您所在的位置: 上海有色 > 有色金属产品库 > 碳酸钴制备

碳酸钴制备

抱歉!您想要的信息未找到。

碳酸钴制备专区

更多
抱歉!您想要的信息未找到。

碳酸钴制备百科

更多

碳酸钴制备超细球形钴粉的工艺探讨

2018-12-10 14:19:22

碳酸钴制备超细球形钴粉的工艺探讨.pdf

电石渣制备碳酸钙工艺研究

2019-03-07 09:03:45

渣是制取聚氯乙烯(PVC)、气体时发生的工业废渣。渣中首要的物质为氢氧化钙,还含有少数的无机杂质,比方MgO、FeO和SiO2等,因为渣内含有少数的C、S、P等杂质使其呈现灰白色,并伴有浓郁的冲鼻滋味。渣中的颗粒十分的细小,粒径大约在10-15μm;渣的pH值大约能够到达12.5左右,呈现比较强的碱性。因而以渣为质料出产高需求量的超细活性碳酸钙,无疑是处理渣最好的途径。 1、渣的预处理 渣浆的预处理方法直接影响到CaCO3产品质量的好坏和渣的运用率。一般渣的预处理方法包含两种,105℃下枯燥和530℃下锻烧。挑选105℃下枯燥一方面能够除掉渣内的水分,另一方面能够使渣内的有机物和挥发性杂质分化,然后能够减小碳酸钙制品中杂质的含量。530℃下锻烧一方面是使渣内的氢氧化钙分化成氧化钙,另一方面使渣内的金属化合物转换成难溶物质。 试验标明,渣经105℃枯燥的作用最好。在这种预处理方法下所得Ca(OH)2回收率和碳酸钙白度最高。 2、渣的浸出 许多金属氢氧化物是不溶性阳离子物质,只需操控必定的碱性条件,可使系统中的金属阳离子有挑选性的沉积。依据溶度积原理,在浸取的进程中,pH操控在必定规模以内,就能够使Mg2+、Fe3+、Mn2+等杂质离子先构成氢氧化物沉积,而Ca2+达不到Ca(OH)2的溶度积仍留在溶液中,过滤掉沉积即可得到不含镁、铁、锰杂质的精制Ca2+溶液。 (1)浸出 高传相等选用对渣进行杂质处理后得到球形超细CaCO3,所得碳酸钙纯度大于98%,白度大于97,均匀晶粒尺度为45nm,电镜均匀粒径约为80nm,比表面积约为32m2/g。乔叶刚等选用必定浓度的溶解渣,过滤除掉不溶性杂质,使CaCl2溶液得到净化。 (2)氯化铵浸出 卢忠远等将渣参加质量分数为J%、过量30%的NH4Cl的溶液中反响,CaCO3的回收率最高达99%,所组成的碳酸钙为针状文石型碳酸钙。 (3)甘酸浸出 袁可等选用甘酸水溶液将渣中的有用钙转变为可溶性的甘酸钙,经过碳化,组成出球形碳酸钙。其工艺与氯化钱工艺十分类似,但在氯化铵系统中,所制备的碳酸钙描摹为立方形,而在甘酸系统中,碳酸钙的描摹则为球形。两者描摹彻底不同,这或许是因为甘酸对碳酸钙的描摹有抑制作用。 3、碳酸钙的制备 (1)CO2碳化 吴琦文等以渣为质料,CO2为碳源,制备纳米碳酸钙。在其制备进程中,研讨质料的浓度、CO2气体的浓度、CO2气体的流速、反响温度、拌和速率以及添加剂的用量对碳酸钙产品粒径和晶型的影响,结果标明:质料的浓度、CO2浓度和流速对碳酸钙均匀粒径有稍微的影响,在必定的条件下可制备颗粒粒径为50nm、均匀晶粒尺度约30nm的方解石型纳米碳酸钙颗粒。 Jun-HwanBang等运用CO2微气泡发生器组成得到小尺度、高比表面积的碳酸钙,并研讨了Ca(OH)2浓度、电解质的量、CO2流量和注入方法对碳酸钙的尺度、比表面积的影响。结果标明:CO2流量的添加会减小碳酸钙粒子的尺度,或许的原因是CO2流量的添加使得剪切速率变大而且添加了CO2的涣散;运用MBG(微气泡发生器)注入CO2要比惯例的泡沫发生器制得的碳酸钙粒子更小。 (2)碳酸钠碳化 YuDong等运用微乳液作为组成途径,以碳酸钠为碳源,可控的得到不同描摹的碳酸钙。经过操控这些参数:表面活性剂的品种、陈化时刻以及W0(水与表面活性剂的摩尔比)得到了许多新颖的描摹,纳米棒、六角圆片以及类镜头像结构。碳酸钠和氯化钙量的添加会使得碳酸钙粒子形状不规则,到达必定量后不会构成微乳液。 Fang-zhiHuang等以碳酸钠为碳源,经过参加可溶性添加物的正向微乳液得到不同描摹的碳酸钙粒子。当在甘酸润饰的正向微乳液下,碳酸钙生成中空的微球粒子,然而在Mg2+润饰的正向微乳液下,得到了许多新颖的分层霞石碳酸钙晶体,比方轴型霞石碳酸钙、圆片霞石碳酸钙等等。这些不同晶相的特殊描摹碳酸钙或许是因为碳酸钙的前体(球形的或许片状的纳米粒子)在两层的模版下,自发拼装构成的,意味着咱们能够在两层模版下,经过仿生组成手法,组成得到具有特殊描摹和结构的无机或许有机一无机杂化材料。 (3)碳酸铵碳化 张宏等选用以下试验工艺条件:浸取液Ca2+浓度为0.85mol/L,(NH4)2CO3:CaCl2=0.95:1(物质的量比),反响温度位15℃,组成得到碳酸钙的晶形为立方体,均匀粒径为50nm。试验进程发现,Ca2+浓度在1mol/L以下,跟着浓度的添加粒径线性下降,1mol/L以上则改变不明显;而且,Ca2+浓度在1mol/L以上,对渣中杂质的去除是十分晦气的。 闻琨等以渣为质料、氯化铵溶液为浸取剂、碳酸铵为碳化剂、柠檬酸为晶行操控剂,选用液相法制备了高纯度的纳米级碳酸钙。调查了钙浓度、柠檬酸的用量、碳化温度三种要素对碳酸钙晶型和粒径的影响,结果标明:钙浓度为0.6mol/L、柠檬酸与碳酸钙质量比为0.03、碳化温度为12℃为最佳工艺,所得碳酸钙粒径为40-60nm,为纯洁的方解石晶型。 4、渣碳酸钙在塑猜中的使用 聚  董卫龙等以渣为质料,或氯化铵为浸取剂提取渣内的Ca2+离子,并别离选用液相法和微乳法制备碳酸钙。选用微乳液法得到的超细活性碳酸钙与浙江菱化活性钙、纳米钙三种碳酸钙填充PP,力学功能结果标明:跟着碳酸钙含量的添加,力学功能都呈现了明显地下降,可是渣制备的碳酸钙填充PP的力学功能一直比浙江菱化活性钙、纳米钙填充PP的要高;流变功能显现渣制备的碳酸钙和浙江菱化活性钙填充PP后的熔体粘度整体比浙江菱化纳米钙填充PP的小。

黑镍的制备和除钴

2019-01-24 09:37:16

合格浸出液泵入φ2.0m×1.5m机械搅拌槽中,加入适量NaOH生成Ni(OH)2沉淀,使Ni(OH)2浆料液中Ni=20g/L,pH=10~12。然后,将浆液泵入氧化电解槽中,鼓入空气进行电解。阳极为镍始极片,阴极为不锈钢片,槽电压2.4~3.2V,槽电流2800~3000A,温度45~52℃,电解20~24h,颜色由绿转黑,黑镍转化率可达65%~75%。黑镍浆液转入φ3.0m×1.9m洗钠槽,洗钠后的黑镍即可用于除钴,洗水送污水处理站。     除钴在φ2.5m×3.0m空气搅拌槽中间段进行,温度70~80℃,停留时间1.5h,Ni(Ⅲ)∶Co=1.2(mol比)。流出的除钴矿浆经二段压滤,滤液调pH至3.2~3.4后送镍电解工序,滤渣浆化后送钴系统处理。黑镍除钴的效果良好,钴的脱除率可达98%,并约有60%的铜和铁同时除去。除钴前后典型溶液成分和除钴效率列于表1。所得钴渣的化学成分列于表2。 表1  除钴前后溶液平均成分和除钴率元素除钴前液除钴后液钴脱除率/%NiCoCuFeNiCoCuFeg/L83.30.1910.00280.003781.7<0.0020.00100.000998.31 表2  钴渣的典型化学成分组元NiCoCuFeMnSiO2CaOMgOH2O%33.722.120.980.350.0150.260.0660.2641.5

