您所在的位置: 上海有色 > 有色金属产品库 > 钒酸铋简介

钒酸铋简介

抱歉!您想要的信息未找到。

钒酸铋简介专区

更多
抱歉!您想要的信息未找到。

钒酸铋简介百科

更多

含钒溶液的钒酸钙、钒酸铁盐沉淀法

2019-01-24 14:01:24

钒酸钙、钒酸铁盐沉淀法主要用于从低浓度含钒溶液中回收钒。 一、钒酸钙法 加入CaCl2、Ca(OH)2、CaO,随溶液pH值的变化而生成不同的沉淀。pH值10.8~117.8~9.35.1~6.1沉淀物正钒酸钙焦钒酸钙偏钒酸该Ca3(VO4)2CaV2O7Ca(VO3)2溶解度小小稍大 通常在强烈搅拌下逐渐加入沉钒剂,加Ca2+后 等杂质也会进入沉淀,硅胶也混入沉淀。最经济有效地沉淀物位焦钒酸钙,沉钒率一般可达97%~99.5%。 二、钒酸铁沉淀法 用铁盐或亚铁盐作沉淀剂,在弱酸性条件下,将含钒溶液倒入硫酸亚铁溶液中,并不断搅拌、加热,便会析出绿色沉淀物。由于二价铁会部分氧化成三价铁,V2O5会部分还原成V2O4,所以沉淀物的组成多变,其中包括Fe(VO3)2、Fe(VO3)3、VO2·xH2O、Fe(OH)3等。若沉淀剂采用FeCl3或Fe2(SO4)3,则析出黄色xFe2O3·yV2O5·zH2O沉淀。本法钒的沉淀率可达99%~100%。 钒酸铁及钒酸钙均可作冶炼钒铁的原料,或作为进一步提纯制取V2O5的原料。

钒云母简介

2019-02-18 15:19:33

钒云母(产在砂岩中) Roscoelite in Sandstone     钒云母化学组成: K(V,Al,Mg)2AlSi3O10(OH)2,Y组离子以钒和铝为主,类质同象混入物有镁,Fe3+,Fe2+、铬等。化学分析材料;  SiO2 48.05%,  Al2O3 15.00%,  V2O3 14.62%,  P2O5 0.13%,  MgO 4.32%,CaO 0.34%,Fe2O3 0.56%,TiO2 0.38%,K2O 6.19%,BaO 1.28%,Na2O 0.13%,Cr2O3 1.56%,F 0.05%,H2O+ 5.44%,H2O- 0.28%,总计98.33(我国湖北产)。    钒云母其色彩、形状和透射光下为绿色,有多色性为判定特征。钒云母赋存于含有机炭质较高的炭质板岩中,与铬钒水云母、铬钒白云母、钒水云母等共生。钒云母大部分晶体呈亮绿色细纤维状,少量成片状。

石煤提钒简介

2019-01-16 17:41:57

石煤提钒简介 石煤是一种存在于震旦系、寒武系、志留系等古老地层中的劣质腐泥无烟煤,系菌藻类低等生物死亡后,在浅海还原条件下形成。我国湘、鄂、豫、渝、陕、赣、黔等地富产含钒石煤,全国探明含钒石煤储量6l8.8x108t,其V2O5品位多在0.1%―0.5%之间,总钒量达1.18×108t,占我国V2O5总储量的87%,超过世界其他国家和地区钒的总储量,其中在现阶段有工业开采价值(V2O5含量0.8%以上)的达8×106t。 含钒石煤的物质组成复杂多变,钒的赋存状态和赋存价态变化多端,且分散细微,X―衍射一般很难清晰准确地辨明其赋存方式;而选矿的方法也不能予以富集。钒在石煤中的价态分析研究结果表明,石煤中的钒绝大部分以V3+形态存在于含钒云母、电气石、石榴石等硅酸盐矿物中,以类质同象形式部分取代硅氧四面体“复网层”和铝氧八面体“单网层”中的Al3+。石煤中的钒还可以形成钛钒石榴石、钙钒石榴石、变钒铀矿等矿物;亦可以金属有机络合物和钒叶啉的形态存在,有时也以络阴离子呈吸附形态作为混合物存在于氧化铁、粘土类矿物中。 湖南有色金属研究院冶金所是国内进行石煤提钒工艺研究最早的科研单位之一,上世纪七十年代末八十年代初即对岳阳新开、湖北通山等地的含钒石煤进行了详细的工艺研究、建厂生产。进入新世纪以来,特别是近两年,随着国际国内市场五氧化二钒价格的暴涨(含量98%的粉状V2O5国际市场价格从2003年初的3.3美元/kg涨至2005年4月最高的66美元/kg,国内市场价格也从3.5万元/t涨至最高33万元/t),各地又掀起了建厂提钒的热潮。由于国家环保要求日益严格,严禁外排对周边环境造成严重污染的HC1、C12、SO2等腐蚀性气体超标的废气,2005年以来国家环保总局加大了对小钒厂的整治力度,关闭、炸毁了采用NaC1为添加剂的小钒冶炼厂,如湖南古丈至2005年6月底已摧毁了五家非法钒厂,湘西自治州关闭了31家小钒厂,45家整治;岳阳在7月中旬集中取缔了十几家炼钒厂;湖北、河南、陕西等省也相继开展了类似整治行动。因此,寻求无污染或污染可控、可治理的提钒新技术、新工艺就成了众多投资者的当务之急。

