您所在的位置: 上海有色 > 有色金属产品库 > 废钒渣

废钒渣

抱歉!您想要的信息未找到。

废钒渣专区

更多
抱歉!您想要的信息未找到。

废钒渣百科

更多

钠化钒渣提钒工艺

2019-02-19 12:00:26

直接往含钒铁水中增加6%的纯碱、8%的铁皮,处理后得钠化钒渣。含钒铁水的脱钒率可达60%~80%。钠化钒渣含V2O5达6%以上。主要成分为NaVO3、Na4V2O7、Na3VO4的复合物。硫构成Na2S进入渣相,脱硫率大于80%;磷构成Na3PO4进入渣相,脱磷率60%~80%。所得半钢的硫、磷含量均低于制品钢的规格,因而可在转炉内完成无渣或少渣炼钢。 选用天然碱处理含钒铁水得到的钠化钒渣,曾在四川西昌410厂进行过湿法提钒及收回钠盐的扩展试验。天然碱取自河南吴城及内蒙古西林郭勒盟及鄂尔多斯湖等地。天然碱是Na2CO3及少数NaHCO3、Na2SO4、NaCl的混合物。所得钠化钒渣的成分如下:成分V2O5Na2OPSiO2S%12.8840.861.289.42.09 工艺流程共分6步:1)碳酸化浸取;2)浸取液的氧化及净化;3)深度碳酸化、浓缩结晶分出NaHCO3;4)碱性铵盐沉钒、制取;5)沉钒后液蒸、回来沉钒、后液回来浸取;6)NaHCO3煅烧得纯碱、煅烧得产品V2O5。 此流程在技术上有诱人的远景,扩展试验已成功,产品合格。但纯碱直销严重,故未能施行。

钒渣的浸取及浸取设备

2019-02-21 15:27:24

一、浸取 依据钒渣来历及性质的不同,浸取的溶剂可所以中性、酸性或碱性。 (一)焙烧熟料的中性浸取 通过高温下化焙烧的熟料,钒现已转化为五价钒的钠盐,易溶于水。因而,大部分的钒均可溶解。因为熟猜中残留少数的碱,故溶液呈碱性,pH值约为7.5~9。一些可溶性离子如Fe2+、Fe3+、Cr3+、Mn2+、Al3+等均将水解而构成沉积。上述各离子的水解pH值如下:离子Fe2+Fe3+Mn2+Cr3+水解pH值6.5~7.51.5~2.37.8~8.83.3~44~4.9 (二)焙烧熟料的酸性浸取 当酸度增加时,将使贱价钒酸盐如Ca(VO3)2、Mn(VO3)2、Fe(VO3)2、Fe(VO3)3部分溶解。为此残渣在第2段浸取时将选用酸性浸取,以进步钒的浸取率。 四价钒用硫酸浸取时,可生成安稳的VOSO4: VO2+H2SO4=VOSO4+H2O 进步酸度虽使钒浸取率进步,但浸取液中的杂质也相应增加,给净化工序增加了困难。 (三)焙烧熟料的碱浸及碳酸化浸取 含钙高的质料及增加氧化钙焙烧的熟料可选用碱性溶液浸取钒。例如:因为CaCO3的溶度积小于Ca(VO3)2,故在上述复分化反应中,使Ca(VO3)2分化构成CaCO3沉积,而 被浸取。通过CO2则可使溶液pH值下降,更有利于Ca(VO3)2的分化与浸取。 (四)直接酸浸 含钒质料的直接酸浸,首要用于处理含钒铀矿,一起收回铀和钒。浸取时一起增加氧化剂如二氧化锰或。运用浓硫酸在挨近沸点下浸取。铀、钒的浸取率可别离到达98%、85%。 (五)加压碱浸 含钒质料的直接碱浸,可在高压下200℃左右,通入压缩空气,使贱价钒氧化为五价钒而溶解。最终以Na3VO4·(5~12)H2O的结晶收回。 含钒原猜中的钒若以五价钒的状况存在,则亦可用浸取法提取。可选用50~300℃,0.1~20MPa,NH32~8mol/L的条件进行浸取。 二、浸取设备 在焙烧进程中会发生烧结及结团现象,为此浸取时仍需细磨以进步浸取率。一般是将熟料先水淬,再进湿球磨,细磨至-100目以下,然后可明显进步钒的浸取率,缩短钒的浸取时刻。一般通过湿球磨后,浆料即已完结浸取,进而送至稠密机进行固液别离。 焙烧熟料的碱浸,湿球磨后需要碳酸化浸取,一般是在机械拌和槽内进行,在槽底鼓入CO2气体(焙烧熟料的尾气或石灰窑气)。也能够运用气体拌和槽,俗称巴秋卡槽。假如质料是疏松多孔的块矿或焙烧球团,则可用渗滤浸取器。以上均参见图1。图1  浸取槽 a-气体拌和槽(巴秋卡槽);b-浸滤浸取槽

