您所在的位置: 上海有色 > 有色金属产品库 > 氧化钴合成 > 氧化钴合成百科

氧化钴合成百科

氧化钴

2017-12-27 15:30:03

氧化钴一种化学品的名称,通常是灰色粉末, 有时是绿棕色晶体。主要用作制取金属钴的原料,制取的金属钴用于生产钨钴硬质合金、钴磁合金、经过继续氧化成四氧化三钴用作钴锂电池的正极材料,在化工行业用作催化剂,还用作玻璃、搪瓷、陶瓷、磁性材料、密着剂、天蓝色、钴蓝色、钴绿色等色彩的着色剂,家畜微量元素营养剂。用作制取金属钴的原料,制取的金属钴用于生产钨钴硬质合金、钴磁合金、继续氧化成四氧化三钴用作钴锂电池的正极材料,用作玻璃、搪瓷、陶瓷、磁性材料、密着剂、天蓝色、钴蓝色、钴绿色等色彩的着色剂,家畜微量元素营养剂。化工行业用作催化剂。

氧化钴基础知识

2019-03-07 10:03:00

氧化钴粉首要包含CoO、Co2O3、Co3O4。含钴74%以上的高品位氧化钴为褐色,含钴74%以下的氧化钴为黑色。依照其用处和化学成分的不同,依据国家标准,精制氧化钴粉首要分为Y类和T类两大系列,而Y类产品又分为Y0、Y1、Y2三种牌号,T类产品分为T1、T2两种牌号。精制氧化钴粉的粒度一般在180~250目,其松装密度为0.4~0.61t/m3。氧化钴,主成分为CoO或Co2O3,黑灰色粉末,渐溶于热和热稀硫酸中,并别离放出氯和氧,不溶于水和醇。用作氧化剂,制作钴和不含镍的钴盐、钴催化剂、颜料、陶瓷的釉料、色素着色剂、硬质合金,用于电子及冶金工业等。精制氧化钴粉首要用于制作硬质合金,占用量的93%;部分用作颜料和釉料,4%用于陶瓷,3%用于珐琅职业。将草酸钴在650~7500C下进行煅烧,终究制得精美氧化钴产品。金川钴体系选用回转窑煅烧,钴的回收率可到达98%以上。 四氧化三钴(Co3O4)为灰黑色粉末状固体,广泛应用于制作硬质合金、磁性材料、珐琅颜料、陶瓷颜料及玻璃颜料、故触媒、油墨颜料、玻璃脱色剂,是制备催化剂和干燥剂的首要原料。现在首要用于出产锂离子电池材料钴酸锂。因为通讯、电子业的开展,我国对锂离子电池的需求也不断增加,估计从现在到2010年我国对锂离子电池的需求将以每年10%~20%的速度增。现在我国对四氧化三钴的需求量为2600t。 四氧化三钴传统的出产办法多选用灼烧或是热分解法。灼烧法就是将钴粉用红热蒸汽加热法生成CoO,在5000C下进一步氧化成Co3O4,可是这种办法产出的Co3O4粉末活性差,纯度低,粒度散布宽。热分解法是将纯洁的氧化钴或是硝酸钴溶液沉积出产草酸钴或是碳酸钴,经高温煅烧产出Co3O4。但该法相同存在粒度散布不均匀的问题,产品纯度较低。 近几年,我国对高浓度硝酸钴或氧化钴溶液直接组成Co3O4进行了实验研讨。将含钴溶液加热后,缓慢参加溶液,调理溶液的PH值,并缓慢参加H2O2,反响发生黑色沉积,沉积产品首要为钴的氧化物和水合物,含钴为65%~68%,沉积物经进一步煅烧,可得到纯度95%以上的Co3O4粉末。直接氧化法制得产品需求进一步煅烧,流程较长,并且参加量及参加速度对产品影响较大,进程较难于操控。 2004年北京矿冶研讨总院对加压浸出法直接出产Co3O4进行了实验研讨。产品含钴到达71.4%对产品进行x射线衍射分析断定,产品为纯度较高的四氧化三钴,谱线中未发现有其他物质。电子显微照片显现,加压浸出法产出四氧化三钴颗粒较煅烧法细,粒度较为均匀。

钴渣制取氧化钴的生产实践

2019-03-05 12:01:05

氧化钴是钴基合金、硬质合金及珐琅,陶瓷颜料的重要原材料,国内现在年产1000多吨。氧化钴有三种不同方式:CoO、Co2O3、Co3O4,色彩和含钴量都不同。因为各厂的质料和出产条件不同,在浸出、净化和钴沉积上各有特色。 从镍体系钴渣出产氧化钴的典型出产工艺为金川公司流程,如图1所示。图1  金川公司用钴渣出产氧化钴的流程图 一、萃取除杂 黄钠铁矾除铁后液中的杂质总量仍还有约2g∕L,包含Cu、Fe、Ca、Mg、Pb、Zn、Mn等,为了得到合格的氧化钴产品,还必须进一步的净化。金川公司选用P204萃取工艺进行深度净化除杂。 P204主要成分为二-(2-乙基己基)磷酸,是一种烷基磷酸萃取剂,分子量323,无臭味,出厂规格为P204≥93%,密度0.9694~0.9700g∕cm3(25℃),黏度0.42cP(25℃),在水中溶解度0.012g∕L,10%碳酸钠溶液中溶解度为0.026g∕L,1moL硫酸溶液中溶解度为0.0017g∕L,平衡pH值时pKa=3.5,酸性杂质为0.3%~0.4%,水分为0.3%~0.4%,其分子结构式为:萃取除杂在25级聚氯乙烯混合弄清箱中进行,溶液中的Cu、Fe、Zn、Mn、Ca等杂质进入有机相中,别离用1.2mol∕L、2.5mol∕L和6mol∕L洗Co、洗Cu、洗Fe。萃余液送P507别离镍钴。 25级别离为10级萃取,5级洗钴,4级洗铜,4级洗铁,2级弄清。 混合室:0.52m×0.52m×l.20m 弄清室:0.52m×2.60m×1.20m 萃取箱拌和桨为钛质六叶桨,直径200mm,由5台5.5kW电动机带动,转速470~500r∕min。流量由高位槽操控,转子流量计丈量。 萃取操作的技术参数为: 萃取剂:      10% P204,90%磺化火油 皂化剂:      8~9mol∕L NaOH溶液 皂化率:      60%~65% 物料流比:    有机相∶料液∶洗钴液=0.6∶1.0∶0.06 皂化在φ2×2mPVC槽内进行。 反萃用的2.5mol∕L和6.0molL∕L溶掖内循环,别离降至0.1~0.2mol∕L或4~4.5mol∕L时更换新酸液。 除杂后液成分:二、萃钴 P507萃钴在34级萃取箱中进行,其间制锦皂5级,镍钴别离7级,洗镍5级,钴反萃6级,洗铁5级,弄清6级。萃取箱尺度、结构、拌和桨及转速等与萃取除杂相同。 萃钴操作的技术参数为: 萃取剂        25% P507,75%磺化火油 制镍皂溶液    35~40g/L硫酸镍溶液 制钠皂溶液    8~9mol∕L NaOH溶液 物科流比      有机相∶料液∶洗镍液∶反萃液=1.0∶0.7∶0.07∶0.15 皂化在φ2×2mPVC槽内进行。 洗镍用1.2mol∕L溶液,反萃钴用2.5mol∕L溶液,冼铣用6.0mol∕L溶液(内循环)。 三、草酸钴沉积 运用沉积剂草酸铵,由草酸溶液通入自行沉积制备。运用φ2m×2m不锈钢槽,在60℃下溶解工业草酸,真空抽滤除掉残渣,溶液在机械拌和条件下通入气,至pH=4.0~4.5时沉积结束,真空过滤得到草酸铵。 沉钴分两段进行,都在2m3珐琅釜内完结,操作条件见表1。 表1  两段沉钴技术参数四、煅烧制氧化钴 一段沉积草酸钴选用反转管电炉煅烧,电炉规格为φ0.5m×10m,转速0~2.07r∕min,倾角3°,总功率250kW,炉头温度700℃,炉中600℃,炉尾500℃。 二段沉积选用红外线炉煅烧热解,温度530℃。 硬质合金出产用的氧化钴要求松装比重在0.45~0.55g∕cm3之间,为此要求在沉钴过程中严格操控氯化钴的初始浓度、淀度及草酸铵的参加速度,以确保取得必定粒度的沉积;一起严格操控煅烧时的炉温,不致过烧或缺乏。

氧化钴的生产工艺流程介绍

2019-02-22 10:21:22

钴矿用球磨机破坏到粒度约-100目巨细后,将矿浆打到溶解槽,用硫酸或溶解后压滤,将滤液加热,往热溶液中参加碳酸钠、、、硫代硫酸钠等化工原料作为除杂剂,除掉溶液中的很多的铜、铁、钙、镁、铅、锌等杂质。少数的杂质随溶液进入下一道工序,运用P204[磷酸二异辛酯]作萃取剂,将钴、镍与铜铁等杂质元素别离,萃取液用稀反萃(洗脱),钴、镍进入水相中,将含钴、镍溶液送入含P507[2-乙基己基磷酸-2-乙基己基酯]的萃取槽进行钴镍别离。含镍溶液作为副产品出产硫酸镍,含钴溶液经浓缩到达规则的浓度后用反萃,生成氯化钴溶液,用草酸铵沉积钴,转化为草酸钴沉积,将沉积物枯燥后以草酸钴方式作为产品运用。草酸钴经高温锻烧后生成氧化钴,经复原后制成钴粉。经钴镍别离后的钴溶液,假如用硫酸溶液洗脱,可制成硫酸钴产品,用醋酸洗脱可制成醋酸钴,氯化钴溶液用碳酸钠沉积可制成碳酸钴,用于出产钴粉、氧化亚钴或四氧化三钴。