粗钴阳极板的制备

2019-01-31 11:06:04

二次沉钴得到的氢氧化钴含水约50%,配入少数石油焦,在反射炉中烧结成多孔氧化钴团块,然后与脱硫剂CaO、复原剂(石油焦)及造渣剂SiO2一同装入电炉,在高温下熔炼,插湿木进行复原和拌和,使氧化钴复原成金属钴,并脱去杂质,浇铸得到含钴超越95%的粗钴阳极板,用于钴的电解精粹。 反射炉煅烧的意图有3个: (一)使氢氧化钴脱水、分化,转变为氧化钴,并烧结成多孔的团块; (二)参加石油焦,使氧化钴半复原; (三)脱除部分硫。 反射炉可用煤、煤气、液化、天然气或重油作燃料。金川公司用重油作燃料,选用低压喷嘴,具有能耗低、雾化好的特色。进料配比为石油焦∶水=100∶8,与氢氧化钴一同在拌和机内拌和均匀后参加炉内,炉温操控在1000~1100℃。 反射炉产出的氧化钴含钴76%左右,按要求配比:氧化钴∶石油焦∶石灰石=100∶(8~9)∶(5~7)配料后装入电炉,物料表面铺少数粗钴残极,以利于起弧熔炼。炉料熔化后,操控炉温在1550~1650℃,经造渣、扒渣操作,提温浇铸成阳极板。金川公司的阳极板规格为530mm×230mm×40mm。粗钴阳极板的化学成分为Co>95%、Ni<0.45%、Cu<0.65%、Fe<1%、Pb<0.003%、Zn<0.002%、S<0.6%、C<0.05%。

