您所在的位置: 上海有色 > 有色金属产品库 > 镍钴极片回收

镍钴极片回收

抱歉!您想要的信息未找到。

镍钴极片回收专区

更多
抱歉!您想要的信息未找到。

镍钴极片回收百科

更多

硫化镍阳极和始极片阴极的制备

2019-01-25 15:50:04

1、硫化镍阳极的制备     制备硫化镍阳极时,首先将高镍锍浮选产出的硫化镍二次精矿,经反射炉熔化、烧铸、缓冷等工序制成具有一定物理规格的阳极板,供电解精炼生产电镍,同时也除去大约10%的杂质。图1为二次镍精矿熔炼铸工艺流程。    1)熔铸硫化阳极的原    熔铸硫化镍阳极板的主要原料为二次镍精矿,此外还有电解残极板及熔铸返回物,其主要化学成分见表1。表1  熔铸硫化镍阳极板的原料成分(%)原料NiCuFeS二次镍精矿633.51.826阳极碎片6841.724烟尘201.43.58.4 [next]     硫化镍电解的残极率约为25%。电解时残极表面附有阳极泥及一些电解液,为防止炉内发生“放炮”事故,残极也须自然干燥。    返回物料主要为加镍精矿时产生的烟尘、浇铸包上的结壳或浇铸时产生的不合格阳极、喷溅物以及撒落在地面上的金属硫化增生扩物,从炉渣中捡出的金属物料等。    2)燃料    熔化反射炉可用烟煤、粉煤、重油、煤气和天然报导等燃料供热。由于熔化反射炉容量小,炉温度高且系间断作业,故要求燃料发热值高、水分小,这样升温速度快,易于控制和调节。金川公司镍熔铸反射炉采用重油供热,燃料率为每吨阳极板耗重油165kg。    3)熔铸生产操作    熔化反射炉的炉料有粉料和块料。块状物料有残极和经人工破碎为30~50mm的块状不合格阳极,粉状物料是经自然干燥后的二次镍精矿和烟尘,二者按一定比例配料混合后经圆盘给料机和皮带运输机加入反射炉内。原则是先加粉,后加块料。    炉料熔化在高温及微氧化性气氛下进行。炉膛温度一般为1350℃,压力控制为微负压。炉料熔化后,由于密度不同,原料夹带来的小量炉渣、泥沙等渣子浮于镍锍熔体表面,形成熔铸炉渣,需定期扒渣。熔铸炉渣约占入料物料量的6%~10%。烟尘量占入炉物料量的3%~4%。镍的直接回收率为97%左右.总回收率在98%以上。    在硫化镍阳极浇铸时,基本上维持炉内为零压。放出的硫化镍熔体,经流槽流入中间浇铸包,工人控制间断注入直线浇铸机的浇铸模中,浇铸时主要控制熔体温度、模子温度和阳极板的冷却速度。    浇铸后的阳极板在铸模中冷却至650~700℃后取出,置于保温坑内缓慢冷却,以完成βNi3S2—β′Ni3S2的相变。若保温控制不好,阳极板则发脆、易裂,影响电解生产。经48h的缓慢冷却后温度降到150~200℃,此时已完成晶型转变,方能在空气中冷却至室温。    4)硫化镍阳极析的化学反应    为了保证硫化镍阳极有良好的溶解性和阴极电镍的质量,阳极板的各成分都应控制在一定范围内。表2为硫化镍阳极板的化学成分。表2 硫化镍阳极板的化学成分(%)工  厂NiCuCoFeSZnPbⅠ工厂﹥65﹤50.8~1.0﹤1.9﹤25﹤0.004﹤0.005Ⅱ工厂65~70﹤50.61.520~220.01~0.05微量Ⅲ工厂62~653~50.6~0.82.5~3.022~230.025~0.050.03~0.05[next]     阳极板的含硫量对阳极过程有很大影响,S﹤20%时,阳极板在凝固时会析出金属相。在阳极反应中,金属相会优先溶解,产出大量含Ni很高的阳极泥;当含S﹥25%时,阳极板发脆易碎,而且阳极造酸反应严重,也不利于生产。    铜是硫化镍阳极的主要有害杂质。铜以Cu2S形态存在于阳极板中,含铜低时,对硫化镍阳极溶解速度影响很小;当含铜高于10%时,因Cu2S优先于Ni3S2溶解,对硫化镍阳极溶解和电镍质量都有极不利的影响。    阳极板板含铁低时对电解影响很小,但含铁高时会造成阳极化明显加剧,槽电压迅速上升,阳极造酸反应相应加强,严重时会引起阳极钝化。    阳极板还含有一定量的钴及微量的铅、锌等,它们由于含量很少,对阳极溶解影响不大,主要是对溶液净化及阴极沉积物的影响。    2、始极片的制作与加工    1)种板生产    种板槽的生产目的是向生产槽提供作为初始阴极的镍始极片。种板槽除阴极为钛种板外,其电解设备和技术操作条件与成品电解槽相同。种板电解槽数量一般为生产电解槽数量的1/10。阴极,周期为12~24h,阳极周期槽电压上升幅度较大,容易造成阳极钝化,甚至造成阳极冒烟。    种板生产应考虑母板与被沉积金属的晶格参数和热膨胀系数的差异。种板槽的阴极(母板)原用3mm厚的不锈钢板,但由于在不锈钢板表面易发生“烧板”和“粘板”的麻烦,故现被 钛材料代替,因为钛材耐腐蚀性能好,热膨胀系数大,在一定的温养差条件下,始极片易从母析上脱落分离,并且使用周期长,不易发生上述不良现象,一旦发生,经处理后仍可继续使用。    为了防止爆皮、粘板现象发生,必须去掉母板表面的油污、灰尘等脏物。因此钛母板每次下槽前要用65℃发上的热水处理。对于使用了1个朋以上的母板必须进行专门的处理后方可使用。具体办法是在含400~700g/L的H2SO4溶液中浸泡0.5~1min,然后用热水冲洗干净表面即可。    为了防止析出镍包住母板周边,造成始极片难于从母板上剥离下来,必须对种板两侧边缘及底边进行包边处理。目前的办法是用刨有凹槽的木条夹底边,用橡胶条夹侧边,虽然操作简单,但作业过于频繁,且木条消耗大,有待寻求更为适宜的包边方法和包边材料。    2)始极片加工    从钛母板上剥离下来的始极片,由于沉积时间短,厚度薄,刚度差,装电解槽后易于变形,因此下槽前必须进行适当的机械加工及表面处理。    剥离始极片的工作是首先在热水槽中烫洗,除去表面粘附的溶液,剥离下来的始极片再经过对辊压纹机进行平压,然后在剪板机上被剪成880mm×860mm的规格尺寸,再用钉耳机铆上双耳。为了保证下槽后不易翘曲变形,还需经过二次压纹以提高其刚度,最后在浓HCl(32%~35%)溶液中浸泡3~5min以除去表面脏物,再用冷水冲洗后即可下槽 。