从氧化钴矿石中提取钴的工艺技术

2019-02-11 14:05:44

钴具有耐腐蚀、熔点高、强磁性等优秀功能,是各种特殊钢、耐热合金、抗腐蚀合金、磁性合金、硬质合金出产的重要质料,广泛用于航空、航天、机械制造、电气外表等范畴,因而,钴被誉为战略物资。     现在钴的出产基本上都是以钴土矿、钴硫精矿、硫化铜镍矿渣、砷钴矿等为质料。现已探明的钴矿资源均匀档次仅为0.02%,并且在出产过程中收回率低、工艺杂乱、出产成本较高。     一、矿石性质     实验所用钴矿石为非洲刚果氧化型水钴矿,呈灰黑色,密度2.780t/m3,化学分析成果见表1。水钴矿属成分杂乱的氧化物和氢氧化物,其杂质成分和结晶程度互不相同,X射线衍射成果表明可能是三价和二价的单水化合物变种,具有不稳定成分,如水钴铜矿(2Co2O3·CuO·6H2O),铜水钴矿(2Co2O3·CuO·3H2O)等。 表1  水钴矿化学分析成果    %CoCuFeMnNiMgCa9.2415.422.780.190.180.960.084     二、仪器、试剂及工艺流程     实验所用仪器有KS-Ⅱ康氏振荡器,78HW-1恒温磁力拌和器,LD2001电子秤,JJ-2型增力电动拌和器,2XZ-0.5旋片真空泵,F97-A矿石粉碎机,分液漏斗。     实验所用试剂有工业级硫代硫酸钠、碳酸钠、、P204、P507、硫酸、化学纯,草酸铵,分析纯。     实验工艺流程见图1。    图1  从氧化钴矿石中提取钴的工艺流程     三、成果与评论     (一)浸出     钴的贱价氧化物易在稀硫酸溶液中溶解,生成可溶性CoSO4,而高价氧化物必须在浓硫酸中才溶解。反响式为: CoO+H2SO4(稀)=CoSO4+H2O, Co2O3+2H2SO4(浓)=2CoSO4+2H2O+1/2O2, CoO·SiO2+H2SO4(稀)=CoSO4+H2SiO3, CoO·Fe2O3+4H2SO4(稀)=CoSO4+Fe2(SO4)3+4H2O。     1、一段浸出     将水钴矿磨细,浆化,用1mol/L H2SO4溶液浸出,首要调查矿石粒度、浸出时刻、浸出温度对钴浸出率的影响,实验成果见表2~4。 表2  矿石粒度对钴浸出率的影响序 号矿石粒度/目钴浸出率/%1 2 3-60 -120 -2009.8 25.5 41.18     浸出时刻12h;浸出温度90℃。 表3  浸出时刻对钴浸出率的影响序 号浸出时刻/h钴浸出率/%1 2 3 46 12 18 2428.1 40.9 41.0 43.6     矿石粒度-200目,浸出温度90℃。 表4  浸出温度对钴浸出率的影响序 号浸出温度/℃钴浸出率/%1 2 3 425 60 90 1004.3 11.7 42.3 42.6     矿石粒度-200目,浸出时刻12h。     从表2~4能够看出,矿石粒度越细,浸出温度越高,保温时刻越长,钴浸出率越高。归纳考虑,一段浸出以矿石粒度200目以下、保温时刻12h、温度90℃为宜。     2、二段浸出     取一段浸出渣,按液固体积质量比2:1调浆,用4mol/L H2SO4溶液按液固体积质量比4:1拌和浸出,温度95℃以上,保温必定时刻,调查矿石粒度、保温时刻对钴浸出率的影响。实验成果见表5、表6。能够看出,矿石粒度减小、保温时刻延伸,钴浸出率进步。归纳考虑,矿石粒度以200目以下、保温时刻24h为宜。 表5  矿石粒度对钴浸出率的影响序 号矿石粒度/目钴浸出率/%1 2 3-60 -120 -20021.1 70.3 99.1     保温24h;温度95℃以上。 表6  保温时刻对钴浸出率的影响序 号保温时刻/h钴浸出率/%1 2 3 46 12 18 2456.3 86.9 94.2 99.03     (二)浸出液的净化     用硫酸经过二段浸出,矿石中大部分钴都进入溶液,一起其他共存元素也进入溶液。杂质元素的存在收回钴或钴化合物有很大影响,需预先去除。最优条件下取得的浸出液成分见表7。 表7  浸出液成分阶段   g/LCo2+Zn2+ΣFeNi2+Cu2+Ca2+Mg2+18.60.182.340.2841.80.601.99     (三)除铁     选用黄钠铁矾法除铁。黄钠铁矾[Na2Fe6(SO4)4(OH)12]为淡黄色晶体,是一种过滤功能、洗刷功能都杰出的盐基性硫酸盐。除铁总反响式为: 3Fe2(SO4)3+6H2O+5Na2CO3=Na2Fe6(SO4)4 (OH)12↓+5Na2SO4+6CO2     取上述浸出液1000mL,调pH进行实验,成果见表8。能够看出,结尾pH对铁矾的构成有很大的影响。pH在4.0~4.5范围内,铁去除彻底,溶液中钴/铁质量浓度比到达18600。 表8  溶液pH对Fe沉积的影响pHρ(Fe)/(g·L-1)ρ(Co)/ρ(Fe)铁矾渣中 w(Co)/%铁矾渣中 w(Fe)/%2.0~2.5 2.5~3.0 3.0~3.5 3.5~4.0 4.0~4.50.39 0.146 0.04 0.026 <0.00147.7 127.4 465 715.4 186000.3 0.04 0.5 0.9 0.3622.57 23.1 20.6 24.1 22.1     (四)除Ca2+、Mg2+、Cu2+     使用Ca2+、Mg2+的氟化物溶解度低的特色,操控溶液pH,使Ca2+、Mg2+别离构成CaFe2、MgFe2沉积。 Na2S2O3与Cu2+反响构成CuS沉积,Co2+则留在溶液中,然后完成Ca2+、Mg2+、Cu2+与Co2+、Ni2+的别离。反响方程式如下: MgSO4+2NaF=MgFe2↓+Na2SO4, CaSO4+2NaF=CaF2↓+Na2SO4, 2CuSO4+2Na2S2O3+2H2O=Cu2S+S+2Na2SO4+2H2SO4。     对去除了铁的溶液,在必定温度下,先后参加必定量NaF和Na2S2O3,调查NaF对Ca2+、Mg2+杂质去除的影响及Na2S2O3对Cu2+去除的影响。实验成果见表9和表10。能够看出,在必定温度下,操控NaF和Na2S2O3用量,能够将浸出液中的Ca2+、Mg2+及Cu2+去除。 表9  NaF参加量对Ca2+、Mg2+去除的影响m(NaF)/ m(Ca2++Mg2+)溶液中ρ(Ca2+)/ (g·L-1)溶液中ρ(Mg2+)/ (g·L-1)ρ(Co2+)/ρ (Ca2+)ρ(Co2+)/ρ (Mg2+)5 10 120.44 0.0144 0.01020.75 0.0113 0.007842.3 1291.7 1823.524.8 1646 2384.6     保温时刻4h。 表10  Na2S2O3参加量对Cu2+去除的影响m(Na2S2O3)/ m(Cu2+)溶液中ρ(Cu2+)/ (g·L-1)溶液中ρ(Co2+)/ (Cu2+)渣中w(Co)/%渣中w(Cu)/%4 6 8 105.3 0.065 0.01 <0.0135 286 1860 <18600.015 0.03 0.02 0.0155.9 57.9 67.2 60.3     溶液调pH后,参加Na2S2O3,在必定温度下保温30min。     (五)P204萃取深度除杂质     以化学法除杂后的溶液中还含有少数杂质(表11),还须进行深度净化。操控溶液pH、流量等,经过串级萃取能够使杂质进一步去除。由串级萃取理论核算萃取段为8级,洗刷段为7级。流量比:V(有机相):V(洗刷液)=8:3:1。溶液pH=4.5,成分见表12。 表11  化学除杂后溶液成分   g/LCo2+Ni2+Cu2+ΣFeCa2+Mg2+Mn2+Zn2+As3+Pb2+24.20.512.020.00720.01210.00621.360.220.00290.0146 表12  除杂质后萃余液成分    g/LCo2+Ni2+Cu2+Mn2+Zn2+Ca2+Mg2+ΣFeNa+17.20.320.00860.0104<0.0010.00350.0056<0.00146.4     (六)P507萃取别离钴、镍     去除杂质后的萃余液(组成见表12)进行钴镍别离。操控pH、流量、萃取级数进行萃取,萃余液中ρ(Ni2+)=0.056g/L,ρ(Co2+)=0.154g/L;有机相中ρ(Ni2+)<0.001g/L,ρ(Co2+)=0.154g/L。     从有机相中6级反萃取钴,洗刷液为2.5mol/L HCl,操控流量比为:V(有机相):V(洗刷液)=6:1。反萃取后的CoCl2溶液组成见表13。 表13  反萃取后的CoCl2溶液组成    g/LCo2+Ni2+Cu2+Mn2+Ca2+Mg2+Zn2+Na+pH68.20.0410.0030.010.030.0025<0.00110.51~2     (七)沉积、烘干     去除杂质后的溶液中,钴以CoCl2方式存在,选用草酸铵沉积法沉积草酸钴,反响式如下: Co2++(NH4)2C2O4=CoC2O4+2NH4-     草酸钴沉积中含有必定量可溶性离子(如NH4+、Na+、SO42-、Cl-等),用热水洗刷可得到精制草酸钴产品。二价钴的草酸盐一般为桃红色,难溶于水,微溶于酸,在空气中加热即变成无水盐。洗刷后的草酸钴在箱式炉中进行烘干,炉温90~110℃,操控草酸钴色彩为桃红色,水分小于0.65%。所得草酸钴产品松装密度为0.29g/cm3,化学成分见表14。 表14  草酸钴产品的化学成分阶段   %CoNiCuMnCaMgZnNaH2O31.20.080.0940.020.10.0090.0090.080.085     四、定论     (一)氧化钴型水钴经过硫酸两段浸出,浸出液中Co2+质量浓度达15~20g/L,钴浸出率达99%。     (二)选用化学法去除溶液中的Fe、Ca、Mg、Cu杂质,能够操控杂质含量到达要求。     (三)对化学除杂后的浸出液,选用204串级萃取进一步除杂,P507萃取别离钴、镍,可得到合格的CoCl2溶液。     (四)用草酸铵沉积得草酸钴,洗刷后在必定温度下烘干即得草酸钴产品。

酞莆钴脱硫催化剂合成方法

2019-03-14 10:38:21

本发明归于化工组成办法$将4水磺酸铵,均本四二酐,工业尿素,6水氯化钴和钼酸铵以100∶10∶90∶21∶7∶2的分量比混合均匀,放于铁锅中熔融均匀,发泡并成兰色后,移于250℃的高温炉中枯燥2小时,得松脆、多孔、易溶于水的兰色产品。$该产品适用于天然气、组成气、焦炉气、裂解气、煤气及汽油、含硫化物废水等需求脱出无机硫和有机硫的工业。

氧化水解分离钴

2019-01-31 11:06:04

使用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。 在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发作发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。 水解沉积进程中有H+发生,有必要加碱进行中和。 在出产使用中,为了使钴和镍杰出别离,应遵照以下根本原则: (一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。 (二)操控恰当的析钴率,溶液含钴高时析钴率可高些。 (三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。 沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图1所示。二次沉钴的根本技术参数见表1。图1  从氢氧化钴出产电钴的工艺流程图 表1  二次沉钴的首要技术参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。

氧化钴矿的选矿工艺流程

2019-01-18 11:39:40

某含大量矿泥氧化钴矿工艺矿物学研究表明,原矿中的主要有用矿物为裼铁矿和杂水钴矿及少量的水钴矿,杂水钴矿普遍含铁、锰,钴主要存在于钴的独立矿物杂水钴矿中,褐铁矿中亦含有少量钴,褐铁矿及水钴矿、杂水钴矿类矿物约占10%,以风化产物充填在石英颗粒间。主要脉石矿物为石英及其风化产物,占有量约65%~70%,少量浸染褐铁矿的黏土矿类矿物,占有量约15%~20%。未见独立的铜矿物,铜主要存在于含钴矿物及褐铁矿中,铜、钴关系密切,不可能分别富集,铜将在选钴的过程中得到富集,获得含铜钴精矿;本研究推荐工艺流程为:原矿预脱原生泥后磨矿,强磁选脱次生矿泥再抛尾,采用浮选得到最终产品,并控制产品质量,使铜钴精矿钴品。。。。。。

氧化镍钴锰锂

2017-06-06 17:49:58

一种新型高比能量锂离子电池正极用氧化镍钴锰锂材料,日前由天津电源研究所研制成功。并获得了信息产业部电子基金的资金支持,随即建成年产200吨氧化镍钴锰锂生产线,在国内率先实现了产业化生产。目前市场上的锂离子电池大多以氧化钴锂为正极,其材料的稳定性和产品的安全性比较差。天津电源研究所针对氧化钴锂存在的突出问题,采用价格相对低廉的镍、锰替代钴,并研发独特的烧结工艺,仅用了一年多时间就成功解决了这一难题。据了解,这种新型材料具有容量高、寿命长、安全系数高、无污染等优点。与氧化钴锂相比,制造成本降低了10%至15%,每克容量由140毫安时可提升到220毫安时,由此不仅提高了产品的安全性能,而且增大了电池容量,一举突破了锂离子电池发展的瓶颈制约。该产品现已得到多家用户的认可,并实现了为出口欧盟的高端电池产品生产厂家供货。为了研制在电性能、安全性和成本价格等三方面均能较好地满足电动汽车需求的锂离子电池,选择了在氧化钴锂中掺杂氧化镍锰钴锂三元材料的方法,研制了新的50Ah动力型锂离子电池。通过对研制电池进行电性能和安全性试验,各项性能均满足电动汽车的技术要求,加上氧化镍锰钴锂三元材料的价格仅为氧化钴锂的50%左右,所以掺杂氧化镍锰钴锂三元材料是解决电动汽车对动力型锂离子电池严格需求的理想途径之一。近期有一种锂离子电池正极材料氧化镍钴锰锂及其制备方法。本发明属于锂离子电池技术领域。锂离子电池正极材料氧化镍钴锰锂为富锂型层状结构,化学成分Li↓[1+z]M↓[1-x-y]Ni↓[x]Co↓[y]O↓[2],其中0.05≤z≤0.2,0.1<x≤0.80.1<y≤0.5。制备方法:镍、钴、锰的可溶性盐为原料;氨水或铵盐为络合剂,氢氧化钠为沉淀剂;加水溶性分散剂,加水溶性抗氧化剂或用惰性气体控制和保护;将溶液并流方式加到反应釜反应;碱性处理,陈化,固液分离,洗涤干燥;氧化镍钴锰和锂原材料混合均匀;将混合粉体分三温区烧结得到氧化镍钴锰锂粉体。本发明比容量高,循环特性好,晶体结构理想,生产周期短,功耗低,适合产业化生产等。 