球形碳酸钙的制备及机理分析

2019-03-07 09:03:45

碳酸钙具有方解石、文石和球霞石3种晶型结构,常温常压下方解石最安稳,球霞石热力学安稳性较差,因而制备的碳酸钙多由方解石构成。 碳酸钙微球具有体积小、比表面积大、孔隙率大等特色,广泛使用于生物技术、医药等高端职业。碳酸盐与钙盐在无其他物质的参加下能够直接反响得到立方体碳酸钙,产品一般由方解石构成,一些表面活性剂如柠檬酸(CA)、乙二胺四乙酸盐(EDTA)和十六烷基三甲基化铵(CTAB)以及部分聚合物等能够调控碳酸钙的成长,操控碳酸钙的结晶速度和描摹,终究操控碳酸钙的晶型及晶粒大小。陈先勇等以柠檬酸钠作晶型操控剂,以醋酸钙和碳酸钠为质料制备出了孪生球状碳酸钙。 1、试验 (1)试剂 无水氯化钙(CaCl2)、无水碳酸钠(Na2CO3)、无水乙醇(C2H5OH)和一水柠檬酸(C6H8O7·H2O)、(NaOH)。 (2)仪器与设备 场发射扫描电子显微镜(FESEM,表面镀金,作业电压15kV)、Zetasizer3000HS、多功能X射线衍射仪(XRD,扫描视点3-80°,铜靶,电压40kV,电流40mA)、SpectrumOne型傅里叶变换红外光谱仪(FTIR,KBr压片,测验规模400-4000cm-1)。 (3)乙醇溶液法制备碳酸钙 别离制造2份100mL体积分数为0,25%,50%和75%乙醇水溶液贮存于0℃条件下备用,称取4份0.01mol的无水氯化钙别离参加4种不同体积分数的乙醇水溶液中拌和使其充沛溶解,相同办法称取4份0.01mol的无水碳酸钠别离参加不同体积的乙醇水溶液中拌和使其充沛溶解,并在0℃水浴条件下别离参加相应乙醇体积分数的CaCl2溶液中,然后用浓度为1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。 同样地,称取0.01mol的无水氯化钙和无水碳酸钠,别离参加2份100mL体积分数为50%的无水乙醇溶液中,拌和使其溶解充沛,将Na2CO3溶液在水浴温度为60℃条件下,参加CaCl2溶液中,然后,用1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后,静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。 (4)添加柠檬酸制备碳酸钙 称取0.01mol的一水柠檬酸,参加100mL浓度为0.15mol/L的CaCl2溶液中,拌和使其溶解均匀,用1.0mol/L的NaOH溶液调理溶液的pH值为5.8,必定拌和速度下快速倒入100mL浓度为0.15mol/L的Na2CO3溶液,调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。同上所述,称取0.1mol的一水柠檬酸进行上述反响。 2、成果与评论 (1)描摹分析由图1可知,乙醇的体积分数为0(水溶液)时,制备的碳酸钙相似于短柱状,面和棱均清晰可见; 乙醇的体积分数为25%时,制备的碳酸钙相似于梭状,并且单个呈现空心,见图1b中扩大图,制备的碳酸钙没有显着的棱角,空心梭的截面呈现空心环的描摹; 乙醇的体积分数为50%时,制备的碳酸钙为双球形,从图lc中的扩大图能够看出,微球是由纳米颗粒构成; 乙醇的体积分数为75%时,制备的碳酸钙相似于棉絮状,见图1d中扩大图。 跟着反响溶液中乙醇体积分数的添加,碳酸钙晶粒的直径逐步减小,能够估测乙醇的添加能够阻挠碳酸钙的成核或成长。乙醇的体积分数为50%时,生成的碳酸钙是直径为纳米级的颗粒,因为较高的表面能而聚组成球,构成双球状。图2为乙醇体积分数为50%时,不同水浴温度条件下制备的碳酸钙微球FESEM图画。从图中能够看出,较高温度下制备的碳酸钙微球中间洼陷程度较小,或许是跟着反响时间添加,高温下乙醇部分蒸发导致浓度减小,对碳酸钙的成长按捺效果减小,然后有利于碳酸钙微球的成长,中间洼陷程度削减。图3是柠檬酸浓度别离为0.1、1.0mol/L时,制备的碳酸钙微球FESEM图画。柠檬酸浓度为0.1mol/L时,制备的碳酸钙微球粒径较大。经过图3a中扩大图能够看出,与在乙醇溶液中制备的碳酸钙相似,都是由纳米状碳酸钙聚合而成,不同的是在柠檬酸的操控下制备的碳酸钙微球没有中间洼陷,构成的球较规整。 柠檬酸浓度为1.0mol/L时,制备的碳酸钙微球粒径显着减小,且相似于圆饼状,由图3d中扩大图发现,制备的碳酸钙微球相似于层状包裹而成,而不是由碳酸钙纳米颗粒聚合而成,这与其他微球显着不同。 比照图3a和图3b发现,柠檬酸能够有用地阻挠碳酸钙晶粒的成长,并且柠檬酸的浓度为1.0mol/L时能够促进碳酸钙更好地成球。 经过图2和图3能够看出,在乙醇溶液和柠檬酸溶液中都能制备出描摹较规整的碳酸钙微球,并且跟着无水乙醇和柠檬酸的量的添加,制备的碳酸钙晶粒都有必定程度的减小,阐明两者都能够按捺碳酸钙的成长。 (2)相结构分析图4为图1对应制备碳酸钙的XRD谱图。图4中a对照X射线标准卡片发现与碳酸钙的标准卡片JCPDS47-1743完全契合,阐明制备的碳酸钙是由方解石构成,图4中a和b在29.4°处的峰十分强并且尖利,对应的是碳酸钙的(104)晶面,阐明图4a和b对应的碳酸钙结晶性杰出。 图4中b、c和d在2θ坐落24.9°、27.1°、32.8°、43.9°、50.1°处均呈现球霞石的特征峰(JCPDS33-268),阐明图4b、c和d对应的碳酸钙中均有球霞石存在,并且方解石的峰值逐步减小;球霞石的峰值逐步添加,阐明跟着反响溶液中的无水乙醇含量添加,制备的碳酸钙中的方解石含量逐步削减,球霞石逐步添加,因而,能够揣度乙醇能够按捺方解石的生成,促进球霞石的生成,并且跟着乙醇含量的添加,对方解石的按捺效果添加,进而影响碳酸钙的结晶度。图5为图2和图3对应制备碳酸钙的XRD谱图。图5中a和b是无水乙醇体积分数为50%时别离在0、60℃条件下反响制备的样品的XRD谱图。与图5a对应的碳酸钙是由方解石和球霞石构成不同,图5b对应的碳酸钙是由方解石和文石构成的,估测或许是反响系统温度较高,促进球霞石转化为热安稳性较高的文石,别的,反响系统温度的升高,系统中乙醇的含量下降,按捺效果下降,也促进文石的发作。 图5c和5d是反响系统中添加柠檬酸后制得的碳酸钙的XRD谱图。经过比较发现,柠檬酸的浓度为0.1mol/L时,制备的碳酸钙样品是由方解石构成;而柠檬酸的浓度为1.0mol/L时制备的碳酸钙样品是由方解石和球霞石构成。与未添加柠檬酸时制备的碳酸钙的XRD谱图(图4a)比照,标明柠檬酸的添加会按捺方解石的成长,促进球霞石的成长,然后按捺碳酸钙的结晶,并且跟着柠檬酸含量的添加,对反响系统的按捺效果增大。图6为不同条件下制备的碳酸钙的FTIR谱图。712、874、1417cm-1处呈现的峰是方解石的特征吸收峰,745cm-1是球霞石的特征峰,1455-1490cm-1对错晶碳酸钙的吸收峰。由此可知,图6中a和d对应的碳酸钙微球含有球霞石,这与XRD图的分析成果共同。4个样品中均呈现非晶态碳酸钙的特征吸收峰,阐明乙醇溶液和柠檬酸的参加都在必定程度上按捺了碳酸钙的结晶,促进非晶态碳酸钙的发作,这也契合XRD图得出的定论。样品b中未呈现文石的特征吸收峰,这与XRD得出的定论不太共同,或许是被其他较强的峰掩盖,也或许是在样品制备过程中发作反响。 3、碳酸钙微球的构成机理 在制备碳酸钙的反响中,没有柠檬酸的参加下,氯化钙溶液和碳酸钠溶液一经混合,反响首要生成热安稳性较好的方解石。反响过程中晶核的发作需求较大的能量,晶核的成长速度远远大于构成速度,因而倾向于构成描摹较大,晶面较规整的碳酸钙(图la)。描摹操控剂的参加阻挠了Ca2+和CO32-的有用磕碰,按捺晶核的构成和成长,然后按捺反响的进行,到达操控样品描摹的意图。 当按捺剂的量较多时,进一步阻挠系统反响的进行,进而添加系统的能量,促进很多晶核的发作。因为比表面积较大,因而晶核在成长过程中聚会构成颗粒的集合体,然后构成比表面积较小的球状(图2a、2b和2c)。乙醇溶液对碳酸钙的成长具有按捺效果,乙醇钙的电离才干较强,而乙醇是弱电解质,溶液中存在很多的乙醇分子。估测反响过程中乙醇分子的存在阻挠了Ca2+和CO32-的有用磕碰,而乙醇分子的存在也阻挠了碳酸钙晶核的成长。跟着乙醇浓度的添加,系统中乙醇分子和离子的量添加,阻挠效果增强。而反响温度的添加,促进了乙醇的蒸发,下降了反响系统中乙醇的含量,然后下降了乙醇的按捺效果,加速反响的进行,削减球霞石的发作而构成文石(图2b)。图7为柠檬酸的分子结构图。柠檬酸根离子是一种较强的金属鳌合剂,能与钙离子鳌合,构成安稳的柠檬酸钙,这与乙醇钙的阻挠效应不同。添加柠檬酸后,柠檬酸根离子与钙离子鳌合构成结构安稳,易溶于水的柠檬酸钙,下降了系统中钙离子的浓度。跟着柠檬酸钙的缓慢离解,Ca2+与溶液中游离的CO32-反响生成CaCO3,少数柠檬酸根离子吸附在晶核表面,按捺晶面的进一步成长,然后使溶液中碳酸钙的过饱和度添加。而球霞石是碳酸钙无水结晶中最不安稳的晶型,一般需求更好的表面能和较高的过饱和度才干构成,因而,反响有利于生成球霞石。 跟着柠檬酸浓度的增大,更多的柠檬酸根离子集合到碳酸钙分子周围,下降了晶核构成的能垒,促进碳酸钙晶核的发作,而进一步按捺晶体的成长。因为柠檬酸根离子浓度较大,对碳酸钙晶体成长的按捺效果也更强,终究得到粒径较小的含有很多球霞石晶型的碳酸钙颗粒。又因为柠檬酸根的空间位阻效果较大,因而,制得的球形碳酸钙微粒的分散性较好,粒度散布较会集。 另一方面,初始构成的纳米级碳酸钙小颗粒具有较高的表面能,为了下降表面能,小颗粒极易集合到一同,而初始构成的碳酸钙集合体表面高低不平,在集合体表面凹的部分区域液相相对流速较慢,Ca2+和CO32-简单在该区域富集,较易快速构成许多小晶粒,这些小晶粒经过彼此交融及结构重组完成集合体的表面最小化。而柠檬酸浓度增大时,吸附在碳酸钙表面的柠檬酸量添加,阻挠了Ca2+和CO32-在碳酸钙表面的富集,按捺碳酸钙颗粒的成长,因而,颗粒直径减小(图3b)。图8所示为依据试验分析得出的或许的碳酸钙微球构成机理。 4、结语 (1)别离选用乙醇和柠檬酸作为碳酸钙粒子的结构和描摹的调控剂,发现二者都能经过按捺碳酸钙的成长调控碳酸钙的结晶,然后制备出不同描摹的碳酸钙。 (2)经过改动试验条件发现乙醇和柠檬酸制备碳酸钙的机理不同,乙醇溶液经过下降粒子的活性来按捺碳酸钙的成长速度,而柠檬酸经过与钙离子反响下降溶液中钙离子的浓度来调控碳酸钙的成长速度。 (3)乙醇溶液对碳酸钙描摹的影响较严峻,50%体积分数的乙醇溶液与浓度为1.0mol/L柠檬酸调控下都能制备出描摹杰出的碳酸钙微球,但是在柠檬酸调控下制备的碳酸钙微球描摹愈加规整,粒度也较小,使用规模愈加广泛。  材料来源于碳酸钙微球的制备及其机理。