从钒渣提取V2O5的工艺实例

2019-02-19 12:00:26

在炼钢前或炼钢过程中吹炼含钒生铁,可得到钒渣。炼钢前先经雾化吹钒发生的钒渣称为雾化钒渣。其特点是钒含量高,但铁含量也高,而钙等杂质则含量较低。在含钒生铁炼钢过程中发生的炉渣,钙、磷、硅等杂质含量都比较高。现在南非、俄罗斯和我国出产的钒渣基本上都是雾化钒渣。     一、前苏联丘索夫厂     其流程如图1所示。图1  前苏联丘索夫厂湿法流程     (一)除铁:先选用手选除掉大块铁,然后磨细至1.0mm,磁选别离铁粒;     (二)化焙烧:配加钠化剂Na2CO3、NaCl、Na2SO4,在850~950℃之间焙烧,所用回转窑直径2.5m,长42m,处理量2500~3200kg/h。焙烧后钒的水溶转浸率为85%~92%。     (三)浸取:先加水中性浸取,液固比3.5/1,40~50℃,过滤后残渣含0.6%的V2O5,送到第二步加酸浸取。     (四)沉钒:选用酸性水解沉钒,得红饼。最终得熔片含89%~90%的V2O5。     二、峨嵋铁合金厂     针对攀枝花钢厂雾化钒渣所选用的流程如图2所示。图2  峨嵋铁合金厂提钒流程钒渣的粒度20目60目80目100目筛余/%2331.247.955.8钒渣成分:V2O5FeSiO2Al2O3含量/%15.0844.0311.863.52        (一)试剂:纯碱,Na2CO3 98%;硫酸铵,工业品;芒硝,Na2SO4 98%;硫酸,工业品;氯化钙,工业品。     (二)浸取、净化:在湿球磨浸取并加CaCl2除磷,加亮为0.5~1.5kg/m³溶液,净化后的溶液成分见表1。 表1  攀钢雾化钒渣净化后液成分        (g/L)样  号VPSiFeK2ONa2OpH值注17.70.00770.270.001360.0197.39.5二次渣液315.70.00760.270.00320.004831.99.5二次渣液        (三)沉钒:所用设备为机械搅拌罐,转速16r/min,直接蒸汽加热,先打入定量的净化后液,然后缓慢参加硫酸,调理pH值至2~3再参加硫酸铵,通蒸汽加热至85℃,60min,硫酸加量系数为1~1.3。沉钒结尾控制在上清液含钒0.1g/L以下。沉钒率为99%,钒酸铵熔片含V2O5 98%以上。     因为沉积夹藏约50%的游离水,故应运用1%~2%的硫酸铵溶液洗刷,以脱除游离水中的Na2O。     (四)的脱熔化:熔化在12m³的水冷熔化炉中进行。燃料用煤气,热分化第一阶段为600℃,第二阶段为800~900℃。V2O5熔片的成分如表2所示。 表2  V2O5熔片的成分    (%)炉号V2O5SiO2FePSAsK2ONa2O398.870.2750.2690.02740.01630.001850.120.967299.50.150.1970.01810.00590.0550.389

