高温文强复原性环境中,六价铬复原为不溶于水的三价铬,消除剧毒,砖材可到达建筑要求。 2、制作水泥。用铬渣、石灰石、粘土等质料按普通硅酸盐水泥配料,能够烧制水泥熟料,用来制作水泥。运用碳复原后的铬渣同高炉粒化渣,转炉钢渣和硅酸盐水泥熟料。参加5%左右的石膏,也可制作少熟料钢铁渣水泥。 3、出产铬渣铸石。将30%铬渣、25%硅砂(含SiO2>95%)、45%烟道灰、3%~5%氧化铁皮(轧钢铁皮)混合、破坏、于1500℃池窑中熔融,在1300℃下浇铸成型,结晶、退火后缓慢降温即为制品,模仿辉绿铸石组分是优秀的耐酸耐腐蚀材料。 4、替代蛇纹石出产钙镁磷肥。蛇纹石的首要成分为MgO和SiO2,可用铬渣替代。先将铬渣造球,按无烟煤:磷矿:铬渣:硅石=37.5:50∶35∶15(分量比)的配料比装入高炉中,于1600℃进行熔融反响,经水淬骤冷,沥水别离,转筒内枯燥后,球磨破坏即得制品。 5、替代白云石、石灰石作炼铁熔剂。铬渣中CaO、MgO的含量与炼铁运用的白云石、石灰石中的量附近,能够替代白云石、石灰石炼铁。炼1t生铁耗用600kg铬渣,六价铬可悉数复原、解毒完全,并且生铁中铬成分上升、硬度、耐磨和耐腐蚀性都有所提高。 6、替代铬铁矿做玻璃着色剂。制作绿色玻璃时常用铬矿粉做着色剂,首要是运用三价铬离子在玻璃中的光学特性。铬渣中含有部分未反响掉的铬矿粉和六价铬,高温有利于六价铬转变为三价铬,完全除毒,所得制品色泽碧绿艳丽。铬渣参加量3%~5%为宜。 此外,水淬铬渣还可作为水泥混合材料、矿棉质料、耐热胶凝材料、熔融水泥质料等。因为铬渣具有毒性,难以运送,因而使它的运用受到了必定约束。

铬锆铜的价格

2017-06-06 17:50:05

铬锆铜的 价格 仍以持稳为主。&nbsp;&nbsp;&nbsp;上海电解铜 现货 报价升贴水为贴水300至200元/吨,平水铜 价格 59850-59950元/吨,升水铜 价格 59950-60050元/吨,铜价上涨至60000元/吨上方, 市场 信心恢复,好铜报价基本坚挺在60000元/吨上方,下游企业按需采购为主, 市场 成交气氛尚可。&nbsp;&nbsp;&nbsp; 海南一加工商,锆英砂月 产量 为400-500吨。目前,该人士对越南锆英砂(二氧化锆含量65%以上,二氧化钛含量低于0.15%,三氧化二铁含量低于0.10%)的报价为7,200元/吨(出厂不含税)。&ldquo;我们现在有100吨左右锆英砂库存,不愿出货,&rdquo;该人士说。&ldquo;我认为未来几周 价格 还会继续走高。&rdquo;据该人士称,他们在广西有一加工厂,主要生产越南锆英砂。&ldquo;我们还有一些原料库存,工厂目前没有满负荷生产,&rdquo;该人士说。其称他们接到客户的许多询盘,但没有足够的货供应。国内锆价平稳,锆英砂 价格 继续走高, 市场 人士认为由于供应紧张,下个季度锆英砂 价格 有望继续走高。受锆英砂 价格 上涨和中国出口退税取消的影响,锆价短期内稳中有升的趋势不改。&nbsp;&nbsp;&nbsp; 目前国内铬矿 市场 大体保持平稳,询盘稍减,但多数铬矿贸易商仍坚持报价。 江苏一贸易商透露,近期铬矿 市场 无太大变化,基本保持平稳,买家询盘仍较多,但实际成交量不大。江苏一贸易商透露,近期铬矿 市场 无太大变化,基本保持平稳,买家询盘仍较多,但实际成交量不大。 江苏一贸易商透露,近期铬矿 市场 无太大变化,基本保持平稳,买家询盘仍较多,但实际成交量不大。&nbsp;&nbsp;&nbsp; 了解更多关于铬锆铜的 价格 的信息,请关注上海 有色 网。&nbsp;