立式粉磨机制备超微细重质碳酸钙

2019-03-07 09:03:45

重质碳酸钙,简称重钙,是由天然碳酸盐矿藏如方解石、大理石、石灰石经破碎与粉磨而成,是重要的绿色环保、节能减排、契合国家可持续发展的非金属矿藏材料,可广泛使用于塑料、涂料和橡胶等职业。 图1 重质碳酸钙的使用范畴我国重钙首要出产基地1 我国国重质碳酸钙出产基地首要有广西贺州、广东连州、浙江建德和四川宝兴等,广西贺州被称为“我国重钙之都”,年产重质碳酸体达800万吨以上,产品商场占有量到达60%以上,是全国最大的重质碳酸体出产基地。 图2 广西贺州碳酸钙千亿元工业演示基地重质碳酸钙出产工艺 2 重质碳酸钙工艺首要有干法、湿法和干湿结合法。 (1)干法工艺 重质碳酸钙干法出产工艺一般有球磨-分级机多种规格产品粉磨体系、雷蒙磨混合振动磨-分级机组合粉磨体系、气流磨-分级机组合体系、立式拌和磨-分级机组合粉磨体系。 (2)湿法工艺 重质碳酸钙干法出产工艺一般有卧式磨串并联组合体系、立式磨单机开路粉磨体系、和立式磨多机串联粉磨体系。湿法出产的滤饼、浆料可直接供应,或经冲击式自磨、枯燥体系枯燥成粉体产品。 (3)干湿结合工艺 干湿结合法行将两种工艺进行组合,其出产工艺流程见图。 图3 重质碳酸钙干湿结合出产工艺常见的超细粉磨设备3 选用雷蒙磨、立式磨、球磨机、旋磨机和高速机械冲击式破坏机等粉磨设备,产品细度多在200-1250目之间,想要得到1250-2500意图超细重质碳酸体,须将磨机和干式精密分级机组合,多段分级,接连闭路进行出产,循环负荷高达300-500%。 立式粉磨机的作业原理4 图4 立式粉磨机结构(1)研磨 质料由反转下料器进入主机,在底部磨盘滚动的离心力下,质料被推送至磨轮之间进行研磨,三个磨轮均有独自的油压连杆操控研磨压力,油压体系所输出的安稳压力为70-75kg/cm2,使质料于三个磨轮与磨盘之间进行研磨,油压体系配备有六个蓄压器可吸收颗粒状质料开始破坏时所发生出来的震动力。 (2)分级 质料由磨轮和磨盘之间研磨成细粉之后,自磨盘周围溢出,跟着环带状气流上升,进入上端的滚动锥形分级叶片区,经过分级叶片区较粗的粉无法经过以设定转速的分级叶片区,而直接落在下部持续研磨,经过分级叶片区的粉末称为细粉,这些细粉将被收人在后段收尘设备中。 (3)制品 细粉跟着气流经过分级叶片后,进入旋风收尘器或是脉冲式袋式收尘器中,收尘设备搜集细粉后,被别离的空气会借风机再次运行至体系中,整个体系中的气流呈负压状况,然后将不会导致因粉尘的数量而发生的环境污染。 立式粉磨机制备重工艺5 (1)方解石经过选矿、水冲刷等除掉杂质,暴晒风干送入堆棚。 (2)分一段或许两段进行破碎,如有大块石料,须先送入鄂式破碎机粗碎,之后再进入锤式破碎机细碎,破碎后的细石料经斗式提高机送入质料储库待用。 (3)闭路粉磨分级体系中,首要细石料从质料库由定量给料机送入立式粉磨机粉磨-分级体系,较细产品将直接被搜集到高浓度高压脉冲袋式收尘器内,经过分级叶片可将产品细度操控在500-3000目之间调理,之后进行包装。粗粉再次进入立式粉磨机,与质料混合,从头粉磨。 图5 姑苏某公司立式粉磨机制备重质碳酸工艺选用立式粉磨机制备重质碳酸,具有简略高效、能耗低、噪音小等优势。 重钙出产技能发展趋势6 (1)商场关于超微细重质碳酸钙产品的需求愈来愈多,分级机作为超细粉加工关键设备,其发展趋势将在超微细范畴使用。当时,国内加工3000目以下超微细产品的分级机技能比较老练,但是加工3000目以上超微细产品的分级机技能有待开发。 (2)以产品质量安稳、出产成本下降为意图,在新建厂及现有厂的技能改造中选用低能耗、低损耗、操作保护便利、功能安稳的老练设备。  (3)出产过程的自动化和智能化程度有待进一步提高。

塑料用重质碳酸钙制备技术与工艺探讨

2019-03-06 10:10:51

导读 重质碳酸钙(重钙)因报价低廉、白度高、化学稳定性及热稳定性好,而成为塑料工业中的首选填料,广泛运用于塑料薄膜、型材、管材、塑编拉丝和人造革等塑料工业中。 前期,重钙在塑料制品中首要是到达塑料制品增容、增重、降低成本等效果。跟着塑料职业的开展,重钙在塑料加工中的效果扩展到:①进步加工功能、涣散功能;②进步尺度稳定性、刚性和耐性;③进步耐热性、抗老化以及抗紫外线功能;④(部分)替代贵重的白色颜料,起到必定的增白效果;⑤进步制品的表面光泽和表面平坦性等。        一、塑料用重钙加工的设备与技能工艺        从塑料用重钙产品加工来看,在满意塑料商场对产品功能及其精细化开展要求的条件下,就看加工设备是否节能,节能就意味着经济效益的进步。依据查询,国内重钙资源大多质量优秀、纯度高、白度高,一般不需通过浮选或其他除杂工艺,仅需超细粉磨分级即可。因而挑选功能优越、质量牢靠的粉磨分级设备和工艺是非常重要的。 现在我国的雷蒙磨、高压磨等国产粉磨设备,在必定程度上满意了国内重钙产品加工的需求,完成了必定的经济效益,可是,跟着工业现代化的开展,需持续对该类型设备进行技能革新,以期习惯现代非金属矿产业规模化及其产品精细化开展的商场需求。近年来,国内重钙加工厂商在探究非矿产业规模化和产品精细化开展之路时,目光开端转向高效、节能型的配备与技能,而欧版磨粉机等配备及其配套技能为完成重钙工业规模化和产品精细化开展供给了典型典范。        依照塑料用重钙加工的设备类型及制品细度规模,合适塑料用重钙加工的设备及工艺首要有欧版磨体系、立式磨体系、超细环辊磨体系。        1.1 合适出产33~200μm重的技能及工艺        该细度规模内的重加工可挑选欧版磨机和立式磨机等产品,体系均为干法出产,完成自磨自选,通过变频高效选粉机,可直接制备重,无需再通过外部筛分或分选。因为选用内部循环风,可快速将契合制品的重吹选出,完全避免过粉磨现象,大大进步了产值和出产功率,一起因为选用了先进的除尘器,体系到达国家环保要求。        1.1.1 欧版磨机体系        欧版磨机体系为闭路体系(见图1),是在国产雷蒙磨和摆式磨的基础上,引入欧洲先进的规划理念及标准,悉心开宣布的具有世界抢先技能水平,具有多项自主专利技能的粉磨设备,该机型选用了锥齿轮全体传动、内部稀油光滑体系、弧形风道等多项专利技能。欧版磨粉机作为一种高效节能配备,其技能特色是单机出产能力大,易于规模化出产、单位产品能耗低,出产的产品粒度散布广、纯度好、流动性好,一次制品细度d97=33~200μm,单机出产能力依机型不同在6~35t /h。        该体系选用的设备首要有破碎机、提升机、电磁振荡给料机、欧版磨粉机(见图2)。因为欧版磨粉机内部带有选粉设备,不需外部的选粉机,使得流程简略。        1.1.2 立式磨体系        立式磨体系为开路体系(见图3),是结合德国莱歇、特殊、伯利鸠斯以及丹麦斯密斯等公司的技能优势,结合我国的工况条件而开发规划的一款大型化、工业化制粉设备,特别适用于规模化的碳酸钙破坏加工,其自动化程度高、出产成本低、功率高,一次制品细度d97=33~200μm,单机出产能力依机型不同在20~80t/h。 立式磨首要由传动设备、磨辊与磨盘、分级设备、加压和光滑设备、机壳与机座等五大部分组成(见图4)。分级设备由传动体系、转子、导向叶片、粗粉锥斗、出风口(细粉出口)等组成,是确保产质量量的关键性部件,有动态、动静态组合及高效转子多种结构型式。立式磨是运用磨辊与磨盘的相对运动对物料进行料床破坏,辊压添加,物料细度变小;磨细的物料靠气流将其带起,由其上面的分离器(分级机)在磨内分级,粗粉落入磨盘从头被破坏;合格细粉由风送出磨至袋收尘器搜集。        1.2 合适出产3~33μm重的技能及工艺        该细度规模内的重加工可挑选超细中速微粉磨,体系为干法出产,完成自磨自选,通过变频高效选粉机,可直接制备重,无需再通过外部筛分或分选。选用先进的除尘器,体系到达国家环保要求。该机首要运用于超细碳酸钙的破坏加工,一次制品细度d97=3~33μm,单机出产能力依机型不同在0. 5~8t / h 。超细中速微粉磨的全套配备为: 锤式破碎机、斗式提升机、储料仓、给料机、微粉磨主机、变频分析机、隔音房、双旋风集粉器、脉冲除尘体系等(见图5)。据下流运用客户反映,选用上述几种工艺配备,出产的重钙产品的白度、杂质含量等理化目标均契合塑料用重钙产品的要求。在d97、d100目标近似的条件下,体系出品的重与球磨机工艺出品的重比较,从理化特征来看,具有粒度散布窄、细粉含量适中、颗粒形状扁平的特色;从运用的视点来说,该体系出品的重具有产品流动性好、涣散性好、吸油值低优势。该粉特别适宜于进步塑料材料的机械强度和造纸职业涂布需求。        2 塑料用重制备工艺运用状况        上述几种工艺现在已广泛推广运用,特别在一些碳酸钙出产基地,如浙江长兴、安徽池州、江西永安等地,这些区域大部分雷蒙磨等运用供应商为了习惯重钙产品精细化开展,也纷繁仿效该系列出产技能。实践证明,选用上述干法工艺出产的产品粒度具有散布窄、涣散功能好、流动性好、白度高级长处,并且单机出产能力大、单位产品能耗低。依据现在我国塑料用重钙工业开展的实际状况及非金属矿节能减排要求,推广运用该类技能是较好处理(现在重钙及非金属矿职业高能耗和技能设备落后的有用方法。        3 结语        在我国塑料工业中已显现出用重质碳酸钙替代轻质碳酸钙的趋势。但是,现在在我国塑料工业出产中所运用的重质碳酸钙与轻质碳酸钙数量之比约为5∶1,远未到达世界上的(14~18)∶1的份额。因而,需加速塑料用重钙产品精细化开展,这不只要求加工厂商对原矿质量的稳重挑选,更要重视加工设备与工艺的挑选。 欧版磨机等配备与配套工艺选型为其产品精细化开展和产品附加值的进步,奠定了坚实基础。欧版磨配备及其工艺出产的重钙产品不只能够满意塑料商场对产品功能的要求,还促进了塑料用重钙产品精细化和规模化开展,习惯商场对中高端精细化产品的需求。欧版磨配备及技能是国家大力倡议的节能降耗新技能,作为近年来干法超细破坏技能的首要发展之一,契合重钙等非金属矿加工要求,单位产品能耗低、产品白度高的准则。