中华人民共和国国家标准-钒渣

2018-12-10 09:51:30

中华人民共和国国家标准 钒渣 GB5062-85 本标准运用于含钒生铁提炼的钒渣。 1技术要求 1.1牌号和化学成分 1.1.1钒渣按五氧化二钒品位分为六个牌号,其化学成分应符合下表规定:牌号钒渣11钒渣13钒渣15钒渣17钒渣19钒渣21代号FZ11FZ13FZ15FZ17FZ19FZ21化学成分V2O510.0-12.0>12.0-14.0>14.0-16.0>16.0-18.0>18.0-20.0>20.0P一组不大于0.08二组0.35三组0.70CaO一组1.0二组1.5三组2.5SiO2一组22.0二组24.0三组34.0四组40.01.1.2块状钒渣的金属铁含量不得大于22%。 1.2物理状态 钒渣以块状或粉状交货,块状钒渣的粒度不得大于200mm×200mm,粉状钒渣的粒度及金属铁含量由供需双方议定。 1.3交货要求 交货钒渣不得混入明显杂质。 2试验方法 2.1取样 块状钒渣试样的采取按附录A(补充件)所规定的方法进行。 2.2制样 块状钒渣试样的制备按附录3(补充件)所规定的方法进行。 2.3铁含量测定 块状钒渣金属铁含量的测定暂按各厂现行的试验方法进行。 2.4化学分析 化学分析方法按YB547-67《钒渣化学分析方法》进行。 2.5其他 粉状钒渣的试验方法除化学分析外均由供需双方协议。 3检验规则 3.1交货钒渣按车验收,每一车厢钒渣为一交货批。 3.2钒渣质量的检查和验收,由供方技术监督部门负责进行。需方有权进行复验,如有异议,应从到货之日起一个月内向供方提出。 4包装、运输和质量证明书 4.1块状钒渣为散装、敞车运输,如需方要求,可用棚车或简易棚车装运。 4.2粉状钒渣的包装和运输由供需双方协商确定。 4.3交货钒渣按批附复验试样和质量证明书。 质量证明书中应注明: a.钒渣牌号,组、级、类、化学成分和金属铁含量; b.重量及基准量. c.车号及交货日期; d.供方名称及检查员代号。 附录A 块状钒渣的取样方法 (补充件) A.1试样应在发货车厢内用铁锹采取。 A.2试样分两层采取,上、下样层的高度应分别位于钒渣实装高度的3/4和1/4处。各取样点位置应符合下图要求: “○”、“×”分别表示上、下层取样点位置 A.3各取样点取样量应均衡,并不小于10kg,每批钒渣取样总量应不小于该批钒渣实际重量的1%。 A.4钒渣试样的粒度分布应能代表本批钒渣的实际粒度分布。 A.5经供需双方协议,允许定量贮存钒渣,并在装车前预先取样,装车后将组成该批钒渣的份样合并为该批试样。 附录B 块状钒渣试样的制备方法 (补充件) B.1试验用钒渣样品,由同一交货批的全部试样进行多段破碎、缩分后制取。 B.2试样用破碎机或手工在专用高锰钢板上进行破碎。 B.3将试样平铺在钢板上,用四分法(取对角)按下表规定缩分:破碎前最大粒度,mm破碎后最大粒度,mm铺层厚度,mm缩分次数200100150150100220503100501001205021020450205011020352042010202502033 缩分至2.5kg1052013 缩分至2.5kg53 缩分至2.5kg B.4用四分法将3mm以下的试样分为四等份,一份作试验用样,一份作副样,保留三个月,交需方,另一份废弃。 B.5化学分析用试样取于经磁选吸除金属铁Ⅰ和金属铁Ⅱ并通过120目的筛下物。 附加说明: 本标准由中华人民共和国冶金工业部提出。 本标准由承德钢铁厂负责起草。 本标准主要起草人周荫军、晋心翠。 本标准委托冶金工业部情报标准研究总所负责解释。 自本标准实施之日起,原冶金工业部部标准YB320—75《钒渣》作废。

峨嵋铁合金厂从钒渣提取V2O5的工艺实例

2019-02-21 13:56:29

峨嵋铁合金厂    针对攀枝花钢厂雾化钒渣所选用的流程如图1所示。图1  峨嵋铁合金厂提钒流程钒渣的粒度20目60目80目100目筛余/%2331.247.955.8钒渣成分:V2O5FeSiO2Al2O3含量/%15.0844.0311.863.52        一、试剂:纯碱,Na2CO3 98%;硫酸铵,工业品;芒硝,Na2SO4 98%;硫酸,工业品;氯化钙,工业品。     二、浸取、净化:在湿球磨浸取并加CaCl2除磷,加亮为0.5~1.5kg/m³溶液,净化后的溶液成分见表1。 表1  攀钢雾化钒渣净化后液成分        (g/L)样  号VPSiFeK2ONa2OpH值注17.70.00770.270.001360.0197.39.5二次渣液315.70.00760.270.00320.004831.99.5二次渣液        三、沉钒:所用设备为机械搅拌罐,转速16r/min,直接蒸汽加热,先打入定量的净化后液,然后缓慢参加硫酸,调理pH值至2~3再参加硫酸铵,通蒸汽加热至85℃,60min,硫酸加量系数为1~1.3。沉钒结尾控制在上清液含钒0.1g/L以下。沉钒率为99%,钒酸铵熔片含V2O5 98%以上。     因为沉积夹藏约50%的游离水,故应运用1%~2%的硫酸铵溶液洗刷,以脱除游离水中的Na2O。     四、的脱熔化:熔化在12m³的水冷熔化炉中进行。燃料用煤气,热分化第一阶段为600℃,第二阶段为800~900℃。V2O5熔片的成分如表2所示。 表2  V2O5熔片的成分    (%)炉号V2O5SiO2FePSAsK2ONa2O398.870.2750.2690.02740.01630.001850.120.967299.50.150.1970.01810.00590.0550.389

前苏联丘索夫厂从钒渣提取V2O5的工艺实例

2019-02-20 11:59:20

前苏联丘索夫厂    其流程如图1所示。图1  前苏联丘索夫厂湿法流程     一、除铁:先选用手选除掉大块铁,然后磨细至1.0mm,磁选别离铁粒;     二、化焙烧:配加钠化剂Na2CO3、NaCl、Na2SO4,在850~950℃之间焙烧,所用回转窑直径2.5m,长42m,处理量2500~3200kg/h。焙烧后钒的水溶转浸率为85%~92%。     三、浸取:先加水中性浸取,液固比3.5/1,40~50℃,过滤后残渣含0.6%的V2O5,送到第二步加酸浸取。     四、沉钒:选用酸性水解沉钒,得红饼。最终得熔片含89%~90%的V2O5。