纳米氧化锌在合成纤维中的应用

2019-03-08 11:19:22

跟着现代科学技能的开展,单一功用的材料已不再能够满意人们的需求。纳米技能的开展和系列功用纳米材料的开发和商场化为开展多功用的健康纺织品带来了要害。运用纳米材料的各种特殊功用从根本上改动化学纤维原有的物理机械及化学功用,已获得了一系列适合于不同用处的优秀复合纤维如:抗紫外纤维;抗菌、抑菌和除臭纤维;远红外纤维;导电纤维;防辐射纤维。但总的来说,无机功用涣散相在成纤高聚物基体中的纳米标准涣散这一要害技能问题和纳米技能与工业的共性问题,仍没有得到充沛处理。现在已部分工业化的功用纤维,功用粒子在纤维中的涣散、纳米材料的原有特性没有充沛发挥,可控性程度还较低,导致出产的连续性和安稳性不行。 因此,虽然纳米技能的飞速开展成为制备特种功用纤维的重要手法之一,为特种功用纺织品的开展注入了新的生机,但是功用材料在高聚物基体中的纳米标准涣散仍是纳米功用纺织品研发的要害技能和瓶颈问题。所以虽然纳米氧化锌(ZnO)具有许多的优异功用,在许多方面都有较为广泛的运用,但因为其无机纳米材料自身的极性和颗粒纤细化,因此具有极大的比表面积和较高的比表面能,使它们不易在非极性介质中涣散。在极性介质中易凝集,然后直接影响了其功用的发挥。 以至于终究运用时失去了纳米颗粒所具有的功用。且因为它们为无机物,与有机物类的物质亲和性较差,这导致了纳米氧化锌(ZnO)在高聚物纤维中的实践运用困难,因此在纳米氧化锌(ZnO)的开发进程中有必要处理这一要害的瓶颈问题。 我公司与有关高校进行协作研讨,运用自产的纳米氧化锌经过表面改性处理后与高聚物基体丙纶(pp)、涤纶(PET)以及尼龙6(PA)共混具有抗菌、抗紫外功用的高技能复合纤维。在整个研讨进程中,咱们经过讨论纳米氧化锌粉末的内部结构及其功用,研讨纳米氧化锌粉末的抗菌机理(纳米氧化锌粉末在与细菌触摸时,锌离子会缓慢释放出来,与细菌细胞膜及膜蛋白结合,损坏其结构,进入细胞后损坏电子传递体系的酶并与DNA反响,抵达抗菌意图)和其抗紫外效应(一般来说紫外线的透过率在10%以下(或遮盖率在90%以上)的可称之为防紫外线织物。),以及不断调整操控其高聚物基体共混造粒纺丝的工艺参数,终究制得各含纳米氧化锌(ZnO)的抗菌、抗紫外功用纤维。经过选用抗菌功用实验办法,对各功用纤维进行抗菌功用测验,其结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚物功用纤维的抗菌率能够抵达99.9%,经过运用双光束紫外可见分光光度计(积分球)对之进行测验,结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚纤维的紫外光均匀透过率小于7%。 因此,在必定程度上能够说,咱们研讨开宣布纳米氧化锌(ZnO)具有抗菌、抗紫外功用高技能纤维的自主知识产权。 当今国际上在抗菌纤维研发方面基本上都是选用含银沸石作为抗菌剂,而运用当时研讨的热门纳米级半导体光催化抗菌剂纳米氧化锌作为抗菌粉体添加剂的报导并不多。但因为纳米氧化锌(ZnO)具有独特的“表面效应”在阳光(尤其是在紫外线)照耀下,能自行分化出自在移动的带负电的电子,一起留下带正电的空穴。这种空穴能够激活空气中的氧变为活性氧,有极强的化学活功用与多种有机化合物反响(包含细菌内的有机物),然后把大都病菌和病毒死。)、光催化效应以及报价相对低价的长处,使得对选用其作为新的抗菌粉体添加剂具有非常大的实践意义。 不仅如此,因为地球臭氧层遭到损坏,导致了紫外线对地球生物圈辐射量的不断添加,人们特别是年轻人在户外休闲的逐步延伸,射线对人类健康形成的损害正在日益加剧。虽然近年来国际上开端约束运用引起臭氧层变薄的化学物质,但就现在臭氧层遭到损坏的程度而言,对人体最有害的UVB区(280~320nm)、UVA区(320~400nm)的短波紫外线仍能抵达地上。因为这些短波段紫外光的照耀会发生自在基,形成细胞及安排损害,加速老化进程,然后导致皮肤晒黑及由紫外线吸收形成的皮肤疾患,甚至会皮肤癌,对人类的健康形成很大的损伤。因此,为了下降各种波长的紫外线对人类的损害,开宣布一种防紫外线穿透的纤维以满意不断增加的日子需求也是影响深远。 要制作含抗紫外线添加剂的抗紫外线纤维,首先要挑选适宜的抗紫外线添加剂(又称紫外线吸收剂、紫外线安稳机剂)。这是一类能挑选吸收波长为290~400nm的紫外线,有用的避免和按捺光、氧化效果而自身结构不起改变的助剂。这类紫外线吸收助剂还应具有无毒、低挥发性、杰出的热安稳性、化学安稳性、耐水解性、耐水中萃取性、与成纤高聚物的相容性等特色,其间因为纳米氧化锌(ZnO)具有紫外线透射率较低的特性,因此能够考虑用于抗紫外线纤维的制备。 依据氧化锌的一些自身特性,咱们发现纳米氧化锌是一种绝佳的抗菌、抗紫外无机粉体,具有适用面广、效率高、有用期长的特色,可用于制备一起兼备抗菌和抗紫外两种功用的高技能纤维。它差异于以往常用的有机抗菌剂(易发生微生物耐(抗)药性,并存在易搬迁、耐热性等缺陷,在塑料加工温度下还易分化失效,且分化产品可能会形成二次污染。),而选用物理吸附离子交换办法,将锌金属附载于多孔材料表面,运用金属离子的抗菌才能,经过缓释效果抵达长效抑菌的意图。因为它不发生耐药性且安全无毒,特别是其杰出的耐热性(>600℃),使得纳米氧化锌在抗菌材料运用中有着显着的工业优势。它的纳米微粒优异的光吸收特性还差异于以往的抗紫外线添加剂(大大都是有机物,有必定毒性,跟着涂层日晒时刻的延伸,其紫外线屏蔽功用会逐步下降,终究失效。),具有有用效果时刻长,紫外线屏蔽波段长,以及化学安稳性和热安稳性好、无毒、无刺激性等长处,因此运用很安全,具有实践运用的优势。 事实上,运用纳米功用无机材料作为抗菌剂和抗紫外添加剂的抗菌、抗紫外纤维正逐渐成为商场上继保健功用远红纤维、负离子纤维之后的又一种新颖的新式功用纤维。因此,咱们所研发开宣布的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维是一种极具有开发远景的防护功用性纤维。咱们估计想象的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维的实践运用范畴首要的有以下几方面: A、日子日用品范畴 纳米氧化锌(ZnO)在服饰方面的运用,例如:运动衫、罩衫、制服、套裤、职业服、泳衣和童装等,也用于帽子、面罩和太阳伞的质料。此外,它还被用于工业和装修方面,例如:广告用布、户外装修布等。纳米氧化锌(ZnO)的抗菌功用可用于出产涤纶长丝产品,它能够广泛用于针织的内衣裤、运动服装、袜子、地毯等。 B、专业卫生范畴(医用及民用) 在医用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够与棉混纺制成医院用的床布、手术服、医师工作服、病员服等。而在民用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够用于食品行业专用服以及各种床上用品、家具布、装修布等。紫外,纳米氧化锌(ZnO)还能够制备各种医用及民用无纺布产品,例如:无菌手术服、无菌口罩、卫生包覆材料、过滤材料以及妇女卫生用品、尿布等产品。 C、户外户外作业范畴 跟着经济的开展,旅游业在不断兴隆开展,各类相应户外产品因此也相继问世。纳米氧化锌(ZnO)的抗紫外功用使得其可用于出产各类遮阳伞、窗布、运送蓬布和各类帐子用布等。 在我国参加世界贸易安排后,我国纺织业迎来了巨大的开展机会,一起也面临着严峻的应战;在新形势下,我国化学纤维开展的要点已从“开展总量”转变到“开展先进出产力与结构调整并重”,其间推进技能晋级和加速结构调整是重中之重。纳米技能的飞速开展为特种功用纺织品的开展注入了新的生机,已成为制备特种功用纤维的重要手法之一。纳米氧化锌(ZnO)是一种面向21世纪的新式高功用精密无机产品,在纤维中能一起表现抗菌和抗紫外线的功用,是很多纳米无粉体中性价比具竞争力的一种,在人们日益寻求健康、舒适、安全纺织品的今日,纳米氧化锌(ZnO)/高聚物复合功用纤维是一种运用远景非常宽广,经济效益非常可观的高新技能产品。

铍铜的合成比

2018-12-13 10:37:27

常用铍铜中铍的质量分数为1.7-2.5%,铍青铜经过淬火和时效可以具有极高的强度和硬度,远超过其他所有的铜合金,甚至可以和高强度钢蓖美.它的弹性极限\疲劳极限\耐磨性\耐腐蚀性也都很好,是各种性能结合得很好的一种合金;还具有很好的物理\化学性能.就是价格太高!!!常用牌号:QBe2\QBe1.5\QBe1.7等.

黑镍氧化中和水解法除钴

2019-02-13 10:12:44

在铁族元素(包含Fe、Co和Ni)的三价氢氧化物中,其间以Ni(OH)3的氧化性最强,Co(OH)3次之,Fe(OH)3的氧化性最弱。用Ni(OH)3可使Co2+氧化成Co3+。      在工业生产上,黑镍(FeOOH)是Ni(OH)3的安稳形状。因为氢氧化亚镍[Ni(OH)2]的顔色为暗绿色,而氢氧化镍[Ni(OH)3和NiOOH]为黑色,故得名“黑镍”。黑镍像Cl2相同,它可作氧化剂用于中和水免除钴。其反响如下: NiOOH+Co2++H2O=Ni2++Co(OH)3      作为电解液净化沉钴所需的黑镍是用电解法制取的。电解阳极氧化Ni(OH)2法的根本进程是,从电解液净化系统抽出部分净化后液,参加沉积出Ni(OH)2,将Ni(OH)2矿浆放入电解槽内通入直流电,Ni(OH)2在阳极上发作氧化反响: Ni(OH)2-e=NiOOH+H+      Ni(OH)2电解氧化成NiOOH的机理现在还不彻底清楚。但一般以为氧化进程发作在固相即Ni2+无需进入溶液能够发作氧化,也就是说在Ni(OH)2颗粒触摸到阳极时才干氧化。电解氧化槽必须加强拌和,促进Ni(OH)2颗粒与阳极磕碰。电解氧化槽的阳极材料为外长始极片,阴极材料可用镍铬丝或不锈钢网,用鼓入空气的办法拌和电解氧化槽中的矿浆。下表为电解氧化槽技能操作条件。 下表“黑镍”电解氧化槽技能操作条件项目单位 电解液成分 NaOH0.1~0.15mol/L Ni30g/L电解液温度℃50槽电压V2.3阳极电流密度A/m220电流效率%~50     芬兰哈贾伐尔塔精粹厂选用“黑镍”氧化水免除钴是在两个容积为120m3的空气拌和槽中以两段逆流方法进行的。在榜首段净化除钴的进程中,溶液与现已部分起反响的NiOOH触摸,溶液中50%左右的钴发作沉积。矿浆送主动压滤机过滤,滤渣经酸洗后送另外厂收回钴,滤液送第二段净化除钴。在第二段反响槽内参加新的NiOOH。      用NiOH除钴,因为它的反就产品是镍离子,与电解液主成分共同,不会污染所处理的溶液。此外,用NiOOH除钴,因为它的氧化能力强,因而能一起除净溶液中残留的微量杂制质,如铜、铁、锰、砷等,起到深度净化的意图。

2018-04-19 17:41:48

钴是灰色硬质金属,它的居里点(失去磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发生氧化作用,极细粉末状钴会自动燃烧。钴能溶于稀酸,在浓硝酸中会形成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发生剧烈反应。 

谁创造了“合成金属”这个术语?