我国纳米碳酸钙的制备技术与产业现状

2019-03-06 10:10:51

导读 纳米技能是当今世界各国抢先开展的科技热门,但纳米技能和材料的研讨、出产及其使用在我国尚处于起步阶段,能够产业化的只要为数不多的几个种类,纳米碳酸钙就是其间最具代表性的种类之一。  我国于20世纪80年代初开始纳米碳酸钙制备技能的研讨,80年代末完结工业化出产,已研发出多种制备技能,首要有:间歇式碳化法、超重力法、多级喷雾碳化法、非冷冻法、笔直筛板塔式碳化法、内循环碳化塔制备法、喷发吸收法、“双喷”新工艺、自吸式拌和反响器制备法、管式反响碳化法、微乳法制备法、超声空化法等,这些制备技能有些已成功地用于工业出产中,出产出不同晶型和不同用处的纳米碳酸钙产品,部分技能水平已到达乃至超越世界先进水平。现在,已完结工业化的首要有间歇式碳化法、超重力法、多级喷雾碳化法、非冷冻法和膜涣散微结构反响器制备纳米碳酸钙技能。1间歇式碳化法 1.1间歇鼓泡式碳化法间歇鼓泡式碳化法是国内外较常用的出产办法,该法是将净化后的氢氧化钙乳液降温到25℃以下,泵入碳化塔并坚持必定液位,由塔底通入含有二氧化碳的窑气鼓泡进行碳化反响,经过操控反响温度、浓度、气液比、增加剂等工艺条件制备纳米碳酸钙。此法出资小、工艺进程及操作简略,但能耗较高,工艺条件难以操控,粒度散布较宽。广东广平化工实业有限公司从日本白石公司引入的、广东恩平市嘉维化工实业有限公司、安徽铜陵集团碳酸钙厂以及广东省龙门县精密碳酸钙厂前期的纳米碳酸钙出产设备就是选用这种技能出产的。其工艺流程图见图1: 1.2间歇拌和式碳化法间歇拌和式碳化法选用低温拌和鼓泡釜式碳化反响器,经过参加晶形操控剂制备不同晶体结构和不同粒径的碳酸钙。该法是将25℃以下的氢氧化钙乳液泵入碳化反响罐中,通入二氧化碳,在拌和状况下,进行碳化反响,经过操控反响温度、浓度、拌和速度、增加剂等工艺条件制备纳米碳酸钙。该法因拌和气-液触摸面积大,反响较均匀,产品粒径散布较窄等,已成为近几年纳米碳酸钙出产的首要办法。选用该技能建造的有上海杰出纳米新材料股份有限公司、山西兰花华明纳米材料有限公司、江西华明纳米碳酸钙有限公司、上海耀华纳米科技有限公司等。其制备技能首要有华东理工大学技能化学物理研讨所和上海杰出纳米新材料股份有限公司具有。间歇拌和式碳化法因为影响产品粒径的要素较多,在工业出产进程中操控困难,因而存在着重复性差,粒径散布不均匀等缺陷;碳化反响器存在着扩展试验负效应大,反响周期长,单台设备出产才能低一级不利要素。针对以上缺少,上海杰出纳米新材料股份有限公司经过在产业化进程中的实践,对碳化反响进程操控及碳酸钙粒子表面改性等方面作了严峻改善,首要处理了粒子散布、表面处理优化、粒子二次聚会等问题,使产质量量有了进一步的进步,已构成了具有自主专利的制备技能,工艺技能已达世界先进水平,该制备技能具有下列特色:①到达和部分超越国外同类产品目标;②粒子功能(描摹、粒度、晶型)可控,构成了不同形状的纳米碳酸钙系列产品,合适各种不同用处对粒子描摹的要求;③产品功能安稳重复性强,0.1kt/a中试、3kt/a工业化试验和15kt/a出产线组成粒子与小试产品粒子功能相同,且批与批之间适当重复,消除了化工出产中的扩展效应;④进行了纳米碳酸钙的表面改性处理,现已构成用于轿车底漆、涂料、密封胶、塑料、橡胶和油墨等不同用处的系列化纳米级碳酸钙产品。上海杰出纳米新材料股份有限公司的工程塑料、硅橡胶、涂料、油墨用等系列纳米活性碳酸钙已悉数代替国外比如日本白石公司、法国Solvay公司产品进入国内外闻名独资公司、合资公司,并获得发明专利一项:高级胶印油墨用纳米通明碳酸钙的制备办法(专利号:ZL01 1 26404.7)。 2超重力法北京化工大学超重力研讨中心研发开发的超重力法组成纳米碳酸钙技能,成功地制备出粒径为15~30nm的纳米碳酸钙,并为组成纳米颗粒而规划了具有共同新式结构的超重力反响器。超重力反响器是一高速旋转的填料床,超重力碳化技能是指氢氧化钙乳液在超重力反响器中经过高速旋转的填料床时,获得较重力加快度大2~3个数量级的离心速度,在这种情况下,乳液被填料破碎成极小的液滴、液丝和极薄的液膜,极大地增加了气液触摸面,强化了碳化速度;一同,因为乳液在旋转床中得到高度涣散,约束了晶粒的长大,即便不增加晶形操控剂,也可制备出粒径为15~30nm的纳米级碳酸钙。超重力法组成纳米碳酸钙技能与超重力反响设备具有如下特色:①超重力反响法根据分子混合与反响结晶理论,组成纳米碳酸钙的办法和设备,属世界创始;②以氢氧化钙乳液和二氧化碳为质料,使用气-液-固超重力反响法,成功的组成出均匀粒径15~30nm、比表面积在62~77m2/g范围内粒度可调、粒度散布均匀、质量高的纳米碳酸钙产品,其质量目标处于世界抢先水平;③粒子功能(描摹、粒度、晶型)可控,构成了不同形状的纳米碳酸钙系列产品,毋需增加晶体出产抑制剂,即可生成各种不同用处对粒子描摹的要求,且产品纯度高;④适用范围广,超重力法制备技能和配备不光适用于气-液-固三相反响,并且还适用于气-液和液-液反响体系制备纳米材料,已成功地制备出碳酸钙、氢氧化铝、碳酸、碳酸、白碳黑等纳米粉体材料,开发了相应的气-液-固超重力反响法、气-液超重力反响法和液-液超重力反响法制备技能,标明超重力法技能和配备具有很强的通用性,是一项渠道性的高新技能;⑤工业化试验标明,超重力法技能和设备与传统的间歇鼓泡式、间歇拌和式碳化法制备技能比较,具有设备体积小、出产效率高,产质量量安稳等特色,但设备出资高、单台设备出产才能小、二氧化碳使用率低是影响和约束其工业化出产的首要妨碍。现在,蒙西高新材料股份公司、山西芮城华新纳米材料有限公司、巢东纳米材料科技股份有限公司、山东隆重科技股份有限公司等单位使用该技能建造的工业化出产设备也已建成投产。 3多级喷雾碳化法河北科技大学胡庆福等研讨的多级喷雾碳化技能,选用三段喷雾碳化塔,氢氧化钙乳液经过压力喷嘴喷成雾状与二氧化碳混合气体逆流触摸,使氢氧化钙乳液为涣散相,窑气为接连相,大大增加了气液触摸表面,经过操控氢氧化钙乳液浓度、流量、液滴径、气液比等工艺条件,在常温下可制得粒径在40~80nm的碳酸钙。其制备技能具有下列特色:①接连出产效率高,出产才能大,操作安稳;②气液触摸面积大,反响均匀,晶核生成和生长可分隔操控,易于完结在不同碳化率下增加操控剂、表面处理剂等;③可制作立方形、链锁形等各种单一型产品,可制作超细(<100nm)和超微细(<20nm)产品,粒度均匀;④能够用少数活性物质制作出均匀的高活性产品。选用此法出产的有湖南大乘氮有限公司。 4非冷冻法间歇式碳化法、超重力法和多级喷雾碳化法三种出产技能,因受温度改动的影响,粒径改动频率较大,且碳酸钙出产进程中的碳化进程是一种放热反响,要确保产品细度,就要严格要求操控温度,经过在碳化进程中的冷冻将浆液温度操控在25℃以下,方可使碳酸钙结晶粒子的构成在100nm以下。因为制冷设备的投入、维护费用和电能耗费,产品出产成本高,对厂商的经济效益有较大的影响。非冷冻法制备纳米碳酸钙技能与其它制备技能差异在于:选用间歇鼓泡式碳化法,在不改动设备设备的情况下,经过接连参加配备的多种涣散剂的办法,在碳化塔内与浆液一同反响,取消了冷冻体系,减少了能耗,降低了出产成本。非冷冻法制备纳米碳酸钙技能具有以下特色:①碳化是在常温常压下进行,能耗低、出资小、出产成本低。与超重力法、间歇式碳化法制备技能比较,对10kt/a的纳米碳酸钙项目,项目总出资分别为4000万元、2000万元和1800万元,吨产品成本分别为2000元、1250元和1000元;②产品粒径经过调整涣散剂配方和使用量调控,操作简略。