石煤提钒水浸渣酸浸液的除杂试验研究

2019-02-11 14:05:44

本实验是在前人提出的石煤焙烧—水浸—树脂交流—解吸—铵盐沉钒—煅烧制五氧化二钒工艺[1]基础上开展工作的。原工艺进程中,水浸能将焙烧样中70%的钒浸出。本文作者经过进一步的研讨发现,将水浸后的渣再用稀酸浸出,可使钒总浸出率进步10个百分点以上。但用稀酸浸出水浸渣中钒的一起,杂质硅、铝、铁、磷等也进入酸浸液。有材料标明,杂质的存在影响后续沉钒,故酸浸液沉钒前有必要进行除杂净化处理。本实验依据酸浸液含钒浓度低、杂质含量高级特色,用掩蔽溶液中的钒,再用铜铁试剂络合杂质离子,然后经过调理溶液pH值使杂质络合物发作沉积而被除掉,到达钒与杂质的有用别离,以便后续作业能顺畅收回钒。       一、酸浸液       对江西某石煤矿样(V2O5档次为0.87%)进行钠化焙烧,焙烧样经过两次水浸后,水浸渣再用稀酸处理,得到实验用酸浸液。酸浸液的钒浓度为0.1~0.3g/L,pH值在1.5~2之间,其首要离子成分分析成果见表1。   表1  酸浸液首要离子成分分析成果        mg/L离子VSiAlCa浓度281.33512.33406.332090.00离子CuFeZnP浓度35.5027.50365.331020.00       二、首要试剂和仪器       首要试剂:,,铜铁试剂。别离将铜铁试剂配成浓度为1g/L的溶液,的配成质量分数为33%的溶液备用。       首要实验仪器:79-1磁力加热拌和器,SHB-Ⅲ循环水真空泵,Model pHs-3C型pH计,全谱直读等离子体发射光谱仪。       三、实验办法       由表1能够看出,酸浸液中除含有低浓度的钒(281.33mg/L)外,还存在很多Zn2+、Al3+、Fe3+、Cu2+等杂质。因为很多杂质的存在,该酸浸液不能直接进入后续处理作业,否则将构成后续沉钒功率大大下降,乃至使沉钒作业不能进行。尽管直接调理酸浸液的pH值能使杂质离子在不同的pH值下别离沉积而除掉,但生成的Al(OH)3、Fe(OH)3、Zn(OH)2等胶体沉积会很多吸附溶液中的钒酸根离子,构成钒很多丢失,有时丢失率达50%以上。依据材料,酸浸液中钒首要以VO43-的方式存在,VO43-中的O2-离子可被过氧化氢(H2O2)中的过氧离子O22-替代,生成黄色的二过氧钒酸根阴离子络合物[VO2(O2)2]3-,然后掩蔽溶液中的钒酸根离子,阻挠钒酸根离子与溶液中的水合金属离子经过氢氧键的“架桥”效果而络合;而铜铁试剂分子羟上的氧和亚硝基特殊结构使其能吸附酸浸液中的杂质金属离子,按捺pH值调整进程中杂质离子生成的胶体颗粒在溶液中的运动,促进它们沉积而除掉,然后到达酸浸液的净化和削减钒丢失率的意图。       实验时,每次取400ml酸浸液,边拌和边参加适量,反响10min后,再参加必定体积的铜铁试剂溶液,持续反响10min后,用溶液酸处理液的pH值,生成杂质沉积,沉积充沛后固液别离,滤液即为酸浸液的净化液。实验流程如图1所示。图1  酸浸液净化除杂实验流程       四、实验成果与评论       (一)pH值对钒丢失率的影响       为断定Zn2+、Al3+、Fe3+、Cu2+等离子适合的pH沉积点,先直接对酸浸液进行了pH值调整实验。用调理酸浸液pH值别离为4、5、6、7和9,酸浸液中钒丢失率的改动如图2所示。图2  pH值对钒丢失率的影响       由图2能够看出,钒丢失率随pH值的改动曲线在pH值为5时呈现一个波峰,在pH值为6~7之间呈现波谷。当pH值小于5时,酸浸液中首要是Fe3+生成氢氧化铁沉积,因为氢氧化亚铁胶体的吸附效果,会使钒有必定丢失;跟着pH值增大,酸浸液中的Al3+开端生成沉积,当pH值为5时,Al3+完全生成Al(OH)3沉积,因为Al(OH)3胶体的吸附效果激烈,使酸浸液中钒的丢失率到达57.90%,构成前述波峰;pH值持续升高到6~7之间进,溶液中钒的丢失率有所下降,呈现波谷,可能是生成的Al(OH)3胶体再溶解,使胶体吸附效果下降;当pH值超越7后,酸浸液中的钒丢失率再次急剧添加,可能是因为锌离子和铜离子生成沉积构成钒丢失,而跟着pH值持续上升,钙离子也开端沉积,且溶液中钙离子浓度较高,使得酸浸液中的钒丢失率也不断增大。因为后续作业要求净化液的pH值为6~8,归纳考虑,挑选沉积杂质时的pH值为6.5。       (二)用量对钒丢失率的影响       是常用的强氧化剂,将其参加含钒酸浸液中,可使酸浸液中的V(Ⅳ)氧化成V(Ⅴ),有利于后续沉钒作业;一起的O22-离子也可与酸浸液中的VO3-离子络合,阻挠VO3-离子在pH值改动时生成沉积。       在酸浸液与铜铁试剂的体积比为8∶1、酸浸液终究pH值调至6.5的条件下,按图1流程进行用量实验,使与酸浸液中钒的物质的量之比别离为5、10、15和20,酸浸液中钒丢失率的改动如图3所示。图3  用量对钒丢失率的影响       由图3能够看出:用量对酸浸液中钒的丢失率影响显着。跟着用量的添加,酸浸液的钒丢失率呈下降趋势,当与酸浸液中钒的物质的量之比为15时,钒丢失率降到最小值,为15.42%;持续添加用量,钒丢失率改动不大,简直呈与横轴平行的直线。与酸浸液中钒的物质的量之比小于15时钒的丢失率较大,可能是没有满足的氧根离子与VO3-离子络合,无法起到络合掩蔽效果。依据实验成果,与酸浸液中钒的物质的量之比取15较适合。       (三)铜铁试剂用量对钒丢失率的影响       铜铁试剂在不同pH值下可与多种金属离子构成络合物和沉积物,广泛用于贵金属的湿法冶金。实验发现,参加铜铁试剂后,可使酸浸液中发作的沉积方式发作改动,由胶体沉积转变为粒度更大的粒状沉积,不光使固液别离进程晚简单进行,还可大幅度下降因为胶体吸附效果构成的酸浸液净化进程中钒的丢失。       在与酸浸液中钒的物质的量之比为15、酸浸液终究pH值调至6.5的条件下,按图1流程进行铜铁试剂用量实验,当铜铁试剂溶液(1g/L)的用量别离为20mL、30mL、40mL、50mL、60mL和80mL时,酸浸液中钒的丢失率改动如图4所示。图4  铜铁试剂对酸浸液钒丢失率的影响       由图4看出:跟着铜铁试剂用量添加,酸浸液的钒丢失率明显下降,当铜铁试剂用量为50mL时,钒的丢失率到达最小值,为15.42%;再添加铜铁试剂参加量,钒的丢失率改动不大。因而,断定铜铁试剂用量为50mL,此刻酸浸液与铜铁试剂的体积比为8。       铜铁试剂在促进杂质离子发作沉降的一起,还可有用削减钒的丢失,可能是因为铜铁试剂破坏了Zn2+、Al3+、Fe3+、Cu2+等离子所构成的胶体颗粒的带电性,然后削弱了它们对VO43+的吸附效果。       (四)归纳实验       依据上述实验成果,在与酸浸液中钒的物质的量之比为15、酸浸液与铜铁试剂的体积比为8、杂质沉降pH值为6.5的条件下,按图1流程对400mL酸浸液进行净化处理,用全谱直读等离子体发射光谱仪检处理前后果酸浸液中首要离子浓度的改动,成果见表2。   表2  净化处理前后酸浸液中首要离子的浓度  mg/L酸浸液VSiAlCa处理前281.33512.33406.332090.00处理后237.67330.1732.501211.67酸浸液CuFeZnP处理前35.5027.50365.331020.00处理后0.000.003.0075.98       由表2能够看出,净化处理后,酸浸液中Zn2+、Al3+、Fe3+、Cu2+等离子均大幅度去除,而酸浸液中残留的P、Si、Ca2+等不会对后续提钒发作晦气影响,此刻酸浸液中的钒也大部分保存,钒丢失率仅15.52%。       五、定论       使用和铜铁试剂的掩蔽、除杂效果,对杂质含量高、钒浓度低的石煤提钒水浸渣酸浸液进行除杂净化处理,在与酸浸液中钒的物质的量之比为15、酸浸液与铜铁试剂(1g/L)的体积比为8、杂质沉降pH值为6.5的条件下,有害杂质去除比较完全,钒丢失率仅为15.52%,为后续提钒发明了良好条件。