2019-03-04 10:21:10

掺杂共聚合物,以及其他具有金属导电性的有机材料,一般称为组成金属。这个名词经过Alan Mac Diarmid“组成金属:有机聚合物的新式效果”为人们所熟知。该术语也能够在专门介绍这些材料的Elsevier杂志和世界组成金属科学技能会议上看到。“组成金属”这个术语运用的时刻现已满足长,所以很少有人质疑它的来源。因而,回忆一下这一术语的来源前史是有必要的。 人们以为靠前次运用这个术语是Alfred Ubbelohde在1969年开端的。在Weinberg的关于Ubbelohde的列传中能够找到一个明显的案例:“Ubbelohde发明了诱人的表达”组成金属,是包含金属传导材料发明的,但这些材料又完全由非金属原子如碳、氮、氢、卤素和氧组成的。但事实上,这个术语的呈现早于Ubbelohde,这能够在1911年的Herbert Mc Coy的着作中找到。 Herbert Newby Mc Coy(1870-1945)于1898年在芝加哥大学取得博士学位,并在前往工厂之前具有犹他州和芝加哥的职位。虽然他为人所熟知的是稀土化学专业的研讨,但也被以为是经过电解(CH3)4N+盐在1911年靠前位制备有机金属的人。这可追溯到1808年关于合金的报导,McCoy以为复原铵能够显现类似于的金属性质。 运用电极,电解发生类似于钠齐的具有金属光泽的固体。虽然不是很安稳,但被确以为是具有金属导电性的铵自由基的齐。Mc Coy总结道:“效果刚被检查过,虽然数量很少,但很有或许制备复合金属物质,就是称为组成金属的物质,而且这些组成元素中至少一部分对错金属的。”1986年,Bard和搭档以为,这些产品实际上是由复原NH4+(Hg4-)发生的的Zintl离子盐。因而,这些不是较初以为的有机金属,而似乎是“组成金属”的来源。该术语随后在文献中不再运用,直到1969年Ubbelohde运用它描绘插层石墨时再次呈现。 Alfred Rene Ubbelohde(1907-1988)1941年被牛津大学颁发D.Sc. 学位,之后在皇后大学和帝国学院担任学术职位,他的研讨生计触及一系列科研方向,包含石墨和插层化合物,金属氢,相变材料和离子熔体。Ubbelohde报导的嵌入石墨显现出高达2.5×105Scm-1的电导率,因而成为供给金属有机物质的靠前实例。他在1951年初次描绘这些材料,但直到1969年才将它们描绘为组成金属。1969年的论文中报导的电导率明显高于他曾经的陈述,这或许是为什么他会用这个术语来描绘这些后来的材料的原因。不管什么原因,这个词之后成为他的着作中的干流,这导致了人们信任是他发起了这个词。 那么,到底是Ubbelohde独立开发了“组成金属”这一词,仍是在Mc Coy的作业中学到了它,并简略地将它应用于自己的作业。这个问题是不或许有定论的,虽然Ubbelohde的列传能够供给一些头绪,可是需求留意的是,Ubbelohde从来没有宣称这个术语是他自己的,他也从不界说这个术语。他总是运用这个术语,就好像它是一个已知的术语,不需求解说。例如,他在1969年靠前篇论文中靠前句话说到:“跟着出产近抱负石墨的办法的开展和操控逐步形成插层化合物的办法的改善研讨,这些组成金属中电荷载流子行为的改变是有或许的,会比研讨天然金属的可运用性的状况愈加具体。” 这个术语没有被解说,他也没有供给参阅内容。虽然Mc Coy从未被提及,但应该留意的是,Ubbelohde在1951年宣布了2篇关于铵齐的论文,这与Mc Coy的组成金属原文是相同的论题,因而他了解Mc Coy的作业似乎是合理的。虽然这不能被证明,笔者以为,Ubbelohde是从Mc Coy那学习到这个术语的,而且没有独登时开展它。假如这个说法是正确的,那Ubbelohde从未参阅或供认Mc Coy的原因将依然是一个令人困惑的奥妙。 在20世纪70年代初,发现了别的的金属材料,包含有机电荷转移盐、金属链化合物和聚硫氮化物。因为这项研讨覆盖了一系列科学和地舆学科,1976年的夏天在匈牙利的希奥福克举办了一个研讨会,将这些跨学科研讨人员集合在一起。从此发生了一个长时间的世界会议,即世界组成金属科学和技能会议,一般称为ICSM。该会议自1976——1982年每年举办一次,1982年后每2年举办一次。 1976年11月,研讨人员发现经过掺杂聚薄膜能够得到高导电性材料,Mac Diarmid、Heeger和Shirakawa初次在纽约市的第二届ICSM会议上陈述了这一研讨。这一研讨结果随后呈现在1977年底的文献中,然后扩展了组成金属的规模,即包含掺杂的聚。虽然该术语并未用于原始的聚论文中,但Mac Diarmid在1979年的谈论文章中界说了组成金属是衍生于自聚硫氮化物,聚和石墨的金属化合物。跟着导电聚合物的持续开展,该术语在1991年得到进一步延伸,包含掺杂聚合物,如聚对、聚亚基亚乙烯、聚、聚和聚。 到1979年10月,一份新的Elsevier杂志被推出,专门报导这些材料,名为组成金属。到目前为止,这依然是的有机导电材料杂志。 组成金属的前史能够追溯到比一般以为的愈加长远。此外,因为咱们的导电材料概念在曩昔50多年中也发生了改变,因而“组成金属”这一术语所代表的材料自从初次运用以来也发生了改变。但是,在所有状况下,这些材料都契合Mc Coy较早在1911年提出的组成金属是用来表明“复合金属物质从组成元素来看,其间至少部分元素对错金属的”这一观念。

纳米氧化锌(ZnO)在合成纤维中的应用开发

2019-02-18 15:19:33

跟着现代科学技能的开展,单一功用的材料已不再能够满意人们的需求。纳米技能的开展和系列功用纳米材料的开发和商场化为开展多功用的健康纺织品带来了要害。运用纳米材料的各种特殊功用从根本上改动化学纤维原有的物理机械及化学功用,已获得了一系列适合于不同用处的优秀复合纤维如:抗紫外纤维;抗菌、抑菌和除臭纤维;远红外纤维;导电纤维;防辐射纤维。但总的来说,无机功用涣散相在成纤高聚物基体中的纳米标准涣散这一要害技能问题和纳米技能与工业的共性问题,仍没有得到充沛处理。现在已部分工业化的功用纤维,功用粒子在纤维中的涣散、纳米材料的原有特性没有充沛发挥,可控性程度还较低,导致出产的连续性和安稳性不行。 因此,虽然纳米技能的飞速开展成为制备特种功用纤维的重要手法之一,为特种功用纺织品的开展注入了新的生机,但是功用材料在高聚物基体中的纳米标准涣散仍是纳米功用纺织品研发的要害技能和瓶颈问题。所以虽然纳米氧化锌(ZnO)具有许多的优异功用,在许多方面都有较为广泛的运用,但因为其无机纳米材料自身的极性和颗粒纤细化,因此具有极大的比表面积和较高的比表面能,使它们不易在非极性介质中涣散。在极性介质中易凝集,然后直接影响了其功用的发挥。 以至于终究运用时失去了纳米颗粒所具有的功用。且因为它们为无机物,与有机物类的物质亲和性较差,这导致了纳米氧化锌(ZnO)在高聚物纤维中的实践运用困难,因此在纳米氧化锌(ZnO)的开发进程中有必要处理这一要害的瓶颈问题。 我公司与有关高校进行协作研讨,运用自产的纳米氧化锌经过表面改性处理后与高聚物基体丙纶(pp)、涤纶(PET)以及尼龙6(PA)共混具有抗菌、抗紫外功用的高技能复合纤维。在整个研讨进程中,咱们经过讨论纳米氧化锌粉末的内部结构及其功用,研讨纳米氧化锌粉末的抗菌机理(纳米氧化锌粉末在与细菌触摸时,锌离子会缓慢释放出来,与细菌细胞膜及膜蛋白结合,损坏其结构,进入细胞后损坏电子传递体系的酶并与DNA反响,抵达抗菌意图)和其抗紫外效应(一般来说紫外线的透过率在10%以下(或遮盖率在90%以上)的可称之为防紫外线织物。),以及不断调整操控其高聚物基体共混造粒纺丝的工艺参数,终究制得各含纳米氧化锌(ZnO)的抗菌、抗紫外功用纤维。经过选用抗菌功用实验办法,对各功用纤维进行抗菌功用测验,其结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚物功用纤维的抗菌率能够抵达99.9%,经过运用双光束紫外可见分光光度计(积分球)对之进行测验,结果表明:含纳米氧化锌(ZnO)粉末的三种共混高聚纤维的紫外光均匀透过率小于7%。 因此,在必定程度上能够说,咱们研讨开宣布纳米氧化锌(ZnO)具有抗菌、抗紫外功用高技能纤维的自主知识产权。 当今国际上在抗菌纤维研发方面基本上都是选用含银沸石作为抗菌剂,而运用当时研讨的热门纳米级半导体光催化抗菌剂纳米氧化锌作为抗菌粉体添加剂的报导并不多。但因为纳米氧化锌(ZnO)具有独特的“表面效应”在阳光(尤其是在紫外线)照耀下,能自行分化出自在移动的带负电的电子,一起留下带正电的空穴。这种空穴能够激活空气中的氧变为活性氧,有极强的化学活功用与多种有机化合物反响(包含细菌内的有机物),然后把大都病菌和病毒死。)、光催化效应以及报价相对低价的长处,使得对选用其作为新的抗菌粉体添加剂具有非常大的实践意义。 不仅如此,因为地球臭氧层遭到损坏,导致了紫外线对地球生物圈辐射量的不断添加,人们特别是年轻人在户外休闲的逐步延伸,射线对人类健康形成的损害正在日益加剧。虽然近年来国际上开端约束运用引起臭氧层变薄的化学物质,但就现在臭氧层遭到损坏的程度而言,对人体最有害的UVB区(280~320nm)、UVA区(320~400nm)的短波紫外线仍能抵达地上。因为这些短波段紫外光的照耀会发生自在基,形成细胞及安排损害,加速老化进程,然后导致皮肤晒黑及由紫外线吸收形成的皮肤疾患,甚至会皮肤癌,对人类的健康形成很大的损伤。因此,为了下降各种波长的紫外线对人类的损害,开宣布一种防紫外线穿透的纤维以满意不断增加的日子需求也是影响深远。 要制作含抗紫外线添加剂的抗紫外线纤维,首先要挑选适宜的抗紫外线添加剂(又称紫外线吸收剂、紫外线安稳机剂)。这是一类能挑选吸收波长为290~400nm 的紫外线,有用的避免和按捺光、氧化效果而自身结构不起改变的助剂。这类紫外线吸收助剂还应具有无毒、低挥发性、杰出的热安稳性、化学安稳性、耐水解性、耐水中萃取性、与成纤高聚物的相容性等特色,其间因为纳米氧化锌(ZnO)具有紫外线透射率较低的特性,因此能够考虑用于抗紫外线纤维的制备。 依据氧化锌的一些自身特性,咱们发现纳米氧化锌是一种绝佳的抗菌、抗紫外无机粉体,具有适用面广、效率高、有用期长的特色,可用于制备一起兼备抗菌和抗紫外两种功用的高技能纤维。它差异于以往常用的有机抗菌剂(易发生微生物耐(抗)药性,并存在易搬迁、耐热性等缺陷,在塑料加工温度下还易分化失效,且分化产品可能会形成二次污染。),而选用物理吸附离子交换办法,将锌金属附载于多孔材料表面,运用金属离子的抗菌才能,经过缓释效果抵达长效抑菌的意图。因为它不发生耐药性且安全无毒,特别是其杰出的耐热性(>600℃),使得纳米氧化锌在抗菌材料运用中有着显着的工业优势。它的纳米微粒优异的光吸收特性还差异于以往的抗紫外线添加剂(大大都是有机物,有必定毒性,跟着涂层日晒时刻的延伸,其紫外线屏蔽功用会逐步下降,终究失效。),具有有用效果时刻长,紫外线屏蔽波段长,以及化学安稳性和热安稳性好、无毒、无刺激性等长处,因此运用很安全,具有实践运用的优势。 事实上,运用纳米功用无机材料作为抗菌剂和抗紫外添加剂的抗菌、抗紫外纤维正逐渐成为商场上继保健功用远红纤维、负离子纤维之后的又一种新颖的新式功用纤维。因此,咱们所研发开宣布的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维是一种极具有开发远景的防护功用性纤维。咱们估计想象的纳米氧化锌(ZnO)抗菌、抗紫外功用纤维的实践运用范畴首要的有以下几方面: A、日子日用品范畴 纳米氧化锌(ZnO)在服饰方面的运用,例如:运动衫、罩衫、制服、套裤、职业服、泳衣和童装等,也用于帽子、面罩和太阳伞的质料。此外,它还被用于工业和装修方面,例如:广告用布、户外装修布等。 纳米氧化锌(ZnO)的抗菌功用可用于出产涤纶长丝产品,它能够广泛用于针织的内衣裤、运动服装、袜子、地毯等。 B、专业卫生范畴(医用及民用) 在医用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够与棉混纺制成医院用的床布、手术服、医师工作服、病员服等。而在民用方面,纳米氧化锌(ZnO)的抗菌涤纶短纤能够用于食品行业专用服以及各种床上用品、家具布、装修布等。紫外,纳米氧化锌(ZnO)还能够制备各种医用及民用无纺布产品,例如:无菌手术服、无菌口罩、卫生包覆材料、过滤材料以及妇女卫生用品、尿布等产品。 C、户外户外作业范畴 跟着经济的开展,旅游业在不断兴隆开展,各类相应户外产品因此也相继问世。纳米氧化锌(ZnO)的抗紫外功用使得其可用于出产各类遮阳伞、窗布、运送蓬布和各类帐子用布等。     在我国参加世界贸易安排后,我国纺织业迎来了巨大的开展机会,一起也面临着严峻的应战;在新形势下,我国化学纤维开展的要点已从“开展总量”转变到“开展先进出产力与结构调整并重”,其间推进技能晋级和加速结构调整是重中之重。纳米技能的飞速开展为特种功用纺织品的开展注入了新的生机,已成为制备特种功用纤维的重要手法之一。纳米氧化锌(ZnO)是一种面向21世纪的新式高功用精密无机产品,在纤维中能一起表现抗菌和抗紫外线的功用,是很多纳米无粉体中性价比具竞争力的一种,在人们日益寻求健康、舒适、安全纺织品的今日,纳米氧化锌(ZnO)/高聚物复合功用纤维是一种运用远景非常宽广,经济效益非常可观的高新技能产品。