产品粒径可根据需要在10~100nm范围内调整,且粒度散布窄;③枯燥前的表面处理,既能够避免纳米粒子在枯燥阶段的吸附聚会,也进步了纳米碳酸钙的涣散功能,经过增加不同的改性剂,适用于不同产品对纳米碳酸钙的需求,为产品使用发明了有利条件。现在,广东省龙门县精密碳酸钙厂选用该技能在已有的5kt/a纳米碳酸钙设备中进行了出产,产品经意大利EVC公司及国内几家公司试用,产品功能优秀。河北科技大学化学与制药工程学院胡庆福等经过开发复合型结晶导向剂,在试验室试验和中试的基础上,完结了在非冷冻(高温35~75℃)、氢氧化钙高浓度(质量分数7%~12%)条件下碳化出产针状(晶须)纳米碳酸钙。将该办法使用在石家庄博达钙业有限公司2.5万t/a的轻质碳酸钙工业设备上,经扫描电镜、透射电镜、X射线衍射和比表面积测定分析标明,产品纳米碳酸钙的晶形为针状,粒度均匀、散布窄,粒径10~20nm,长径比15~20,比表面积≥90m2/g,总孔容≥0.26mL/g。非冷冻法制备纳米碳酸钙技能是一种较为抱负的低成本的纳米碳酸钙出产办法,但要大规划的使用,还需处理一系列工业化出产中的问题。 5膜涣散微结构反响器制备纳米碳酸钙技能清华大学化学工程联合国家重点试验室与山东隆重科技股份有限公司联合,用微孔膜涣散法强化多相传递进程的新技能,研发了膜涣散微结构反响器用于纳米碳酸钙的制备。在膜涣散微结构反响器中,用孔径为几个微米或几十微米的膜材料作为涣散介质,将待涣散相经过压力压入到接连相中,待涣散相经过细小膜孔道被活动的接连相剪切成细小粒径的气泡或液滴,进入接连相,完结微米标准的相间混合,大大增强了传质表面积,使得传质通量得到很大程度的进步,促进反响的进行。关于纳米碳酸钙制备中的碳化进程,相间传质是决议速步,膜涣散微结构反响器经过强化微观混合可促进传质和反响的快速进行,使得制备的碳酸钙颗粒粒径小且散布均匀。经过调控反响物浓度、两相的流量、压力等参数可较好地操控生成碳酸钙的粒径和晶型。一同,在膜涣散微结构反响器中,只需将能量输入到涣散相上,降低了能量的耗费。膜涣散微结构反响器法制备纳米碳酸钙技能具有以下特色:①具有设备体积小,单台设备的尺度在1200x500X200mm,最多时能够6台设备层层并联,单台反响器产值达400t/a;②无传动设备、效率高、能耗低、气体使用率高,单台设备的造价仅万元左右,二氧化碳气体使用率在60%左右;③能够大规划制备粒径在30~60nm、粒径散布均匀且巨细可控的碳酸钙颗粒,并已完结工业试验;④工艺与出产进程简略,不需晶型操控剂、碳化进程无需冷冻。在由中科院院士汪家鼎、费维扬、袁权等参加的技能判定会上(作者为判定专家组成员之一),专家组成员共同以为,膜涣散微结构反响器制备纳米碳酸钙技能已到达世界先进水平。但要大规划的工业化出产使用,同非冷冻法制备纳米碳酸钙技能相同还需处理一系列工业化出产中的问题。 6纳米碳酸钙的出产现状现在世界上能出产100nm以下的碳酸钙首要供应商有:英国的ICI公司、法国的Solvay公司、美国的矿藏技能公司(MTI)、Pfizer公司、王子造纸公司、Resso Wces Casbec公司、日本的白石公司、日本丸尾钙公司等,产品首要用于橡胶、塑料、胶粘剂(含密封胶)、涂料油漆、涂布纸张、油墨、虫剂、蜡制品、搪瓷制品及化妆品等。日本是世界上开发和出产纳米碳酸钙最好和较早的国家,早在四、五十年代就出产出了微米级、纳米级碳酸钙,现已有纺锤形、立方形、链锁形等纳米级碳酸钙产品及改性产品50余种;美国着重于纳米碳酸钙在造纸和涂料上的使用;英国则首要从事填料专用纳米碳酸钙的研发,近20年来英国在轿车专用塑料用碳酸钙中占独占位置。我国于20世纪80年代末完结工业化出产,2004年我国的纳米碳酸钙实践出产才能仅150kt左右,其间纳米级活性碳酸钙的出产才能缺少100kt,远远不能满意商场需求,每年仍需从日本、英国等国家进口100kt以上。据有关专家猜测,未来几年间,纳米碳酸钙在发达国家的需求量将以年均10%的速度增加,在我国将以年均20%的速度增加,因而纳米碳酸钙商场前景宽广。7纳米碳酸钙工业出产存在的问题我国纳米碳酸钙的开展具有以下特色:①开展速度在世界各国名列首位;②产质量量和种类有较大的进步;③国内科研院所对纳米碳酸钙制备技能的研讨,效果明显,间歇拌和式碳化法和超重力法制备纳米碳酸钙技能处于世界先进水平;④关键设备国内均能自主出产,无需进口;⑤国外一些公司看准我国纳米碳酸钙商场,纷繁来我国搞合资或独资出产产品,或推销其设备或技能,加快了我国碳酸钙工业的开展。综观我国碳酸钙工业现状,存在着出产规划小、出产工艺及自动操控水平、产品表面处理技能、枯燥技能以及产品检测水平与国外比较有较大的距离,产品规格种类少,层次较底,使用开发相对滞后,造成了等级低碳酸钙产品供过于求,很多出产厂商亏损,与此一同高级碳酸钙求过于供,严峻依赖于进口的局势,其落后状况也严峻影响了相关工业的开展。距离详细表现在:(1)我国的科学工作者对纳米碳酸钙的制备技能进行了许多的研讨工作,获得了明显的效果,对纳米碳酸钙的研讨多、面广,力气涣散,低水平的重复性研讨开发现象严峻,我国纳米碳酸钙制备技能不少,有的开发时刻也不晚、但制备技能不成熟,对制备技能中详细工艺条件的研讨还很不行,已获得的效果仅停留在试验室和小规划出产阶段,对规划扩展时和出产中存在的问题,还研讨的很少。(2)种类规格少,不能系列化:纳米碳酸钙技能与出产的重点是碳化和表面改性,表面改性技能是厂商出产的中心。表面改性技能意味着产品在功能上、专用化、精密化和商场占有率的抢先,因为碳酸钙表面处理的成果决议产品的层次和用处,很多的专用碳酸钙的首要差异在于表面改性的不同,其产品用处和报价就可能相差较远,表面改性技能的差异是约束我国纳米碳酸钙出产和使用的最首要的要素。(3)产质量量差:对组成纳米颗粒的进程机理缺少深化的研讨,对操控微粒的形状、散布、粒度、功能等技能的研讨还很不行。因为国内科研开发资金投入缺少,新产品无力开发,老产品问题也得不到改善,所以,技能水平一向处于落后状况,产质量量必定就与国外有较大距离,因而,许多高级产品仍需进口。(4)出产技能配备落后:纳米碳酸钙项目一般出资较小,一些大型的工程公司(规划院)对工程化的兴趣不大,不肯投入很多的人力物力进行工程开发,因而工程开发才能单薄。许多出产供应商因为建造资金的约束,土法上马,致使配备规划小、自动化水平低,产质量量差,尤其是对影响产品终究质量和出产成本的枯燥技能及其工业出产中的经济性研讨较少,致使产品的聚会现象严峻,出产成本过高,厂商效益欠安。 8结语跟着工业的迅速开展,各个职业对碳酸钙的粒度、表面改性和产品的使用提出了越来越高的要求,有必要很多出产各种规格的产品以满意商场,超细化、表面改性和产品使用成为碳酸钙工业的开展方向,给碳酸钙更为广泛地使用带来了新的生命力,并极大地进步了它的使用价值。因而,开发及出产高级纳米级碳酸钙产品不只具有十分宽广的商场,一同能够代替国外同类进口产品,节省很多外汇,降低成本,并可完结国内等级低碳酸钙产品更新换代,促进我国碳酸钙工业以及涂料、橡塑、造纸等相关职业的开展,在我国构成一个世界化规划的纳米级碳酸钙出产基地,充分使用国内资源、技能、产品成本与功能的优势,参加世界竞争,出口创汇,具有巨大的社会效益和经济效益。综上所述,尽管我国纳米碳酸钙工业的开展与世界先进水平比较,依然存在着必定的距离,但经过业内人士的共同努力,信任在不远的将来,我国纳米碳酸钙职业将会获得更大的开展。