废贵金属

2017-06-06 17:50:13

废贵 金属 ,指的是废旧贵 金属 ,而我们要了解是的废旧贵 金属 回收的技术问题。银的回收技术  [1]电解退银新工艺 物资再生利用研究所自行设计电解退银设备,以石墨板为阴极,不锈钢滚筒为阳极,滚筒上有许多细孔。柠檬酸钠和亚硫酸钠为电解液,镀银件从滚筒首端进入,从滚筒尾端送出。镀件表层上的银进入电解液,镀件基体完好无损可返回重新电镀使用。银回收率97—98%,银粉纯度99.9%。  [2]废银—锌电池的回收利用 废银锌电池含银52.55%、含锌42.7%。锌为负极,氧化银为正极涂在铜网骨架上。物资再生利用研究所采用稀硫酸分别浸锌和铜,银粉直接熔锭。稀硫酸浸铜时加入氧化剂,含锌液经浓缩结晶生产硫酸锌,含铜液浓缩结晶生产硫酸铜。锌回收率>98%,银回收率98%,银锭纯度>99%。  [3] 从废胶片中回收银 昆明贵 金属 研究所使用稀硫酸液洗脱彩片上含银乳剂层,氯盐加热沉淀卤化银,氯化培烧或有机溶剂洗涤除有机物,碱性介质用糖类固体悬浮还原得纯银。银纯度99.9%,直收率98%。此法已申请专利。 物资再生利用研究所(原内贸部物资再生利用研究所)采用硫代硫酸钠溶液溶解废胶片上的卤化银,溶解过程中加入抑制剂阻止胶片上明胶的溶解,溶解液经电解回收银,片基回收利用。银浸出率>99%,回收率98%,银纯度99.9%。此法已应用于工业生产。 [4] 从废定影液中回收银 感光材料经过曝光、显影、定影之后,黑白片上约有70-80%的银进入定影液中,彩色片的银几乎全部进入定影液。从废定影液中回收银、在国内外均得到高度重视,进行了大量的研究工作,采用的回收方法为离子沉淀法、电解法、 金属 置换法、药物还原法、离子交换法等。电解法的优点是提银后的定影液可返回作定影使用。大陆较大的电影制片厂均使用此法的回收银。金的回收技术  [1]从贴金文物铜回收金 物资再生利用研究所采用氧化焙烧法从废贴金文物铜回收金。废贴金文物铜放入特制焙烧炉内,于8000C恒温氧化焙烧30分钟,取出放入水中,贴金层附在氧化铜鳞片上与铜基体脱离。然后用稀硫酸溶解,溶解渣分离提纯黄金。此法特点焙烧时无污染废气。用此法处理废文物铜300公斤,回收黄金1.5公斤。金回收率>98%,基体铜回收率>95%,副产品硫酸铜可作杀虫剂。  [2] 从废电子元件中回收金 北京稀贵 金属 化冶厂使用I2-Nal-H2O体系。对废元器件上的金镀层溶蚀,用铁置换或亚硫酸钠还原回收金。用硫酸酸化,氯酸钾氧化再生碘。 物资再生利用研究所研究出电解退金的新工艺。采用硫脲和亚硫酸钠作电解液,石墨作阴极板,镀金废料作为阳极进行电解退金。通过电解,镀层上的金被阳极氧化为Au+后即与硫脲形成络阳离子Au[cs(NH2)]2+,随即被亚硫酸钠还原为金,沉于槽底,将含金沉淀物分离提纯获得纯金粉。基体材料可回收镍钴。此工艺金的回收率为97~98%。产品金纯度>99.95%。  [3] 从废催化剂中回收金和钯 昆明贵 金属 研究所采用盐酸加氧化剂多次浸出,使金和钯进入溶液,锌粉置换,盐酸加氧化剂溶解,草酸还原得纯金粉;还原母液用常规法提纯钯。金、钯纯度均可达99.9%。回收率分别为97%和96%。已申请中国专利。想要了解更多关于废贵 金属 的资讯,请继续浏览上海 有色 网( www.smm.cn ) 有色金属 频道。