铋的硅氟酸溶液电解

2019-03-04 11:11:26

铋的电解液由与铋组成,所用阳极是经开始火法精粹的粗铋。开始火法精粹首要包含两个工序:榜首工序是熔析除铜后加硫拌和除铜、铅,然后用洗刷脱硫;第二工序是用惯例的碱性精粹与氧化精粹除砷、锑。 阳极选用立模浇铸,阴极选用铜板,悬挂在电解槽中,在直流电效果下,发作下列反响:铋的溶液电解工艺流程图如图1所示。图1  铋的溶液电解工艺流程 各种杂质在电解中的行为与在氯化溶液中类似,不用造液。电解液含铋在80~100克/升,H2SiF8 330~350克/升,室温,当电流密度40~80安/米2时,槽压0.3伏,阴极分出纯度达99.9%。 日本住友公司国富冶炼厂曾选用电解精粹铋、阳极的典型分析为Bi 98.77%,Pb 0.12%、Ag 0.022%、Cu 0.032%、As 0.03%、Sb 0.026%。选用笔直型阳极浇铸机铸成挂耳型阳极,每块重约为70千克,阳极袋套用聚料。运用18个衬沥青的钢筋混凝土电解槽,尺度为:长×宽×深=3350×760×850毫米。28块阳极,24块阴极,板距离为130毫米。电解液含铋40克/升,游离330~350克/升,每出产一吨铋加胶一克,电解的总电流为850安,总电压4.5伏,选用硅整流器,槽电压0.2伏,电流密度60安∕米2,电流效率93%,残极率约40%,阳极泥率0.5%,分出铋洗刷后脱落熔化铸成5千克锭。电铋质量为:铋高于99.99%,铜与铅均为2ppm,铁与锌均为3ppm,微量银、砷、锑。

黑色金属钒简介及应用

2019-03-07 10:03:00

钒(V)元素简介 单质:钒 单质化学符号:色彩和状况:银白色。密度:5.96克/厘米3。熔点:1890±10℃沸点:3380℃,发现人:塞夫斯唐姆 发现时代:1830年元素描绘高熔点金属之一,呈浅灰色。密度5.96克/厘米3。熔点1890±10℃,沸点3380℃,化合价+2、+3、+4和+5。其间以5价态为最安稳,其次是4价态。电离能为6.74电子伏特。有延展性,质坚固,无磁性。具有耐和硫酸的身手,并且在耐气-盐-水腐蚀的功能要比大多数不锈钢好。于空气中不被氧化,可溶于、硝酸和。

五氧化二钒简介

2019-03-07 11:06:31

控制信息 五氧化二钒(剧毒)   本品依据《易制毒化学品管理条例》受公安部门控制。 称号 中文称号:五氧化二钒   中文别号:五氧化钒,无水钒酸,氧化钒(V)   英文别号:Vinylchloroformate,Vanadic acidanhydride,Vanadium pentoxide 化学式 V2O5 相对分子质量 181.880 性状 液体。对湿灵敏。相对密度(d?25)1.160。沸点67~69℃。折光率(n?20D)1.4100。闪点-4℃。易燃。有刺激性和催泪性。有毒。产品常加0.05%2,6-二叔丁基对或0.02%对二酚一甲酯作稳定剂。 五氧化二钒原矿石 贮存 充氩密封4℃枯燥保存。 用处 基和羟基的维护试剂。工业上硫氧化法制硫酸工艺中SO2转变为SO3过程地催化剂。

五氧化二钒技术现状简介

2019-01-18 09:30:34

五氧化二钒技术现状简介1、 加盐焙烧提钒技术 加盐焙烧提钒技术(工业盐添加量8-15%)属于在九十年代初期提出的取缔关停淘汰落后技术,存在的主要问题是空气污染严重和废水中无机盐含量高。在九十年代,一些企业采用了减少食盐添加量的低盐焙烧提钒技术(工业盐添加量5-6%),但并没有效解决加盐焙烧提钒技术的环境污染弊端,由于废水中无机盐含量高,废水循环利用率低,生产过程产生大量外排废水,在企业的周边区域造成严重的环境纠纷!目前我国存在石煤提钒行业的省份,对新建企业大多采取禁止采用加盐(含低盐)焙烧提钒技术的产业政策,比如河南、湖北、重庆、陕西、新疆、贵州等。 2、 无盐焙烧提钒技术(空白焙烧技术)九十年代初,湖南省煤炭研究所联合有关企业开发研究无盐焙烧提钒技术(不添加任何添加剂),目前该技术仅在湖南省怀化的个别企业采用,矿石中钒的总收率在38-45%之间,经过技术改进,收率有所提高。该技术对矿石有很强的选择性,而且收率低,不具备工业化推广价值。 3、 强酸浸出提钒技术(湿法提钒技术)强酸浸出技术包括矿石预焙烧后强酸浸出技术和无焙烧强酸浸出技术。该项技术主要由核工业总公司北京化工冶金研究院开发。无焙烧强酸浸出提钒技术(湿法提钒技术)虽有矿石不需焙烧过程的优点,但酸用量大、投资大(设备腐蚀严重)、生产成本高、废水、废渣难以处理(废水、废渣中无机盐含量高)、经济性差,而且对矿石也有一定的选择性,工业化推广有一定的局限性。 4、 其它技术改进包括用于焙烧过程的多元复合焙烧添加剂,用于浸出过程的多元复合浸取剂等,都只是对工艺过程的一种配方式改进,且均有一定的局限性,不属于新工艺新技术的范畴。