球形碳酸钙制备方法及研究进展!

2019-03-06 10:10:51

碳酸钙按形状分为无规矩体、纺锤形、针形、球形、链锁形、片形、偏三角形和菱形六面体形、无定形等,不同形状的碳酸钙,其应用范畴和功用也各不相同。图1 不同晶型碳酸钙晶SEM相片 因为球形碳酸钙有杰出的滑润性、流动性、涣散性和耐磨性等特性,故而被广泛应用在橡胶、涂料油漆、油墨、医药、牙膏和化妆品等范畴。 01 球形碳酸钙制备办法及研讨进展 球形碳酸钙的组成办法多以液相法为主,依据反响机理的不同又可将其划分为三种反响体系:Ca(OH)2-H2O-CO2反响体系、Ca2+-H2O-CO32-反响体系和Ca2+-R-CO32-反响体系(R为有机质)。 (1)Ca(OH)2-H2O-CO2反响体系——碳化法 该反响体系是以Ca(OH)2水乳液作为钙源,用CO2碳化制得碳酸钙。Ca(OH)2一般由天然碳酸钙锻烧成生石灰,然后经消化得到,碳酸钙锻烧的烟道气经净化作为碳化反响的CO2来历。 碳酸钙晶体的成长与描摹的构成首要发生在碳化阶段,可经过反响温度、Ca(OH)2浓度、CO2流量、晶体成长抑制剂等要素加以操控,制得球形碳酸钙产品。 研讨进展: ①向兰等选用间歇碳化法(管式气体散布器)组成了均匀粒径0.1μm左右的超细球形碳酸钙;选用小气泡及CO2含量较高的混合气体有利于构成超细碳酸钙,参加少数添加剂如ZnCl2、MgCl2或EDTA(乙二胺四乙酸)可显着改动碳酸钙粒子的描摹和巨细。 ②陈先勇等选用间歇鼓泡碳化法,在碳化温度为20℃左右、灰乳密度为1.07(d)的条件下,参加少数复合添加剂PBTCA(2-磷酸基-1,2,4-三羧酸)和CTAB(十六烷基三甲基化铵),可制得粒度散布均匀、涣散性好、均匀粒径为40nm左右的球形碳酸钙。 ③赵风云等以一种出产球形纳米碳酸钙的喷发-乳化新式组合式碳化反响器,在小型试验设备上,选用正交试验的办法,断定出粒度散布窄的球形纳米碳酸钙的最佳反响条件为:温度15℃,氢氧化钙浆液质量浓度65g/L,气液体积比5:1,在完结小试的基础上,建成了年产60吨纳米碳酸钙的中试试验设备,并成功制备出均匀粒径80nm球形纳米碳酸钙。图2 球形纳米碳酸钙中试出产线 ④谷丽等以石灰石为质料,选用间歇鼓泡碳化法制备纳米球形碳酸钙,在反响温度为20-40℃,石灰乳浓度为86g/L,空塔气速为0.114m/s时,晶形操控剂参加量为1%时,可得到涣散性较好、粒度散布较均匀纳米球形碳酸钙。 碳化反响开端后,在不同时刻参加同一剂量的同一种晶形操控剂,制得碳酸钙的晶形和粒径不尽相同,晶形操控剂参加的时刻越早,所得到的球形碳酸钙晶体的描摹越好、粒径越小。 图3 纳米球形碳酸钙工艺流程 ⑤申小清等用硅酸钠为晶形操控添加剂,经过石灰乳碳化工艺制备了颗粒尺度为40-50nm的球形超细碳酸体,添加剂最佳用量为0.7-1.5%。 (2)Ca2+-H2O-CO32-反响体系——复分化法 该体系是将含Ca2+的溶液与含CO32-的溶液在必定条件下混合反响来制备碳酸钙。依据质料的不同又分为氯化钙钙-碳酸钙法、氯化钙-苏打法(苏尔维法)、石灰-苏打法等。 一般经过添加剂来操控产品的粒径和晶体结构。用Ca2+-H2O-CO32-反响体系反响体系能够得到20-100nm的碳酸钙。 研讨进展: ①方卫民等选用复分化法将必定量的无水Na2CO3和CaCl2别离溶解于适量水中,经过参加少数添加剂乙二胺四乙酸二钠和磷酸氢二钠,制备出了均匀粒径为50-70nm的球形碳酸钙。 ②雷鸣等经过有机聚合物聚磺酸钠PSSS对碳酸钙粒子的调制效果,成功制备出了均匀粒径为5μm的球形碳酸钙。 ③谢英惠等运用缓冲剂氯化钠和结晶成长中止剂调理碳酸钙的描摹,选用复分化法制备出了球形碳酸钙。 (3)Ca2+-R-CO32-反响体系——微乳液法和凝胶法 该反响体系是经过有机介质R来调理Ca2+和CO32-的传质,然后到达操控晶体成核成长的意图。依据有机介质R品种的不同可分为微乳液法和凝胶法两类。 微乳液法选用的有机介质一般为液体油,而凝胶法选用的是有机凝胶。这类共聚物具有2个亲水链段(耦合链段与促溶链段),能够定向吸附于无机-水界面。 带有特定功用团的共聚物可能与金属离子及表面活性剂相互效果而在溶剂中构成较为杂乱的有序集合结构。这些特性使得双亲水嵌段共聚物在调控无机粒子描摹方面显示出共同的长处。 (4)其他 ①袁可等将基酸-甘酸和废渣经过简略的酸碱中和反响,制备出了超微细球形碳酸钙,其纯度和白度均达96%以上,成团微粒为纳米级,二次团粒结构的粒径散布在1-3μm之间,经过pH或物理和化学的涣散,可便利的调控其微观尺度。 ②赖永华等运用甘酸与渣的首要成分Ca(OH)2反响生成可溶性的甘酸钙,过滤除掉不溶杂质。在气升式高效反响器中,向甘酸钙溶液通入CO2进行碳化反响,洗刷后制得超微细球形碳酸钙膏体。选用该超微细球形碳酸钙膏体替代配方中的悉数粉体制备水性涂料,不光能够下降涂料的质料本钱和出产本钱,还能够简化涂料的出产操作、削减粉尘污染。 表1 超微细球形碳酸钙性能目标02 国外球形碳酸钙出产及研讨现状 国外开发的低光泽纸专用球形碳酸钙具有白度高、易涣散、油墨吸收性杰出、粒径散布窄等优秀特性,其2-5μm的粒子占比约为67%,晶体形状为较规矩球形。 研讨标明:3.5μm低光泽纸专用球形碳酸钙在涂猜中的最佳用量在40-50%之间,此刻能够获得较低的纸页光泽度,较高的印刷光泽度和高的光泽度差。与其他无光纸用颜料比较,运用球形碳酸钙可获得光学目标、物理性能及印刷适性之间的平衡,而且不会发生印刷斑驳。 因而,球形碳酸钙是一种出产低光泽涂布纸的优秀颜料,能够替代现行涂料配方中的几种颜料,提凹凸光泽涂布纸质量,下降出产的杂乱性,将会有宽广的市场前景。 现在,碳化法制备球形碳酸钙是出产厂商和科研院所重视和研讨的要点,别的也有一些厂商经过湿法超细研磨制备出了椭圆形碳酸体材料。未来,对粒子巨细和描摹的有用调控将成为碳酸钙被广泛应用的关键技术。