某含大量矿泥氧化钴矿的选矿工艺流程研究

2019-01-24 09:36:33

一、矿样性质(一)主要成分含量分析试样的主要成分化学分析结果见表1。 表 1  主要成分化学分析结果/%(二)矿物组成研究矿石中的主要有用矿物为褐铁矿和杂水钴矿及少量的水钴矿,钴主要存在于钴的独立矿物杂水钴矿(含锰钴土)中,褐铁矿中亦含有少量钴,褐铁矿及杂水钴矿类矿物约占 1 0%,无论是钴矿物还是褐铁矿,都是充填在石英颗粒间的风化产物;主要脉石矿物为石英及其风化产物,占有量约 65%~70%,少量浸染褐铁矿的黏土类矿物,占有量约 15%~20%。钴:主要呈与锰组成锰钴土及与铁等元素形成的胶状杂水钴矿,少量呈水钴矿状态或呈现在褐铁矿中。这些钴矿物或含钴矿物的形成很大可能是和风化作用过程中的胶体沉淀有关。能谱分析表明最主要的成分是硅、铝、铁,矿石抛光片的能谱分析证明,硅主要来自作为矿石中脉石的主体——石英,铁主要与褐铁矿有关,铝则主要来 自矿石中存在的黏土,少部分来自褐铁矿,钴主要与铁、锰组成杂水钴矿,含量很少的铜主要存在于含钴矿物及褐铁矿中。 利用扫描电镜对水钴矿及疑为含钴的矿物都进行了能谱定性分析,可以发现其中钴含量的变化是很大的,可见到它或独立存在,或与锰有关,水钴矿中主含锰,但也可以含铁,而褐铁矿中也一样 ,主含铁外也含锰、钴、铜 ,所以彼此互含较明显 ,证明选钴、铜必须同时选钴和铁的水合氧化物,分别富集钴、铜是不可能的。典型能谱见图 1,对能谱图分析表明钴与铁、锰的关系密切 ,褐铁矿本身(B)含一定数量的钴和铜,最高的钴含量出现在锰相(C)中,基本不含锰时,钴亦很少(D)。图1  典型能谱图 铜:含钴相皆含铜 ,但其数量不及钴,目前尚未鉴别出粒度足够粗的独立铜矿物,只是显微镜下见到很小的铜的硫化物为脉石一石英紧密包裹,数量极少,不足计。因此,大部分铜将随水钴矿一杂水钴矿类矿物以及褐铁矿一起富集到精矿中,但精矿中铜的品位不可能超过钴;由于不存在有富集意义的独立铜矿物,所以工艺过程中没有必要考虑单独提高其回收率问题,实际上提高了钴的回收率也就提高了铜的回收率。(三)原矿粒度组成和金属分布对原矿直接或磨矿后进行筛分分级,结果见表2、3 表2  原矿(一2mm)直接筛分分级金属分布结果/%表3  原矿经磨矿后筛分分级金属分布结果从表2、表3可见,在原矿未磨的隋况下,-0.025mm粒级占有率达到 34.39%,其中钴品位为 0.23%,金属占有率为 12.83%,在原矿磨矿的情况下,-0.025mm粒级占有率为 55.83%,其中钴品位为 0.56%,金属占有率为 47.92%,显然,经过磨矿,一0.025mm粒级 占有率提高 21.44%,钴金属分布率相应提高了34.99%,值得注意的是品位升高 0.33%。说明经过磨矿后,有部分易磨的钴矿物进入到细级别。二、流程 方案的确定原矿中的主要有用矿物为褐铁矿和杂水钴矿及少量的水钴矿,钴主要存在于钴的独立矿物杂水钴矿中,褐铁矿中亦含有少量钴。但未见独立的铜矿 物,铜主要存在于含钴矿物及褐铁矿中,铜、钴关系密切,不可能分别富集,铜将在选钴的过程中得到富 集,获得含铜钴精矿。原矿含有较高的原生矿泥,需要进行预处理脱泥、富集。经过预处理后磨矿,由于杂水钴矿物普遍含铁、锰,同时一部分钴赋存在褐铁矿中,因而采用强磁选脱次生矿泥再抛尾;采用浮选得到最终产品,并控制产品质量。 三、工艺流程试验(一)溜槽一强磁扫选试验 给矿粒度一2mm,试验流程见图2,结果见表4。图2 溜槽-强磁扫选试验流程 表4  溜槽-强磁扫选试验结果由表4结果可见,溜槽一强磁扫选能较好地脱除原生矿泥。溜槽精矿 1的钴品位较精矿2的低,主要是因为精矿 1的粗粒脉石含量较高所致。 (二)脱泥后磨矿强磁再抛尾试验1、磁场强度试验原矿经过预处理脱原生矿泥抛尾矿 1,磨矿后进行强磁选脱次生矿泥抛尾矿2,试验结果见图3。强磁选场强选为 1.6T比较合适。图3  磁场强度试验结果 2、磨矿细度试验强磁选场强选定 1.6T后进行磨矿细度试验,试验结果见图4。图4  磨矿细度试验结果 3、强磁精选试验对强磁精矿进行强磁精选试验,试验结果见表5。 表5  强磁精选试验结果/%从表5可见,降低磁场强度后进行精选,得到的精矿含钴较中矿低,进一步说明强磁选无法得到合适的钴精矿。 4、强磁选抛尾试验粗选磁场强度 1.2T、扫选磁场强度 1.6T,强磁选抛尾试验结果见表6。 表6  磨矿磁选抛尾试验结果/%由表6结果可见,原矿经过预处理后磨矿再磁选,可以得到较高品位的粗精矿,因此,原矿经过预处理后磁选再抛尾。 (三)浮选试验前面的强磁精选试验证明,通过强磁选不能得到较高的产品质量,本试验采用浮选出最终产品。 先采用溜槽预脱泥 ,再用一次粗选、一次扫选、强磁再抛尾,然后浮选得到产品。在进行了相关的浮选粗选、精选药剂条件试验后,进行了闭路试验,结果见表 7。 表7  浮选闭路试验指标/%四、结语(一)工艺矿物学研究表明,原矿中的主要有用矿物为褐铁矿和杂水钴矿及少量的水钴矿,钴主要存在于钴的独立矿物杂水钴矿中,褐铁矿中亦含有少量钴,褐铁矿及水钴矿、杂水钴矿类矿物约占 10%无论是钴矿物还是褐铁矿,都是充填在石英颗粒间的风化产物;主要脉石矿物为石英及其风化产物,占有量约 65% 70%,少量浸染褐铁矿的黏土类矿物占有量约 15%~20%。未见独立的铜矿物,铜主要存在于含钴矿物及褐铁矿中,铜、钴关系密切,不可能分别富集,铜将在选钴的过程中得到富集,获得含铜钴精矿。 (二)原矿含有较高的原生矿泥,需要进行预处理脱泥,经过预处理后磨矿,由于杂水钴矿物普遍含铁、锰,同时一部分钴赋存在褐铁矿中,因而采用强磁选脱次生矿泥再抛尾。本试验推荐流程为:原矿预处理后磨矿,进行强磁选脱次生矿泥再抛尾,采用浮选得到最终产品,并控制产品质量,使铜钴精矿钴品位大于3%、铜品位大于1%。

钴的氧化物及氢氧化物

2019-01-31 11:06:04

一、钴的氧化物 钴能生成三种氧化物:CoO,Co3O4,Co2O3。前两种安稳,后者只能在低于3oO℃下存在。而CoO2只能在阳极氧化法中制得,常呈含水的氢氧化物呈现。 (一) CoO:它是钴的碳酸盐或钴的其它氧化物或Co(OH)3在中性或微复原性气氛中煅烧的终究产品。纯CoO在室温下易于吸收氧而生成高价的氧化物Co2O3,Co3O4,煅烧温度越高,吸收的氧越少。如要获得适当纯的CoO,煅烧温度有必要高于1050℃,且煅烧后须在慵懒气氛或弱复原性气氛中冷却。高于850℃时CoO是安稳的,1000℃时离解压为3.36×10-12大气压。随制取办法不同,CoO呈灰绿色至暗灰色,CoO分子量为94.97,理论上含钴为78.65%,用于冶金和化学方面的多为灰色CoO,一般含Co76%,常含有少数Co3O4。 CoO晶体为面心立方体,晶格参数为4.2sA,比重6.2~6.6,生成热为55.6~57.5千卡/摩尔分子,熔点为1810℃。钴氧化成CoO在不同的温度规模内的自由焓改变式分别为:   当温度在120~200℃时,高价氧化钴开端被H2和CO复原。CoO复原反响的平衡常数跟着温度的改变如下:     CoO水化物的分子式为Co(OH)2,溶度积约为1.6×10-18,它极易溶解于热酸中。 (二)Co2O3:分子量为165.88,理论含钴量为71.03%。许多人在氧压为100大气压下氧化CoO或低温从Co(N3O)3,CoCl3中制得含氧量挨近或等于Co2O3计量式中的含氧量再经结构分析依然不是Co2O3。但只在阳极氧化法中制得含水的Co2O3,在低于200℃时脱水得到Co2O3。 (三)Co3O4:理论含钴量为73.43%,分子量为240.82,黑色。在400~900℃的空气中或在300~400℃的氧气中氧化CoO时生成Co3O4。Co3O4于250~400℃的氧气中,因为接连氧化或或许因为化学吸附,而变为Co2O3,但仍坚持Co3O4的尖晶石结构。当高于450℃时离解或脱吸,氧化物的成分可回复或Co3O4。 当CoCO3或含水三氧化二钴在空气中加热到高于265℃而不超越800℃时,构成Co3O4。 因为钴的氧化物相互间易于生成固溶体,因此,难于测定各自的离解压及安稳温度规模,一般以为Co2O3·nH2O在250~280℃彻底分解为Co3O4。Co3O4的离解压可按lg Po2=- +13.3636算出,故知空气中Co3O4在910~920℃内大部分离解为CoO,至980℃可按下式离解彻底,生成的CoO仍具有原Co3O4的尖晶石结构。  Co3O4极难溶干稀硫酸中。 图1是600℃~1490℃间氧在固体金属钴中的溶解度。875℃时氧的溶解度急剧下降是因为钴发生了晶形改变。当溶解O20.26%(适当于CoO1%)时则呈现共晶,其温度为1446℃。与含CoO3.3%和CoO14.6%相对应的凝结温度为1600℃和1700℃。图1  Co-O系状态图 二、钴的氢氧化物 (一)Co(OH)2:它是弱的化合物,极易溶解于酸,而难溶于水。  溶度积为1.6×10-18。当NaOH参加钴盐溶液中,则生成Co(OH)2,因颗粒、吸附离子、时刻、温度和碱度等要素的不同,可呈蓝色、绿色和赤色。pH=6~7和室温时,开始分出的蓝色沉淀物为α-Co(OH)2。老化变为安稳的玫瑰色β-Co(OH)2,两者的溶度积均约为10-12.8。 Co(OH)2在常温下易被空气中的氧部分地氧化成Co(OH)3:Co(OH)2在无机酸和有机酸中能很好溶解并生成相应的盐。多种氧化剂在有碱存在的情况下,能将Co(OH)2和二价钴盐的溶液氧化成Co(OH)3。 (二)Co(OH)3:这是一种易吸水的不安稳化合物,难溶于水,溶度积为2.5×10-43。较易溶于和中,难溶于硫酸中。