金始极片的制造

2019-03-05 12:01:05

金始极片,均选用电解法制取,俗称电解造片。造片是在与电解金相同的或同一电解槽中进行。电解液运用上述制备的氯化金电解液,槽内装入粗金阳极板和纯银阴极板(种板)。 电解造片通常在较低的电流密度和温度下进行。选用的技能条件为:面积电流210~250A∕m2,槽电压0.35~0.4V,并堆叠以5~7V的沟通电(直沟通比1∶3),液温35~50℃,同极距80~100mm。 先将种板擦拭洁净,并经烘热至30~40℃后打上一层极薄而均匀的白腊。在种板边际2~3mm处,一般通过沾蜡处理或用其他材料进行粘边或夹边,以利于始极片的剥离。 通电后,阳极不断溶解,并于阴极种板上分出纯金。经4~5h,即能在种板双面分出厚0.1~0.15mm、重约0.1kg的金片。种板出槽后,再参加已备好的另一批种板持续造片。取出的种板,用水洗净表面粘附的电解液(洗水集中于废液贮槽中)。经凉干后,剥下始极片,先于稀中浸煮3~4h后用水洗净。再于稀硝酸顶用蒸汽(或外加热)浸煮4h左右,取出用水刷洗净并烘(或凉)干,然后剪切成规则尺度的始极片和耳片,经钉耳、拍平、供金电解用。

钴镍

2017-06-06 17:50:12

钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工 行业 、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。   一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价 金属 转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他 金属 ,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价 金属 的综合回收利用。   二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。   三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。   四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍 金属 广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等 行业 ,钴镍粉体是现代工业不可缺少的 金属 材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍 金属 ,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。 

铝镍钴

2017-06-06 17:50:12

铝镍钴铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量 金属 元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 铝镍钴磁铁,铝镍钴永磁是由 金属 铝,镍,钴,铁和其他微量 金属 元素构成的一种合金.   铸造工艺   其 金属 成份的构成不同,磁性能也不同,从而用途也不同.铝镍钴永磁有两种不同的生产工艺:铸造和烧结.铸造工艺可以加工生产成不同的尺寸和形状,与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯产品尺寸公差小,铸造可加工性好.在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达500摄氏度以上.铝镍钴磁能积高,温度稳定性好, 价格 与钕铁硼差不多,缺点是矫顽力极低,容易发生退磁,磁路设计不能采用薄片状磁体,且需要先装配再整体充磁。铝镍钴的用途十分广泛,在工业中有着很重要的作用。 