铝化学蚀刻废液“以废治废”技术

2019-03-01 10:04:59

跟着信息社会的到来,电子智能标签在产品防伪、防盗及证卡的使用和办理方面现已逐步构成潮流。跟着使用数量的剧增,电子智能标签产品的出产厂、线如漫山遍野般喷涌而出。据开端预算,目前国内电子智能标签产品出产进程中年排放的化学蚀刻废液达几十万吨,与环境、资源的对立也已日益暴露。   在电子智能标签出产进程中,选用铝加工职业中电化学工艺发作的废渣——白泥,对覆膜铝基的化学蚀刻工艺发作的废液进行处理,并在处理进程中提取金属及相应化工产品的工艺技能,是“以废治废”工程技能使用上的又一模范。   在该项技能诞生之前,职业界对电子智能标签出产中产排的化学蚀刻工艺废液,只能进简略地酸、碱中和后进行排放或简略地提取,造成了对天然环境的污染和资源的糟蹋。   白泥是铝职业电化学处理时发作的工业废渣,主体成分是Al、Si、Ca、Mg和絮凝剂组成的多种化合物之混成。化学蚀刻废液开发使用新技能,分为“简明开发”工艺和“精密开发”工艺两大区块。使用简明处理工艺能够从化学蚀刻废液中提取氧化铜CuO,再把投入的废渣白泥和含有AlCl3的溶液,转化成为产量相对高的氢氧化铝凝胶Al(OH)3.nH2O,较后从处理尾液中收回工业食盐氯化钠NaCl;选用精密开发工艺,仍以对铝工业废渣白泥的使用为关键,从化学蚀刻废液中提取金属铜Cu、氧化亚铜Cu2O、氧化铜CuO、六水AlCl3?6 H2O、氢氧化铝凝胶Al(OH)3.nH2O和工艺尾液收回工业食盐氯化钠NaCl。   一、化学蚀刻废液“以废治废”简明处理工艺   1. 提取氧化铜   使用废渣“白泥”分化废液中的:将废液导入有加热和拌和功用的耐酸反响釜中,过量增加铝业电化学处理废渣白泥,搅匀而且加热到80~90℃,再在恒温中适度搅动反响40~60min。液相中的CuCl2与白泥中占比为80%~84%的氢氧化铝Al(OH)3发作复分化反响,生成孔雀蓝色絮状的氢氧化铜Cu(OH)2。   3CuCl2+2Al(OH)3=3Cu(OH)2+2AlCl3   反响完成后操控液相的pH≤3,只要在这个前提下,反响生成的氢氧化铜Cu (OH)2才干彻底地溶解于液相之中。   固液别离:把反响完成后的物料进行固液别离,除掉反响后剩下的白泥和其他未能反响或不能溶于液相的固体剩下物质。   暂提氢氧化铜和氢氧化铝混成物:把经固液别离得到的淋清液,于常温条件下,适度地搅动中,慢慢地参加预配浓度为10%~15%的NaOH溶液至全体溶液的pH为5.5~6时止,溶液中的AlCl3当即复分化为氢氧化铝Al(OH)3白色絮状物。   AlCl3+3NaOH=Al(OH)3+3NaCl   在pH为5.5~6的溶液中,本来现已溶解于液相中的氢氧化铜Cu(OH)2,也以天蓝色的絮状物分出。   转化氧化铜和氧化铝混合物:经固液别离提取氢氧化铝和氢氧化铜相混合的固相后,再于300~400℃的温度中煅烧45~60 min, 氢氧化铜Cu(OH)2转化为氧化铜CuO;氢氧化铝Al(OH)3也一起转化为克西晶型的氧化铝Al2O3。   Cu(OH)2 = CuO+H2O   2 Al(OH)3=x-Al2O3+3 H2O   提取氧化铜:把现已转化为氧化铜和氧化铝的混合物料,置入有加热功用的反响釜中,再过量地参加预配浓度为22%~26%的溶液。在适度地搅动中将物料加热到80~105℃后,再恒温反响45~60min,氧化铝Al2O3现已转化为铝酸钠NaAlO2而进入液相中;氧化铜CuO仍以本来面貌存在于混合物猜中。   Al2O3+2NaOH=2 NaAlO2+ H2O   上面的反响完成后,再经固液别离出固相物氧化铜,将固相物通过2~3道次水洗后,在200~300℃的温度中烘干,得产品氧化铜CuO。   2. 提取氢氧化铝凝胶   将固液别离出的溶液在常温文搅动中,慢慢地参加浓度为8%~15%的HCl,至溶液pH为4.5~5时止。