纳米氢氧化镁的用途及合成方法

2019-01-04 09:45:23

钴常识

2019-03-14 10:38:21

钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。  自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。  金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。  我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。

金属钴

2018-04-19 17:42:10

自然界中已知含钴矿物有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿物有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿物的赋存状态复杂,矿石品位低,所以提取工艺比较复杂且回收率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状态,然后再用湿法使钴进一步富集和提纯,最后得到钴化合物或金属钴。   金属钴主要用于制造合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢可以显著地提高钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即使加热到1000℃也不会失去其原有的硬度。航空航天技术中应用最广泛的合金是镍基合金,也可以使用钴基合金。含钛和铝的镍基合金强度高是因为形成组成为NiAl(Ti)的相强化剂,当运行温度高时,相强化剂颗粒就转入固溶体,这时合金很快失去强度。钴基合金的耐热性是因为形成了难熔的碳化物,这些碳化物不易转为固体溶体,扩散活动性小,温度在1038℃以上时,钴基合金的优越性就显示无遗,它可用于制造高效率的高温发动机。在航空涡轮机的结构材料使用含20%-27%铬的钴基合金,可以不要保护覆层就能使材料达高抗氧化性。钴是磁化一次就能保持磁性的少数金属之一,在热作用下失去磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力提高2.5倍。在振动下,一般磁性钢失去差不多1/3的磁性,而钴钢仅失去2%-3.5%的磁性。因而钴在磁性材料上的优势就很明显。钴在电镀、玻璃、染色、医药医疗等方面也有广泛应用。   我国钴矿资源主要分布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其余30%的储量分布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,品位较低,钴主要作为副产品加以回收。根据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的平均品位仅为0.02%,因而生产过程中金属回收率低,工艺复杂,生产成本高。可利用的钴资源主要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国主要钴生产地。可利用的钴资源其次伴生在铜铁矿床中,目前已经开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。由于受资源条件限制,国内钴产量增长缓慢,不能满足国内市场需求,需通过进口弥补不足

硅灰石合成多孔二氧化硅研究及应用进展

2019-01-31 11:05:59

硅灰石是天然产出的偏硅酸盐纤维矿藏,具有许多优异的工业使用特性[1]。磨细硅灰石是优质的陶瓷质料、冶金助剂;高长径比硅灰石是石棉和短玻璃纤维的抱负替代品,可用作橡胶、塑料和油漆涂料的填料,起增量与补强的两层效果。但是,作为填充剂在涂料、橡胶、塑猜中使用的效果并不抱负。硅灰石精矿中CaSiO3含量高,杂质少,又易与无机酸反响,是制备无定形二氧化硅廉价的天然硅源。无定形SiO2广泛用作高级橡胶、密封胶、纸张、塑料、电缆中的补强剂、填充剂、隐瞒剂及涂料、油墨中的增稠剂、防沉剂,具有蜂窝状多孔结构、高比表面的SiO2,在高科技范畴中能够作为新式催化剂载体、选择性吸附剂、航空用绝缘材料等[2]。使用硅灰石与酸反响制备高比表面积SiO2,成为归纳开发使用硅灰石的一个首要开展方向。 一、研讨概略 用硅灰石与酸反响制备高比表面积SiO2研讨是目前国内无机材料界进行研讨的重要内容,国内一些学者相继宣布了相关的研讨成果。彭人勇[3]使用硅灰石悬浮液与反响制备多孔高比表面积SiO2,研讨结果以为:当pH值≤1.0时,硅灰石与反响生成很多安稳的硅酸溶胶;反响终究(pH值=4.0)使硅酸水解和缩聚以及Si-O与OH基团氢键的构成以适合的速度进行,构成弱交联、网状、低密度的硅酸凝胶,终究产品SiO2的比表面积增大。 陈庆春等[4]使用硅灰石悬浮液与反响组成多孔二氧化硅,在反响过程中参加无机助剂和有机助剂,使用反响系统的pH值操控加酸速度。结果表明:硅灰石组成多孔二氧化硅,产品比表面积首要与聚合速度K有关,但第一步溶解速度K将约束聚合反响速度K,当反响系统安稳pH值>2时,产品比表面积显着偏低;而当pH值 王延吉等[5]经过在反响液中参加增加剂组成出高比表面积多孔SiO2。其组成条件为pH值≤1.5,增加剂为聚乙二醇和NH4CI,反响后系统中和到pH值=4.0,经固液别离,烘干,650~750℃灼烧2h得产品。经过测验获取的产品比表面积为479±45m2/g,表观密度0。34±0.03g/cm3,DBP吸着率173±16mL/100g,均匀中位径氏为6.9±0.5gm,孔径散布会集在l~2nm。 陈庆春等[6]使用五要素四水平正交试验调查了对硅灰石组成多空SiO2粉体产率的影响要素。研讨以为:当反响时刻一致为80min,陈化时刻20min,反响温度50~55℃,所用酸为12mol/LHCl,硅灰石用量为80g时,悬浮液质量分数对粉体产率影响最大,NH4C1增加量影响最小。产率最大的条件为悬浮液质量分数20%,表面活性剂选用PEC20000,系统终究pH值为6.0,NH4C1增加量为5%,表面活性剂参加时刻为40min。 二、多孔二氧化硅的制备办法 关于制备高比表面积SiO2的报导有许多[7],但大多以正硅酸乙酯(TEOS)或(TMOS)为质料,选用sol-gel法,经过增加试剂或超临界枯燥法来完成。 有关硅灰石制备多孔性二氧化硅研讨相对较少,在相关文献[3,4]中提出制备多孔性二氧化硅过程中存在CaSiO3溶解和硅酸聚组成固态时的两步反响,即: CaSiO3+2HCl+H2O=H4SiO4+CaCl2 上式为溶解反响。反响速度决议于酸浓度,即系统pH值越低,反响速度越快。 硅酸聚合反响比较复杂。在较大酸度条件下,硅酸首要以可溶性低聚物 和 方式存在,其间Am代表[Si(OH)4m+2]2-,An代表[Si(OH)4n+2]2-,其反响式如下: 上式为聚合反响,无 放出,系统pH值不发作改变。若 分子量不够大,还能够与中性低聚物分子H2An持续聚合,直到高聚物发作相变沉积分出水合二氧化硅停止。聚合速度与系统H2An和浓度有关( 决议系统 的浓度)。总反响为: CaSiO3(s)+2HCI=SiO2(s)+CaCl2+H2O 三、功用特色分析 因为多孔二氧化硅是人工组成的无定型二氧化硅超微粒子,具有耐酸、耐碱、耐高温功用以及杰出的电绝缘和涣散功用。一起因为无定形二氧化硅研讨正在向高孔隙率开展,具有高比表面积,特别是介孔(孔径2~50nm),因为孔径中等,散布规模窄且均匀,比表面积巨大,特别适协作大有机分子组成的催化剂载体。 四、使用研讨 (一)在吸附范畴的使用。 多孔二氧化硅具有巨大的比表面积和孔体积,在吸附范畴,尤其是对有机染料的吸附方面具有巨大的使用远景。 (二)在硅橡胶中的使用。 多孔SiO2能促进硅橡胶生胶成型,对硅橡胶具有必定的增强效果,其间,硫化胶拉伸强度、拉伸率等力学功用能够满意某些橡胶制品的要求。与酸处理硅灰石所得具有不同比表面积和粒径的其他样品比较,多孔SiO2的小粒径、高比表面积对其增强功用起促进效果[8]。 (三)制备纳米二氧化硅绝热薄膜。 纳米多孔二氧化硅薄膜作为二氧化硅气凝胶的薄膜形状,简直承继了其所有的优异特性,可用作宽带减反射膜、防眩光涂层、高效绝热层、声阻抗耦合材料、低介电常数绝缘层、超高速集成电路基片以及别离薄膜、过滤薄膜、催化薄膜等。因此在光学、热学、声学、电学和化学等范畴具有宽广的使用远景[9]。 (四)其他使用。 因为多孔二氧化硅的多孔性和高比表面积,能够进行其他如催化剂载体、尾气净化等方面的使用。 五、结语 高比表面SiO2是一种新式的轻质多孔非晶态固体材料,具有许多特殊性质和宽广的使用远景。在基础研讨方面,多孔SiO2的结构及其网络与吸附分子之间的相互效果等引起人们的浓厚兴趣;在使用方面,多孔SiO2现已被用于催化剂载体、气体过滤材料、高效隔热材料等。因为硅灰石具有共同的理化功用,使用硅灰石制备高比表面积的SiO2将是往后硅灰石开发使用的首要开展方向。 参考文献: [1] 王广驹,杨林春.国际硅灰石出产、消费及国际贸易[J].我国非金属矿工业导刊,2005,(5):57—59. [2] 张凌燕,肖玉菊,方平和.我国硅灰石资源开发使用现状及开展趋向[J].矿产维护与使用,2003,(2):45-47. [3] 彭人勇.硅灰石制备多孔高比表面积二氧化硅机理讨论[J].我国粉体技能,2003,(6):12-15. [4] 陆庆春等.硅灰石组成多孔二氧化硅[J].华东地质学院学报,  2001,24(1):64 66. [5] 王延吉等.硅灰石组成高比表面积多孔二氧化硅及其表征[J].华东地质学院学报,2002,25(2):212-215. [6] 陆庆春等.影响硅灰石制多孔SiO2粉体产率要素的调查[J].化工矿藏与加工,2003,(4):16-18. [7] 王延吉,肖旭贤,彭人勇.硅灰石与反响动力学规则讨论[J]. 无机盐工业,1998,(5):12-13. [8] 陈庆春,刘晓东,邓慧宇.硅灰石制多孔二氧化硅在硅橡胶中的使用研讨[J].化工矿藏与加工,2003,(10):2l-23. [9] 赵宗彦等.纳米多孔二氧化硅绝热薄膜的研讨进展[J].功用材料,2006.37(12):1859-1862.

钴镍

2017-06-06 17:50:12

钴镍钴镍作为战略资源在工业中的地位大大提高,在硬质合金、功能陶瓷、催化剂、军工 行业 、高能电池方面应用广泛,有工业味精之称。钴镍的生产以湿法冶金为主。钴镍在工业中的作用是相当重要的,在现代工业中,钴镍是不可替代的资。,主要分为以下四个步骤。   一、浸出。作为湿法冶金的第一步,浸出率的高低直接决定效率以及效益。原矿经过破碎、筛选、富集以及其他处理以后,将矿物里面的有价 金属 转移到溶液中的过程。在钴镍生产中浸出主要有酸性浸出、氯化浸出、氨浸出以及高压氧浸等等。主要用到的辅料有浓硫酸、浓盐酸、氯气,二氧化硫、氨水、空气、氯酸钠、双氧水、二氧化锰、亚硫酸钠等等。一般钴镍矿主要有硫化矿以及氧化矿,特别是硫化矿多半生有其他 金属 ,所以在浸出时不仅要考虑钴镍的浸出,还要考虑其他有价 金属 的综合回收利用。   二、除杂。除杂是钴镍冶金中产品保障的重要过程。 对于一些大量的杂质离子,比如铁离子、铝离子,主要考虑化学除杂法,直接加碳酸钠或者氢氧化钠调节pH在3.5-4.0,由于二价铁沉淀pH比较高,所以一般会加氧化剂使得二价铁氧化成三价铁,对于除铁还有黄铁钠矾法。对于铅镉铜一般会采用硫化钠除杂,一般调节pH在1.8-2.0左右。当然由于考虑到综合回收,可以先用其他萃取剂在较低pH捞铜后再除其他杂质。对于锰、锌、少量的铁铝锰铬,可以用萃取法除去。常见的萃取剂有P204、P507、cyanex272。   三、前驱体的合成。萃取生产合格的钴镍溶液,需用沉淀剂生产前驱体,主要的前驱体是碳酸盐、草酸盐。如若生产晶体,如硫酸镍晶体、硫酸钴晶体等,则不需要这一,直接浓缩蒸发结晶。一般合成前驱体采用对加方式,控制一定的过程pH以及终点pH,反应温度,反应时间等。控制一定的形貌,粒径等。   四、还原。如果直接选用高压氢还原,则不需要合成这一步。如果用高温氢还原,则把前驱体破碎后,在还原炉中控制一定的温度和气流量,然后破碎,真空包装。钴镍 金属 广泛应用于电池、硬质合金、不锈钢、石油化工、汽车制造、机械工具等 行业 ,钴镍粉体是现代工业不可缺少的 金属 材料。我国是贫钴国家,已探明的钴资源可开采储量是4.09万吨,仅占世界钴资源的1.03%,而钴资源的消耗却达到12000吨/年以上,占全球消耗量的25%;同时我国也是镍资源缺乏的国家,已探明的镍资源储量为232万吨,占世界的3.56%,而我国年消耗量约25万吨,每年缺口在10万吨以上。我国每年的锂离子、镍氢、镍镉等废电池超过30万吨,废旧电池保有量已超过100万吨,急需发展废旧电池的资源化利用技术。在锂离子、镍氢、镍镉等废电池中,存在丰富的钴、镍 金属 ,是重要的可再生钴、镍资源。利用废旧电池生产出满足高端产品应用要求的钴、镍粉末,可形成资源回收利用的良性循环。 