铝镍钴

2017-06-06 17:49:59

铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。铝镍钴磁铁含有铝、镍、钴、铜、铁、钛等材料。按照加工工艺的不同,铝镍钴磁铁又分为铸造型铝镍钴磁铁和烧结型铝镍钴磁铁两类。铸造型的磁性能较高,烧结型的工艺简单,可直接压制成所需的产品。铝镍钴磁铁的优点是其温度系数小,因而受温度变化而引起的磁性能变化很小。铝镍钴磁铁最高工作温度可达450℃&mdash;650℃。故目前仍被广泛应用于仪器、仪表这类要求温度稳定性高的产品中。在开路的工作环境下,铝镍钴磁体的&ldquo;长径比&rdquo;(即长度与直径之比L/D)至少应为4:1。铝镍钴永磁材料的抗锈蚀能力较强,不需进行表面涂层处理。铸造铝镍钴磁性能表牌号剩磁Br矫顽力Hcb最大磁能积( BH )max最大工作温度美国标准IEC<span style="fo

钴镍催化剂和钴铝催化剂的回收利用

2019-01-21 18:04:55

一、钴镍催化剂的回收利用(碱浸法) 在含Al2O3的废脱硫催化剂中加入Na2CO3。Na2CO3∕Al2O3的摩尔比为1.5~4,煅烧到1150℃以上,把煅烧后的产物浸到热水中搅拌进≥0.1mol∕L的H2SO4中,从而脱出镍和钴来。 二、钴铝催化剂的回收利用(碱熔融法) 将61%的含Co3O4∕AI3O3废催化剂添加3.5%的纯碱,在1100℃下熔融,将熔块破碎后在80~90℃下用10倍的水浸取1h,过滤后滤饼中含95.8% Co3O4,干燥后还原则成金属钴,钴的收率在95%以上,滤液中含钴0.6mg。

铝镍钴磁铁

2017-06-06 17:50:12

铝镍钴磁铁铝镍钴磁铁也叫做磁钢磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强 金属 ,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金。磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强 金属 ,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金(Any of several hard, strong alloys of iron, aluminum, nickel, cobalt and sometimes copper, niobium, or tantalum, used to make strong permanent magnets.)。其 金属 成分的构成不同,磁性能不同,从而用途也不同,主要用于各种传感器、仪表、电子、机电、医疗、教学、汽车、航空、军事技术等领域。铝镍钴磁铁是最古老的一种磁钢, 被人们称为天然磁体, 虽然他最古老, 但他出色的对高温的适应性, 使其至今仍是最重要的磁钢之一.铝镍钴可以在500℃以上的高温下正常工作, 这是他最大的特点, 另外抗腐蚀性能也比其他的磁体强。铝镍钴磁铁的应用也越来越广泛,从高科技产品到最简单的包装磁,目前应用最为广泛的还是钕铁硼强磁和铁氧体磁铁。 而矫顽力的提高,主要得益于对其本质的认识和高磁晶各向异性化合物的发现,以及制备技术的进步。二十世纪初,人们主要使用碳钢、钨钢、铬钢和钴钢作永磁材料。二十世纪三十年代末,AlNiCo永磁材料开发成功,才使永磁材料的大规模应用成为可能。五十年代,钡铁氧体的出现,既降低了永磁体成本,又将永磁材料的应用范围拓宽到高频领域。到六十年代,稀土钴永磁的出现,则为永磁体的应用开辟了一个新时代。1967年,美国Dayton大学的Strnat等,用粉末粘结法成功地制成SmCo5永磁体,标志着稀土永磁时代的到来。迄今为止,稀十永磁已经历第一代SmCo5,第二代沉淀硬化型Sm2Co17,发展到第三代Nd-Fe-B永磁材料。此外,在历史上被用作永磁材料的还有Cu-Ni-Fe、Fe-Co-Mo、Fe-Co-V、MnBi、A1MnC合金等。这些合金由于性能不高、成本不低,在大多数场合已很少采用。而AlNiCo、FeCrCo、PtCo等合金在一些特殊场合还得到应用。目前Ba、Sr铁氧体仍然是用量最大的永磁材料,但其许多应用正在逐渐被Nd-Fe-B类材料取代。并且,当前稀土类永磁材料的产值已大大超过铁氧体永磁材料,稀土永磁材料的生产已发展成一大 产业 。