在这样的条件中,液相内的铝酸钠NaAlO2当即水解成皎白的氢氧化铝凝胶Al(OH)3.nH2O并以絮状物分出。   NaAlO2+HCl+ (n+1)H2O= Al(OH)3.nH2O+ NaCl   水解反响完成后进行固液别离,并彻底水洗别离后获得固相物质。再于100~200℃温度中烘干固相物质表面吸附的水分后,终得氢氧化铝凝胶Al(OH)3.nH2O。   3. 收回氯化钠   将提取氧化铜和提取氢氧化铝凝胶后剩下的溶液兼并,以加热或天然蒸腾方法浓缩至液内的溶质过饱和状况时,再冷凝提取氯化钠NaCl结晶体。   二、化学蚀刻废液“以废治废”精密开发工艺   1. 提取金属铜   预调蚀刻废液的电化学功能   电子智能标签化学蚀刻工艺中,产排的废液的电导和电化学处理时溶液的涣散才能均不如专门湿法冶金提铜的电解液那样。所以在电解提铜前,必须向废液中增加2%~3%的工业硫酸H2SO4,以改进待处理废液的电化学功能。   从废液中电解提铜   A工艺参数   阳极材料:石墨   阴极材料:0.15~0.2mm厚的紫铜板   对偶电极间隔:80~100mm   电源设备:半波整流脉动直流电源(设备的功率按负荷巨细决议)   槽电压:4~6V   阳极电流密度:3~6A/dm2   槽液工艺温度:≤50℃   B. 操作方法   把待处理的化学蚀刻废液注入电解池内至80%的池容量后,按工艺参数的要求放入阴极和阳极,接通电解电源并当即调整工艺电流契合参数要求。跟着工艺历时的叠加,在电流的热效应中电解池内液温逐渐升高,溶液的电导也会随液温的升高而增大,所以在平等槽电压中,工艺电流跟着液温的增高而增高。操作人员应该依据电解池内溶液温度升高而导致工艺电流增高的状况,及时调整槽电压,使阴极电流密度操控在工艺参数要求的范围内。   当电解提取金属铜的工艺发展到必定程度时,跟着电解池溶液中的二价铜离子Cu2+因不断地在阴极界面上复原成金属铜,而削减到必定程度时,溶液也从开端处理时的深绿或墨绿色变为浅绿色,这时能够酌情终断电解提铜的工艺操作。取出阴极并及时洗刷和烘干后,再通过≥1 100℃的熔化铸锭工艺,得到产品电解铜锭。   2. 收回氧化亚铜   电解提铜的进程中,现已在阴极复原生成的金属铜表面部位,又被紧邻阴极界面的水分子在阴极电场力撕离崩溃的电极界面的反响中 (水分子电极界面电离理论),而生成的氢离子H+效果下氧化而成一价铜离子Cu+。   2Cu+ 2H+=2Cu ++H2   重生的一价铜离子Cu+又当即与水分子被阴极界面电场力电离时一起生成的氢氧根离子结合,生成了氧化亚铜Cu2O沉附于阴极表面,跟着慢慢地沉附堆集构成了树枝状的相似铜粉色彩的氧化亚铜Cu2O。   2Cu ++2OH-=Cu2O+H2O   当阴极界面上的氧化亚铜生成并积累到必定数量时,这些铜粉色彩的物质从阴极界面脱落后沉入电解池底,可由事前现已设置在池底的耐酸化纤丝网接取,得产品氧化亚铜Cu2O。   在废液电解处理进程中,假如不想收回氧化亚铜时,只要在电解进程中适时地增加足量的于池液中,现已生成的氧化亚铜在有足量存在的溶液中从头又被彻底氧化,成为CuCl2溶入池液中又成为新的电解提铜的质料物质。   Cu2O+ H2O2+4HCl =2CuCl2+ 3H2O   3. 收回六水   通过了电解提取工艺处理后的剩下溶液中含有很多的,将这些剩液弄清过滤后,导入浓缩池进行加热或天然蒸腾的浓缩至过饱和状况时,在缓慢冷凝进程中分出六水结晶AlCl3?6 H2O。将分出物捞出而且天然枯燥,待表面浮水蒸腾后,得产品六水。   经国内工艺3后,提取氧化铜、提取氢氧化铝凝胶、收回氯化钠等工艺进程同简明处理工艺根本相同。   对铝的化学蚀刻废液进行“以废治废”的精密提取进程,是三废管理的较高阶段。这是一种工艺逻辑性比较强的“变废为宝”新理念。连续这种三废管理新思想,会对职业界的相关从业者建立新的三废处理思想有所启迪,进步三废处理和综合使用的科学合理性,防止在三废管理中发作资源使用方面的再次糟蹋,构成环境、资源和经济上的更大效益。