含钴黄铁矿提钴

2019-03-05 09:04:34

因为Co原子占有FeS中Fe的晶格,构成类质同相,所以选矿别离富集钴困难,浮选产出的钴硫精矿含钴不超越0.5%。为从贫钴硫精矿中提取钴,先氧化焙烧将S氧化成气体SO2除掉,一起将钴转变成水溶或酸溶形状,再用酸浸出钴,并与很多的铁渣别离。我国使用的焙烧工艺有三种:硫酸化焙烧、氧化焙烧一烧渣硫酸化焙烧和氧化焙烧一烧渣化焙烧。焙烧设备均选用欢腾焙烧炉。    氧化焙烧一烧渣硫酸化焙烧是一种两段法工艺。钴硫精矿硫酸化动力学研讨标明,该焙烧进程是分段完结的,开端是脱硫氧化反响,当焙砂含S降到2%-3%时,钴才开端很多硫酸化。因而分段焙烧既提高了S的利用率和设备生产能力,又有利于钴的硫酸化和收回。    1.氧化焙烧    在欢腾焙烧炉中于840-860℃温度下焙烧钴硫精矿。当精矿成分为(%):Co 0.3-0.4、Fe 35-45、S 30-35时,可得到含Co 0.4%、Fe 45%、S 1.8%的焙砂和SO2浓度8%-10%的烟气。    2.硫酸化焙烧    焙砂配入含钴黄铁矿,使混合料含硫到达10%以上,一起参加3% Na2SO4,将铁酸盐中钴转变为CaSO4。酸化焙烧条件为:床能率5-6t/(m2·d),钴浸出率75%-80%。浸出液通过净化、沉积、缎烧等工序,即可得到产品氧化钴。

含钴铜镍硫化矿提钴

2019-03-05 09:04:34

我国钴产值的40%来自铜镍硫化矿的归纳收回。金川有色金属公司占去从铜镍硫化矿中收回钴产值的80%。金川公司原矿含钴一般为0.05%,主要以硫化物形状存在于镍黄铁矿中,选矿时进入硫化镍精矿。此种精矿在电炉熔炼过程中,有85%的钴进入产品低镍锍,转炉吹炼时又一次分流,钴量的1/3进入高镍锍,其他2/3散布于转炉渣中。因转炉吹炼前、中、后期氧化程度的不同,中后期转炉渣含钴可达前期渣的2倍,均为0.4%-0.7%。此中后期转炉渣不回来电炉处理,而是作为提钴质料送炼钴体系。镍高锍中的钴在电解时与镍一道进入阳极液,可采用将Co2+氧化成Co3+,然后调pH使之水解成Co(OH)3沉积从溶液中分出。过滤后所得钴渣含Co 10%、Ni 30%、Fe 2%-4%、SiO2 4%-9%,可用来出产氧化钴、钴盐和电解钴。

铂金合成方法

2019-03-06 10:10:51

1.工业上出产铂可用铂矿经干法制作;亦能够铜、镍的硫化矿制取铜、镍的出产进程中生成副产物作为质料,经湿法冶炼制得。湿法在已提取镍、铜的残留组分中参加进行抽提,过滤,向滤液中参加氯化铵进行反响,生成铵沉积,过滤,把铵加热分化,制得约99.99%铂制品。或许将铵溶液参加电解槽中,在槽电压约1.5V、电流密度为2~3 A/cm3的情况下进行电解,制得约99.98%铂制品。 超细铂粉制法:用溶解海绵铂得溶液。调理溶液酸度,参加分散剂和还原剂,加热并拌和、再静置冷却、洗刷和烘干即得超细铂粉。 2.将薄屑或海绵状铂置于玻璃或瓷质器皿中,用高纯溶解。取出(或倾泌出)溶液放在蒸腾皿顶用小火当心蒸腾。将浓缩物溶于和热水后用很多水稀释,并加热至80℃。加碳酸钠使呈弱小碱性。通入少数Cl2,使或许存在的IrO2沉积。开始构成的胶状沉积很快凝结成黑色絮状沉积,它在橙红色溶液中敏捷沉降。参加少数乙醇可明显增加沉降速度。中和溶液时,溶液愈挨近中性(pH值不能小于7),吖氧化物别离得愈彻底。 关于其他铂系金属、金和重金属,可参加次氯酸盐使它们生成氧化物沉积。专一能溶于过量次氯酸盐中的是黑色RuO2,它随即转变成挥发性的RuO4。滤出的含铂溶液在烧杯中加热,参加NH4Cl,分出(NH4)2PtCl6沉积。过滤,用蒸馏水煮沸萃取,以溶解或许含有的少数(NH4)2PdCl6。 灼烧后得到的纯铂不含其他铂系金属、金和重金属。若其间仍含千(或万)分之几的铱,可重复上述纯化进程。

钴知识

2019-03-08 09:05:26

钴是灰色硬质金属,它的居里点(失掉磁性的临界温度点)为1150℃,熔点为1495℃,沸点为2900℃,具有磁性和耐高温性。在300℃以上发作氧化效果,极细粉末状钴会主动焚烧。钴能溶于稀酸,在浓硝酸中会构成氧化薄膜而被钝化;在加热时能与氧、硫、氯、发作剧烈反响。 自然界中已知含钴矿藏有近百种,大多伴生于镍、铜、铁、铅、锌等矿床中,常见的用于提取钴的矿藏有辉砷钴矿、砷钴矿、硫钴矿、硫镍钴矿、含钴黄铁矿、硫铜钴矿、钴华、方硫镍钴矿等。钴矿藏的赋存状况杂乱,矿石档次低,所以提取工艺比较杂乱且收回率低。一般先用火法将砷钴精矿、含钴硫化镍精矿、铜钴矿、钴硫精矿中的钴富集或转化为可溶性状况,然后再用湿法使钴进一步富集和提纯,最终得到钴化合物或金属钴。 金属钴首要用于制作合金。钴基合金是钴和铬、钨、铁、镍中的一种或几种制成的合金的总称。含钴工具钢能够显著地进步钢的耐磨性和切削性能,含钴50%以上的司太立特硬质合金即便加热到1000℃也不会失掉其原有的硬度。航空航天技术中运用最广泛的合金是镍基合金,也能够运用钴基合金。含钛和铝的镍基合金强度高是因为构成组成为NiAl(Ti)的相强化剂,当运转温度高时,相强化剂颗粒就转入固溶体,这时合金很快失掉强度。钴基合金的耐热性是因为构成了难熔的碳化物,这些碳化物不易转为固体溶体,分散活动性小,温度在1038℃以上时,钴基合金的优越性就显现无遗,它可用于制作高效率的高温发动机。在航空涡轮机的结构材料运用含20%-27%铬的钴基合金,能够不要维护覆层就能使材料达高抗氧化性。钴是磁化一次就能坚持磁性的少量金属之一,在热效果下失掉磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力进步2.5倍。在振荡下,一般磁性钢失掉差不多1/3的磁性,而钴钢仅失掉2%-3.5%的磁性。因此钴在磁性材料上的优势就很显着。钴在电镀、玻璃、染色、医药医疗等方面也有广泛运用。 我国钴矿资源首要散布在甘肃、山东、云南、河北、青海和山西,其保有储量占全国保有储量的百分比依次为30.5%、10.4%、8.5%、7.3%、7.1%、6%,这六个省的储量之和占全国总储量的70%,其他30%的储量散布在新疆、四川、湖北、西藏、海南、安徽等省区。我国已探明的钴矿床绝大多数是伴生矿,档次较低,钴首要作为副产品加以收回。依据对全国钴储量大于1000吨的50多个矿床的统计分析得知,钴的均匀档次仅为0.02%,因此出产过程中金属收回率低,工艺杂乱,出产成本高。可利用的钴资源首要伴生在铜镍矿床中,其钴资源探明储量占全国总储量的50%左右。已开发的铜镍矿床有甘肃金川的白家嘴子、吉林磐石的红旗岭、新疆的喀拉通克等矿,甘肃金川为我国首要钴出产地。可利用的钴资源其次伴生在铜铁矿床中,现在现已开发的有山西中条山铜矿、湖北大冶铁矿、山东金岭铁矿、四川拉拉厂铜矿和海南石碌铁铜矿等。因为受资源条件约束,国内钴产值增加缓慢,不能满意国内市场需求,需经过进口补偿缺乏。