钨极

2017-06-06 17:50:12

钨极是什么?钨极氩弧焊时常被称为TIG焊,是一种在非消耗性电极和工作物之间产生热量的电弧焊接方式;电极棒、溶池、电弧和工作物临近受热区域都是由气体状态的保护隔绝大气混入,此保护是由气体或混合气体流供应,通常是惰性气体,必须是能提供全保护,因为甚至很微量的空气混入也会污染焊道。钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,起方法构成如图所示。焊接时氩气从焊枪的喷嘴中连续喷出,在电弧周围形成保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝。焊接过程中根据工件的具体要求可以加或者不加填充焊丝。钨极氩弧焊,以人工或自动操作都适宜,且能用于持续焊接、间续焊接(有时称为&lsquo;跳焊&rsquo;)和点焊,因为其电极棒是非消耗性的,故可不需加入熔填 金属 而仅熔合母材 金属 做焊接,然而对于个别的接头,依其需要也许需使用熔填 金属 。钨极氩弧焊是一种全姿势位置焊接方式,且特别适于薄板的焊接&mdash;经常可薄至0.005英寸。这种焊接方法由于电弧是在氩气中进行燃烧,因此具有以下优缺点:   1) 氩气具有极好的保护作用,能有效的隔绝周围空气;它本身既不与 金属 起化学反应,也不溶于 金属 ,使得焊接过程中的冶金反应简单易控制,因此获得较高质量的焊缝提供良好条件。   2)钨极电弧非常稳定,即使在很小电流情况下(&lt;10A)仍可稳定燃烧,特别适用于薄板材料焊接。   3)热源和填充焊丝可分别控制,因而热输入容易调整所以这种焊接方法可进行全方位焊接,也是实现单面焊双面成型的理想方法。   4)由于填充焊丝不通过电流,故不产生飞溅,焊缝成型美观。   5)交流氩弧焊在焊接过程中能够自动清除焊件表面的氧化膜作用,因此,可成功地焊接一些化学活泼性强的 有色金属 ,如铝、镁及合金。   6)钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。因此,熔敷速度小、熔深浅、生产率低。   7)采用氩气较贵,熔敷率低,且氩弧焊机有较复杂,和其他焊接方法(如焊条电弧焊、埋弧焊、CO2&amp;shy;气体保护焊)比较,生产成本较高。8)氩弧周围受气流影响较大,不易室外工作。钨极氩弧焊的特性使其能使用于大多数的 金属 和合金的焊接,可用钨极氩弧焊焊接的 金属 包括碳钢、合金钢、不锈钢、耐热合金、难熔 金属 、铝合金、镁合金、铍合金、铜合金、镍合金、钛合金和锆合金等等。铅和锌很难用钨极氩弧焊方式焊接,这些 金属 的低熔点使焊接控制极端的困难,锌在1663F汽化,而此温度仍比电弧温度低很多,且由于锌的挥发而使焊道不良,表面镀铅、锡、锌、镉或铝的钢和其它在较高温度熔化的 金属 ,可用电弧焊接,但需特殊的程序。在镀层的 金属 中的焊道由于&ldquo;交互合金&rdquo;的结果。很可能具有低的机械性质为防止在镀层的 金属 焊接中产生交互合金作用,必须将要焊接的区域的表面镀层移除,焊接后在修补。更多有关钨极请详见于上海 有色 网

镍电解净液钴渣提钴

2019-03-05 09:04:34

镍电解时,阳极中的镍与钴一同电化学溶解进入溶液,在阳极液净化除杂质时,溶液中钴以Co(OH)3方式沉积进入钴渣。钴渣含钴6%-7%,可用来出产氧化钴,也可产出金属钴。所用工艺由钴渣溶解、浸出液净化除杂质、镍钴别离以及制取氧化钴(或金属钴)四部分组成(见图)。    在65-75℃温度下,在硫酸溶液中,参加Na2SO3将Co3+还原成CO2+并溶解:                2Co(OH)3+Na2SO3+2H2SO4====2CoSO4+Na2SO4+5H2O    溶出液在95℃,参加NaClO3将Fe2+氧化水解沉积除掉。除铁液进萃取槽,用P204萃取剂除铜和剩下铁,除铜后液再以P507别离镍钴,含钴有机相用溶液反萃取得到含Co75g/L左右的COCl2溶液。此溶液既可以在不溶阳极电解槽中隔阂电解出产金属镍;也可以用草酸沉钴然后煅烧出产氧化钴粉。电解的技能条件是:电流密度400A/m2,槽电压3-4V,电解温度60℃,电流效率94%。