从含钒钢渣中提钒

2019-01-03 15:20:48

含钒钢渣是含钒铁水直接在转炉里按一般碱性单渣法炼钢而得到的钢渣。该种渣成分复杂,又经常波动。含钒钢渣的特点是氧化钙含量高,钒含量较低。研究结果表明,硅酸三钙(Ca3SiO5),其形状受空间限制,自行性差,一般呈不规则粒状填充于其他矿物格架之间,并包裹其他矿物。硅酸三钙相中V2O5的含量较低,约1.47%,但由于该相在渣中占得比例大,仍有17.88%的V2O5夹杂其中。镁--方铁石系方镁石、方锰石构成的固溶体系列,其分子为(Mg0.58,Fe0.36,Mn0.06)1.00O,该矿物中含钒很少。 钙钛氧化物是一种新矿物,分子式为(Ca3.02,Mn0.013.03(Ti1.36,V0.37,Fe0.23,Mg0.01,Si0.09)2.12O7,可简写成Ca3(Ti,V)2O7。该矿物是一种黑色厚薄不等的长板状矿物,并与其他矿物连生,钒置换钛进入晶格中。该矿物中V2O5含量为9.78%,其钒量占渣中总钒量的78%,是提钒的主要对象。含钒钢渣返回高炉处理是我国首创的一种提钒工艺。它是把含钒钢渣再烧结后返回小高炉,练出含钒2~3%的铁水,再兑入氧气底吹转炉内吹炼,得到V2O5含量高于35~40%的高钒渣。此渣在电炉内直接还原,制取含钒大于35%的钒铁合金。含钒钢渣的特点是氧化钙含量高。用传统的钠盐焙烧--水浸提钒工艺,钒浸出率很低。目前研究出的钠盐焙烧--碳酸化浸出工艺较好的解决了氧化钙的危害。 在含钒钢渣中,钒主要赋存在钒钙钛氧化物中,焙烧时钒钙钛氧化物与碳酸钠反应:2Ca3V2O7+Na2CO3+O2=3CaO+2NaVO3+Ca3(VO4)2+CO2硅钒酸钙与碳酸钠也发生类似反应:2[Ca2SiO4·Ca(VO4)2]+Na2CO3+O2 =2Ca2SiO4+2NaVO3+Ca3(VO4)2+5CaO+CO3烧结后水溶性钒约20%,碳酸化浸出的钒约60%。  焙烧主要技术条件:渣碱比100:18,钢渣的磨细度-200目大于60%,制粒后的粒度直径5~10mm,焙烧温度1100℃,物料停留时间3.7小时。技术指标是:生产能力1.58T·m-2·d-1,烟尘率0.5%,熟料转浸率85%。