碳化法制备纳米碳酸钙的工业合成方法

2019-01-04 15:16:46

纳米碳酸钙的制备方法按制备过程中是否发生化学反应分为化学方法和物理方法,其中化学方法包括碳化法、乳液法、夹套反应釜法、复分解法。碳化法是生产纳米级轻质碳酸钙的主要方法。首先,将精选的石灰石煅烧,得到氧化钙和窖气。然后,使氧化钙消化,并将生成的氢氧化钙悬浊液在高剪切力作用下粉碎、多级悬液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浊液。然后通入二氧化碳气体,加入适当的晶形控制剂,碳化至终点,得到要求晶形的碳酸钙浆液。再进行脱水、干燥、表面处理,得到纳米碳酸钙产品。碳化是整个生产工艺的核心,根据碳化反应过程二氧化碳气体与氢氧化钙悬浮液接触方式的不同,纳米碳酸钙的工业合成方法可分为间歇鼓泡法、喷雾碳化法、喷射吸收法和超重力碳化法。 间歇鼓泡法 间歇鼓泡碳化法是目前国内外大多采用的方法。间歇鼓泡碳化法,也称釜式碳化法,是将石灰乳通过冷冻机降温到25℃以下,泵入碳化塔,通入CO2混合气,在搅拌下进行碳化反应。通过控制反应温度、浓度、搅拌速度、添加剂等工艺条件间歇制备纳米碳酸钙。该法可以生产普通微细碳酸钙,但对于生产纳米级碳酸钙就需要严格控制一些工艺条件,如碳化反应温度、石灰乳浓度等,而且也相应地需对鼓泡塔做一些改进,比如加搅拌器、挡板或通过气体分布器控制等,但也存在着粒度分布不均匀,而且不易控制、粒度不够细化、批次间产品质量重现差、工业放大困难等缺点。陈先勇等人采用间歇鼓泡碳化法,通过对碳化反应温度、灰乳密度、添加剂等因素的严格控制,成功制得粒度分布均匀、平均粒径为40nm左右的单分散球形纳米碳酸钙产品。 多级喷雾碳化法 制备纳米碳酸钙的基本步骤为:按工艺要求的浓度配制精制的石灰乳悬浮液,然后加入适量的添加剂,充分混匀后泵入喷雾碳化塔顶部的雾化器中,在高速旋转产生的巨大离心力作用下,乳液被雾化成微细粒径的雾滴;把干燥的含有适量CO2的混合气体从塔底部通入,经气体分布器均匀分散在塔中,雾滴在塔内和气体进行瞬时逆向接触发生化学反应产生 CaCO3。经过多级喷雾碳化法制备的CaCO3产品的粒度细小且均匀,平均粒径在30~40nm 范围内,微粒晶型可以调节控制。此法生产能力大,产品质量稳定,能耗低,投资较小。 喷射吸收法 喷射吸收法是由中南工业大学满瑞林等研究的一种工艺,这工艺是将窖气通过降温降尘后,经风机送入喷射碳化器中,再用浆液泵把石灰乳送入喷射碳化器中,在碳化器狭窄的喉管处,窖气与石灰乳高度分散,相互剪切混合,因此具有很大的气液接触面积。该工艺具有投资少、设备简单、碳化效率高、维修方便、能耗低等优点。 超重力法 超重力法是利用离心力使气-液、液-液、液-固两相,在比地球重力场大数百倍甚至上千倍的超重力场条件下的多孔介质中产生流动接触,巨大的剪切力把液体撕裂成极薄的膜和极细小的丝和滴,产生了巨大的和快速的相界面,使相间传质的体积传质速率比塔器中的大1~3个数量级,使微观混合速率得到了极大的强化。超重力结晶法从根本上强化反应器内的传递过程和微观混合过程,而且CaCO3成核过程和生长过程分别在两个反应器中进行,即将反应成核区置于高度强化的微观混合区,宏观流动型式为平推流,无返混(超重力反应器);晶体反应器置于宏观全混流区(带搅拌的釜式反应器)。与传统的碳化法所采用的工艺相比较,这种组合工艺确保结晶过程满足较高的产物过饱和度、产物浓度空间分布均匀、所有晶核具有相同的生长时间等要求。在超重力反应结晶法制备立方形纳米CaCO3过程中,因为CO2吸收传质过程为整个碳化过程的关键步骤,所以强化CO2在液相中的传质速率是提高整个过程速率的有效途径。同时,由于溶液中CO32-的浓度是由化学吸收而生成的,因此控制CO2的吸收速率也是控制体系中过饱和度高低的有效手段之一。超重力加速度g、液体循环量、气体流量、Ca(OH)2初始浓度等操作条件对碳化反应过程均有影响。运用超重力反应结晶法可以制备出平均粒度为15-40nm、分布较窄的CaCO3,碳化反应时间比传统方法大大缩短。立方形纳米CaCO3的晶体结构为方解石晶型,属六方晶系。该晶体结构和普通碳化法合成的产物相同,立方形纳米CaCO3颗粒因表面效应显著,其热分解温度下降了195℃。