湿法炼镍(钴)-钴溶液的处理

2019-01-24 11:10:25

应当归属于再生钴原料来源的有含Co50~60%和Ni10~30%的超合金,含Co8~24的磁性合金,含Co5~12%的高速切削合金,用于石化工业的催化剂以及其它钴含量偏高的废料等。不久前,国外还有认为再生原料中生产钴是无利可图的,后来这种观点就改变了。早在1979年就有近2000吨钴从再生原料中生产出来。     美国的例子在这方面是最好的标志。美国是消费钴的基本用户,1980年这个国家钴的消费量为7260吨,其中从再生料中生产的有544吨。     在(前)苏联,钴镍废料是用湿法冶金方法在现代化的镍企业中处理的。 钴溶液的处理     硫化钴溶液是镍企业湿法冶金车间的原料。这种溶液中含(克/分米3):Co3~50(Ni含量大致在这个范围内变化)、Fe3~20、Cu0.2~0.5。再生含钴废料也溶解于硫酸溶液。过滤后的溶液中,各种金属的浓度同上述浓度相似,取决于原料中的金属含量。     硫酸溶液净除杂后,以氢氧化物形式析出。     某些氢氧化物生成的pH平衡值列于表1。 表1  不同作者的资料提供的金属氢氧化物生成的pH平衡值化合物布里顿费阿尔科夫赫菲茨和罗景扬Co(OH)3 Fe(OH)3 Cu(OH)2 Co(OH)2 Fe(OH)2 Ni(OH)2— 2.0 5.3 6.8 5.5 6.7— 1.63 4.4 6.78 5.62 6.70.9 2.6 4.5 6.4 6.7 7.1     根据表1的资料,高价金属从溶液中析出比低价金属简单得多。这一原理在湿法冶金中得到广泛应用。氧化剂可以是固态、液态和气态。重要的是,氧化剂的氧化电位要比溶液中的金属离子的氧化还原电位高。氧化还原电位可按下式计算:φMe3+/Me2+=φ°Me3+/Me2++RTlnaMe3+(1)NfaMe2+ 式中,aMe3+----氧化离子的活度;aMe2+----还原离子的活度;φ°Me3+/Me2+----25℃温度下的标准电极电位。 表2  氧化还原反应的电极电位反应参加反应的离子活度介质电位(伏)Co3+e←→Co2+Aco3+=aco2+=1—+1.84NiO2+4H++2e←→Ni2++2H2O——+1.77HClO+H++e←→Cl-+H2O—酸性+1.491/2 Cl2←→Cl-acl-=1—+1.35O2+4H++4e←→H2OaH+=1—+1.23ClO-+H2O+2e←→Cl-+2OH-Aclo-=1,aoH-=1碱性+0.94Fe3++e←→Fe2+aFe3+=3.8×10-8酸性+0.771Fe2++3OH+←→Fe(OH)3aFe2+=4×10-4pH=2.5+0.44     某些氧化还原反应的电极电位列于表2。从表2的资料可以看出,氧的作用是可以把Fe2+氧化为为Fe3+。为了使钴、镍、锰变为高化合价,需要采用更强的氧化剂,如气态氯或次氯酸盐等,介质应是酸性的。     氢氧化物的水解分步沉淀,反应如下: 2FeSO4+3Na2CO3+6H2O=2Fe(OH)3+2NaCl+3Na2CO3+2Na2CO3        (2)     此反应在pH=4.0~4.5(溶度积Fe(OH)2=4×10-38)时,随实际生成铁的不溶氢氧化物同时进行: 2CuSO4+2Na2CO3+2H2O=CuCO3·Cu(OH)2+Na2SO4+H2CO3       (3)     铜的碱式碳酸盐沉淀的pH值为5.5。       2CoSO4+Cl2+3Na2CO3+6H2O=2Co(OH)3+2NaCl+2Na2SO4+3H2CO3       (4) pH沉淀=3.0~3.5,溶度积Co(OH)3=2.5×10-43         2MnSO4+2Cl2+4Na2CO3+4H2O=2Mn(OH)4+2Na2SO4+4NaCl+4CO2          (5) Mn(OH)4r pH沉淀=2.5。锰是最难排除的杂质。     为了正确评价从溶液中分步除杂,不仅需要有热力学数据,而且还要了解生成氢氧化物的动力学。     沉淀可在帕秋克浸出槽内进行(配有压缩空气搅拌)或在带有机械搅拌的装置内进行,用孔状过滤器进行固一液分离。