电硅热法冶炼中低碳铬铁

2019-03-07 09:03:45

电硅热法就是在电炉内造碱性炉渣的条件下,用硅铬合金的硅复原铬矿中铬和铁的氧化物而制得。           冶炼设备及原材料      用电硅热法冶炼中低碳铬铁是在固定式三相电弧炉内进行的,能够运用自焙电极,炉衬是用镁砖砌筑的(干砌)。炉衬寿数短是中低碳铬铁出产中的重要问题。因为冶炼温度较高(达1650℃),炉衬寿数一般较短(约45-60天)。  电炉功率一般选用2000-3500kV·A。3500kV·A固定式三相电弧炉的炉壳直径为5.2m,高2.5m,炉膛直径(底部)2.7m,炉膛深度1.3m,电极直径450mm。  冶炼中低碳铬铁的质料有铬矿、硅铬合金和石灰。铬矿应是枯燥纯洁的块矿和精矿粉,其Cr2O3含量越高越好,杂质(Al2O3,MgO、SiO2)含量越低越好。铬矿中磷含量不该大于0.03%。粒度小于60mm。硅铬合金应是破碎的,粒度小于30mm,不带渣子。石灰应是新烧好的,其CaO含量不少于85%。石灰中CaO越低,则杂质SiO2、Al2O3就越高,成果用来调整碱度的CaO也越多,而真实的有关CaO就越低。假如石灰中的CaO低,则有用的CaO就更低。            炉内反响             用电硅热法冶炼中低碳铬铁的首要反响如下:2Cr2O3+3Si=4Cr+3SiO2 2FeO+Si=2Fe+SiO2这两个反响的根底是硅能与氧化合生成比铬和铁的氧化物更为安稳的化合物SiO2。用硅复原铬和铁的氧化物的进程和用碳复原的进程有差异。用碳复原时生成的能够从反响中逸出,因而用碳复原氧化物的反响沉积是很彻底的,并能确保被复原的元素有较高的回收率。用硅复原铬和铁的氧化物时,反响生成的SiO2,集合于炉渣中,使进一步复原发作困难。因而,如不采纳办法,复原时只能将矿石中40%-50%的Cr2O3复原出来,然后复原反响就要中止进行。再添加复原剂的数量,则合金中的硅要高出规则标准形成废品,并且炉渣中的Cr2O3仍是很高。为进步铬的回收率,需向炉渣中加熔剂石灰。石灰中的CaO能与化兼并生成安稳的硅酸盐:CaO·SiO2、2CaO·SiO2(以2CaO·SiO2为最安稳),这样才能把渣中Cr2O3进一步复原出来。 炉渣碱度CaO/SiO2一般等于1.6-1.8。冶炼中低碳铬铁的炉渣中也含也MgO,是由铬矿和炉衬带进的,氧化镁和氧化钙的效果相同,所以炉渣碱度也可用(CaO+MgO)/SiO2来表明。冶炼中低碳铬铁(CaO+MgO)/SiO2一般等于1.8-2.0。这样就使铬矿中的Cr2O3最大极限地从矿石中复原出来。如碱度再进步就不合理了,不光不能大幅度的下降炉渣中的Cr2O3,而因为渣量添加,炉渣中铬的总量及熔化炉渣耗费的电能也添加。 炉渣与金属之比(渣铁比)为3.0-3.5。操作工艺中低碳铬铁出产特点是间歇式作业,各个不同冶炼期有着各种不同的电气准则。

贫铬铁矿的选矿和冶炼技术

2019-02-27 11:14:28

我国对贫铬矿的选矿,曾选用跳汰机、摇床、螺旋选矿机、离心选矿机和皮带溜槽选别过各地的贫铬矿(Cr203 1967年以来,我国先后建起河北遵化、北京密云、陕西商南、内蒙古索伦山、新疆萨尔托海5个小选矿厂,选用重选选别,前3个跟着挖掘的完毕相继停产。现有索伦山选厂,是1985年筹建的,规划规划年产精矿粉3000~4000t,当选矿石档次25%,重选后精矿档次40%,但尾矿档次达10%,后改为强磁选流程,于1986年投产。 现在我国铬矿石的冶炼首要为火法冶炼中的电炉法,其次为金属热还原法和真空碳还原法及转炉法。电炉法又分为矿热法和精粹电炉法。前者用碳作还原剂,以铬矿石、焦炭、硅石为质料出产高碳铬铁,或以硅石、焦炭、高碳铬铁为质料出产硅铬合金;后者用硅石作还原剂,以铬矿石、硅铬合金、石灰为质料出产中、低碳铬铁和微碳铬铁。也有用转炉出产中、低碳铬铁的。 金属热还原法通常用铝粒作还原剂,使铬的氧化物在短时间内剧烈反响,放出很多热,熔炼出金属铬。 真空碳还原法用高档次铬矿石(现在多用氧化焙烧后的高碳铬铁)作氧化剂,与高碳铬铁粉作成团块,放入真空炉中,在低于金属熔点的温度下脱碳,出产微碳、超微碳铬铁;或脱碳后通入氮气,出产含氮的铬铁合金。 湿法冶炼现在是用铬矿石和纯碱及白云石或石灰石放入反转窑内氧化焙烧生成,经水浸后加或,使之还原成氢氧化铬沉积,脱水煅烧取得氧化铬,再用金属热还原法或真空碳还原法及电解法出产金属铬。 除上述冶炼办法外,近年来我国研讨了从甘肃金川铜镍尾矿中收回铬的办法,其选用氧化焙烧法制取氢氧化铬,再制成铬铵矾,最终电解出金属铬。咱们研发了一种伯胺萃取提铬新工艺,铬萃取率98%,反萃取率为100%。Cr203产品纯度95%~98%,为综合利用攀枝花—西昌区域红格铁矿石中的伴生铬供给了根据。