钴渣生产电钴的实例

2019-03-04 11:11:26

电解钴是最重要的钴产品之一。国内电钴的出产质料,一般是铜、镍、铅、锌等冶炼进程产出的含钴副产品,如镍电解净化进程产出的钴渣、含钴黄铁矿烧渣等。 从含钴副产品中出产电钴的准则流程首要有两种,一是选用化学沉积法去除杂质,两段氧化沉积别离镍和钴,火法煅烧后复原熔炼得到粗钴,铸成阳极电解精粹;另一种是选用萃取除杂,萃取别离镍和钴,得到氯化钴溶液,不溶阳极电解。 金川集团公司是我国镍钴的首要出产基地,钴的年产量到达500t以上,目条件钴已构成两大出产体系,别离出产电钴和氧化钴,并产出钴盐等其他产品。出产质料为镍体系的钴渣和富钴锍。 电钴的出产以镍体系电解流净化所产钴渣为厚料,选用钴渣球磨浆化→复原溶解→黄钠铁矾除铗→除铜→二段沉钴→氢氧化钴反射炉烧结→电炉复原熔炼→可溶阳极电解工艺出产电解钴,别离钴后的硫酸镍回来镍出产体系。这是一个火法和湿法相结合的出产流程。出产工艺的流程图示于图1和图2。图1  从钴渣出产氢氧化钴的工艺流程图图2  从氢氧化钴出产电钴的工艺流程图 选用与此相似流程出产电解钴的其他供应商还有前沈阳冶炼厂、重庆冶炼厂等。 选用N235萃取净化和别离、不溶阳极电解工艺出产电解钴的首要供应商是成都电冶厂。 一、钴渣的复原浸出 镍电解体系净化产出的钴渣,首要元素组成列于表1。 表1  钴渣的首要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中首要以氧氧化物方式存在,在液固比为(3~4)∶1及机械或鼓风拌和条件下,用硫酸调pH=1.5~1.7,通入SO2复原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,复原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气拌和浸出时部分Fe氧化成三价。首要化学反响可表示为:在鼓空气拌和情况下,可发作亚铁离子的部分氧化,如:复原浸出液的成分列于表2。 表2  钴渣复原浸出液首要成分二、钴浸出液的净化 浸出液中首要杂质元素是铁和铜,非有必要的有铅、锌、锰、砷等。铁选用黄钠铁矾法除掉,铜用硫化沉积法除掉,其他杂质用水解沉积法除掉。 (一)黄钠铁矾除铁 黄钠铁矾除铁的基率原理是生成难溶盐。黄钠铁矾[Na2Fe6(SO4)4(OH)12]是一种淡黄色晶体沉积,具有杰出的过滤性和洗刷性,生成进程比较复杂,需求较严格操控生成条件,首要影响要素有碳酸钠溶液的浓度、温度和pH值、晶种的参加等。详细操控条件如下: 1、碳酸钠的浓度 7%~8%的浓度,且有必要均匀参加,常用办法是运用低压风使碱液呈雾状喷入铁矾生成槽内。碳酸钠浓度高时,易生成胶状氢氧化铁,形成渣含有价金属上升,且过滤困难:浓度过低则对整个体系的体积平衡晦气,下降溶液浓度。 2、温度、氧化和pH值 除铁前溶液需经氧化,使Fe2+氧化成Fe3+,氧化剂一般为NaClO3,氧化温度≥85℃,铁矾生成温度≥90℃时,呈颗粒状,具有杰出过滤功能;除铁前溶液的pH值操控在1.5~1.7,氧化时刻操控在1.5~2.0h,结尾pH值操控在2.5~3.0,除铁率可达99%,溶液中Fe≤0.05g∕L;终究pH值操控在4.0~4.5时,除铁后溶掖中Fe≤0.001g∕L。 3、晶种 湿铁矾渣作晶种参加,即在除铁压滤时,在反响罐底留必定渣量,可大大加速黄钠铁矾除铁速度。 洗后铁渣成分为:0.5%~1% Co,1%~3% Ni,0%~0.4% Cu,Fe≥24%。 (二)沉积除铜 除铜的根本原理是生成难溶的硫化铜沉积。除铜作业在机械拌和的珐琅釜中进行,用量为Cu2+∶Na2S=1∶5。先配成饱和溶液,常温下缓慢参加釜内,初始pH=2.0~3.0,终究pH=3.5~4.0,由于为碱性。除铜停留时刻约30min。溶液中的铜含量可降至0003g∕L以下,一同可除掉铅。除铜的缺陷是或许部分生成NiS和CoS沉积,形成铜渣含镍钴过高,且使溶液中带入钠离子。 三、氯化水免除砷、锑 氧化水免除砷、锑的首要原理,是运用铁水解产出的肢状Fe(OH)3具有较强吸附效果,使砷、锑等杂质一道沉积。因而,砷、锑从溶液中脱除的深度,在很大程度上取决于溶液中的含铁量,一般要求溶液中含铁量为砷、锑量的10~20倍。在水解沉积前参加氧化剂,如、次或,意图是使二价铁氧化为三价铁。 四、氧化水解别离钴 运用三价钴氢氧化物的低溶度积,使钴氧化水解沉积,是出产上别离溶液中镍和钴的常用办法。 在酸性溶液中,Co2+比Ni2+优先氧化,且Co(OH)3的溶度积及水解沉积的pH值显着低于Ni(OH)3,在强氧化剂效果下,Co2+被氧化而水解沉积。在氧化水解沉钴进程中,即便少置Ni2+氧化而生成Ni(OH)3沉积,也仍对Co2+具有氧化效果,发出发生Co(OH)3沉积的置换反响,Ni2+进入溶液。常用的强氧化剂为或次改。 水解沉积进程中有H+发生,有必要加碱进行中和。 在出产运用中,为了使钴和镍杰出别离,应遵照以下根本准则: (一)参加过量氧化剂和碱,如用次为氧化制,应使NaCl∶Na2CO3=(1.1~1.2)∶1。 (二)操控恰当的析钴率,溶液含钴高时析钴率可高些。 (三)用二次沉钴替代一次沉钴,以取得较高纯度的氢氧化钴。 沉钴作业在空气拌和槽中完结。NaClO作氧化剂时,二次沉钴的工艺进程为:一次沉钴→压滤→滤渣用二次沉钴母液淘洗→复原溶解→二次沉钴→压滤,如图2所示。二次沉钴的根本技能参数见表3。 表3  二次沉钴的首要技能参数沉钴进程中,溶液用空气拌和均匀,氧化剂有必要用压缩空气雾化均匀喷洒在液面上。一次沉钴得到的氢氧化钴中,Co∕Ni≥10;二次沉钴得到的氢氧化钴中,Ca∕Ni≥350,Co∕Cu≥200,Co∕Fe≥100。假如要求出产1号电钴,Co∕Ni比须大于600。 五、粗钴阳极板的制备 二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。 反射炉煅烧的意图有3个: (一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块; (二)参加石油焦,使氧化钴半复原; (三)脱除部分硫。 反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。 反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。 六、电解精粹 金川公司选用可溶阳极和阴极隔阂电解法出产电钴。出产运用12个电解槽,规格为2060mm×790mm×860mm,运用2个槽造液。电解液为氯化物体系,阴极新液的化学成分列于表4。 表4  钴电解新液的成分    (g∕L)钴电解时的首要技能条件如下: 阳极规格及片数:    500mm×230mm×40mm,每槽22块 同极中心距:        180mm 始极片规格及片数:     540mm×520mm,每槽10块 电解温度:              55~65℃ 电流密度              300~400A∕m2 槽电压:              1.6~2.2V 电解液循环量:        16~220ml∕(min·袋) 阴阳极区液面差:      30~50mm 阴极周期:            3天 钴电解阳极液的成分:阳极液和造液一同进行净化除杂,然后作为阴极新液回来电解。首要除杂作业为除镍、除铜、除铅和除铁。净化除杂的首要工艺条件列于表5。 表5  电解钴阳极液除杂首要工艺条件净化渣压滤除掉,含钴铁渣回来与镍体系钴渣一同进行浆化、复原溶解。通过净化处理,溶液到达出产电钴的阴极液的要求,即:Co>100g∕L,Fe<0.001g∕L,Cu≤0.003g∕L,Pb≤0.0003g/L,Zn≤0.007g∕L。

钨钴合金

2017-06-06 17:50:12

钨钴合金钨钴合金又称碳化钨-钴硬质合金。碳化钨和 金属 钴组成的硬质合金。按钴含量,可分为高钴(20%~30%)、中钴(10%~15%)和低钴(3%~8%)三类。这类 金属 陶瓷可按通常特种陶瓷配料、成型等工艺制造,惟有烧成应根据坯料性质及成品质量采用控制烧结气氛为真空或还原气氛,一般在碳管电炉、通氢钼丝电炉、高频真空炉内进行。中国生产的这类硬质合金的牌号有YG2,YG3,YG3X,YG4C……等。字母“YG”表示“WC-Co”,“G”后面的数字表示Co的含量,“X”表示细晶粒,“C”表示粗晶粒。钨是属于 有色金属 ,也是重要的战略 金属 ,钨矿在古代被称为“重石”。1781年由瑞典化学家卡尔.威廉.舍耶尔发现白钨矿,并提取出新的元素酸-钨酸,1783年被西班牙人德普尔亚发现黑钨矿也从中提取出钨酸,同年,用碳还原三氧化钨第一次得到了钨粉,并命名该元素。钨在地壳中的含量为0.001%。已发现的含钨矿物有20种。钨矿床一般伴随着花岗质岩浆的活动而形成。经过冶炼后的钨是银白色有光泽的 金属 ,熔点极高,硬度很大。钨钴合金镀层的外观接近铬镀层,且镀液分散能力及覆盖能力好.在此研究了钨酸钠、硫酸钴、添加剂、电流密度及pH值对镀层钨含量及性能的影响.钨钴合金具有很好的耐蚀、耐热和耐磨性能,应用前景好. 售价70000元/千克 W含量83.36%,Co含量9.56%,C含量5.44%,硬度HRA为87。钨钴合金可用作刀具可加工铸铁、 有色金属 、非 金属 、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨钴合金陶瓷通常抗弯强度和断裂韧性随钴含量的增加而提高,而硬度下降。钨钴合金具有较高的抗弯强度、抗压强度、冲击韧性、弹性模量和较小的热膨胀系数,是硬质合金中使用最广泛的一类。用作刀具可加工铸铁、 有色金属 、非 金属 、耐热合金、钛合金和不锈钢等,还可作引伸模具、耐磨零件、冲压模具和钻头等。钨和钴为主要成份的一种合金,多用于矿山开采的钎头制作。

铍钴铜

2017-06-06 17:50:12

铍钴铜铍钴铜的物理指标:硬度: >260HV,导电率:>52%IACS,软化温度:520℃,同时铍钴铜具有许多优秀的特性,在许多方面都具有很独特的性质。电阻焊电极: 铍钴铜力学性能比铬铜材料和铬锆铜材料要高,但导电率和热导性低于铬铜和铬锆铜,这类材料在作为焊和缝焊电极时,用于焊接高温下仍保持特性高强度的特性的不锈钢、高温合金等,因为焊接这类材料时需要施加较高的电极压力,要求电极材料的强度也较高。这类材料可以作为点焊不锈钢和耐热钢的电极、受力电极电极握杆、轴和电极臂, 也可以作成缝焊不锈钢和耐热钢的电极轮轴和衬套,模具、或是镶嵌电极。铍钴铜具有许多优良的特性。各种耐磨内套(如结晶器用内套以及机械设备中的耐磨内套)以及高强度电工引线等。高热传导性 ,优良的抗腐蚀性,优良的抛光性 ,优良的抗磨性 ,优良的抗粘着性 ,优良的机械加工性,高强度和高硬度,极优良的焊接性。铍钴铜广泛用于制造注塑模或钢模中的镶件和模芯。用作塑胶模具中的镶件时,可有效地降低热集中区的温度,简化或者省去冷却水道设计。铍钴铜现有出厂的规格包括;经锻轧成型的圆材和扁材,挤压成型的管材,经机械切削加工的芯棒(Core Pins),铸锭和各类铸造型材。铍钴铜的极优良热传导性比模具钢材优越约3~4倍。此特性可确保塑胶制品快速及均匀地冷却,减少制品的变形,外形细节不清晰及类似的缺陷,在多数情况下可显著地缩短产品的生产周期。铍钴铜的用途:铍钴铜可广泛地采用在需要快速均匀冷却的模具、模芯、嵌入件,特别是高的热传导性,抗腐蚀性及良好抛光性的要求。吹塑模:夹断部,劲圈和把手部位镶件。注塑模:模具、模芯、电视机外壳角落的镶件。注塑:喷咀和热流道系统的汇流腔。

铜钴合金

2017-06-06 17:50:09

      铜钴合金是铜和钴所组成的合金.其中钴是具有光泽的钢灰色 金属 ,熔点1493℃、比重8.9,比较硬而脆,钴是铁磁性的,在硬度、抗拉强度、机械加工性能、热力学性质、的电化学行为方面与铁和镍相类似。加热到1150℃时磁性消失。钴的化合价为2价和3价。在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细 金属 钴粉在空气中能自燃生成氧化钴。     钴在地壳中的平均含量为0.001%(质量),海洋中钴总量约23亿吨,自然界已知含钴矿物近百种,但没有单独的钴矿物,大多伴生于镍、铜、铁、铅、锌、银、锰、等硫化物矿床中,且含钴量较低。 全世界已探明钴 金属 储量148万吨,中国已探明钴 金属 储量仅47万吨。分布于全国24个省(区),其中主要有甘肃、青海、山东、云南、湖北、青海、河北和山西。这七个省的合计储量占全国总保有储量的71%,其中以甘肃储量最多,占全国的28%。此外,安徽、四川、新疆等省(区)也有一定的储量。 世界钴 产量 1986年达到顶峰3万吨,以后不断下降,到1989年只有2.5万吨左右。扎伊尔和赞比亚是最大的钴生产国,其 产量 约占世界总 产量 的70%。     钴在地壳中的平均含量为0.001%(质量),海洋中钴总量约23亿吨,自然界已知含钴矿物近百种,但没有单独的钴矿物,大多伴生于镍、铜、铁、铅、锌、银、锰、等硫化物矿床中,且含钴量较低。 全世界已探明钴 金属 储量148万吨,中国已探明钴 金属 储量仅47万吨。分布于全国24个省(区),其中主要有甘肃、青海、山东、云南、湖北、青海、河北和山西。这七个省的合计储量占全国总保有储量的71%,其中以甘肃储量最多,占全国的28%。此外,安徽、四川、新疆等省(区)也有一定的储量。 世界钴 产量 1986年达到顶峰3万吨,以后不断下降,到1989年只有2.5万吨左右。扎伊尔和赞比亚是最大的钴生产国,其 产量 约占世界总 产量 的70%。有一种铜钴镍合金---白铜.呈白色.铜镍二元合金称简单白铜.三元以上合金称复杂白铜.含钴的白铜就属于复杂白铜.工业应用中常分为结构白铜和电工白铜.前者力学性能和耐腐蚀性能好.色泽美观.用于制造精密机械.化工机械和船舶构件,后者一般有良好的导热性和导电性.主要有锰铜.康铜和考铜等.用于制造精密电工仪器.变阻器.精密电阻.热电偶等.钴的主要用途是制造各种合金.钴合金的硬度很高.含钨78-88%.钴6-15%与碳5-6%的合金称为超硬合金.在1000℃时也不会失去原来的硬度.可用来制造切削工具,由钴35%.铬35%.钨15%.铁13%与碳2%组成的[钨铬钴合金".也是用来制造高速切削刀具.钻头的硬质合金.钴合金还具有磁性.所谓永久磁铁.便是由钴15%.铬 5-9%.钨1%和碳组成的钴钢.有些磁性合金中.钴的含量甚至高达49%.另外在一些耐热.耐酸的合金中.也常用到钴.      以钴为基加入其他合金元素形成的合金。铜钴合金是其中的一种。范围内具有较高的强度和良好的抗热疲劳性能,适用于制作喷气发动机、燃气轮机等高负荷的耐热部件。