酸法提取五氧化二钒工艺

2019-02-11 14:05:44

一、工艺流程     矿石破碎→球磨→酸浸→固液别离→预处理→萃取反萃取沉钒→红钒热解→五氧化二钒。     石煤钒矿石破碎后湿式球磨至粒度-60目占80%以上,然后用占矿石质量15%的硫酸接连拌和,温度85℃,液固体积质量比(0.85~1):1,钒以四价方式转入溶液。固液别离后,矿渣堆积,溶液预处理后,以P 204+TBP +磺化火油为萃取剂,经7级箱式半逆流萃取,然后用1~1. 5mol/L的硫酸5级反萃取,得到质量浓度80~120 g/L的含钒溶液,加热氧化沉积得红钒(),红钒于550℃下加热分化得五氧化二钒。     二、工艺原理及运用     陕西山阳县境内的石煤钒矿石中的钒一部分在云母中以类质同象方式置换六次配位的三价铝而存在于云母晶格中{云母分子式为K (Al,V)2[AlSi3O10](OH)2},若从云母中浸出钒有必要损坏云母结构,故这部分钒难于浸出。直接用酸损坏云母结构,即在必定温度和酸度下,让氢离子进入云母晶格中置换A13+,使离子半径发生变化,将钒释放出来。钒被氧化成四价后用酸溶解,反应式为: (V2O3)·x+2H2SO4+1/2O2→ V2O2(SO4)2+4H2O+x, V2O2(OH)4+2H2SO4→ V2O2(SO4)2+4H2O,     得到的是蓝色的溶液,经过后续处理得五氧化二钒产品。     该工艺在陕西山阳县10余家钒加工厂得到广泛运用,总收率达65%~71%,出产成本控制在5.5~6.8万元/t。出产废水中的Fe2+,Fe3+、A13+等金属离子经过氧化、沉积、过滤、弄清去除,态氮经过调pH、加热、吹脱可除掉90%,废水可循环运用;出产过程中不发生有害气体,对大气无污染。

铋冶炼的综合回收-酸浸法回收锌

2019-01-31 11:06:04

此法用来出产硫酸锌。 一、工艺流程。 如图1。图1  七水硫酸锌出产工艺流程图 二、首要技能条件。 浸出温度:80℃,液固比:4∶1,酸耗为理论量的1.4~1.5倍,残酸为15~20克/升,粒度:-40目,浸出时刻,2小时,锰粉参加量为渣量的1∕10。 一次净化除重金属铅,铜,铋:参加锌粉,分两次加,每次参加量为渣量3~4%,净化温度高于70℃,拌和,pH3~5。 二次净化除铁:参加,第一次参加理论量的40%,第2次参加30%,第三次参加40%,除铁至微量,溶液煮沸,拌和,pH3~5。 蒸腾结晶:净化后溶液蒸腾至密度1.52克/厘米3,冷却结晶,结晶用离心机过滤甩干即可包装。 三、首要设备。 浸出槽一个,净化槽二个,蒸腾浓缩槽一个,皆选用φ1000×1500毫米之珐琅反应釜:球磨机一台;颚式破碎机一台:离心过滤机一台。 四、产品用处。 产品可作印染媒染剂,木材及皮革防腐剂,医药催吐剂,人造纤维辅助材料,避免果树和苗圃病虫害,农肥,还用于电缆和电镀职业,用于出产锌盐和立德粉,用作选矿药剂。 五、产品质量。 一级品含ZnSO4·7H2O≥99%,游离酸不高于0.05%,水不溶物不高于0.02%,氯化物(Cl)不高于0.05%,铁不高于0.005,铅不高于0.01%;二级品含ZnSO4·7H2O98%,游离酸不高于0.1,水不溶物不高于0.05%,氯化物(Cl)不高于0.2,铁不高于0.01,铅不高于0.05%。

石煤氧压直接酸浸提钒新技术

2019-01-21 18:04:33

稀有金属钒是一种重要的战略物资,主要应用于钢铁工业、国防尖端技术、化学工业以及轻纺工业等领域。世界上钒的资源丰富,分布广泛,但无单独可供开采的富矿,而是以低品位与其它矿物共生。目前,世界各国生产钒的原料主要是钒铁磁铁矿在冶炼过程中副产的钒渣,我国的钒资源主要是以钒铁磁铁矿和含钒石煤形式存在。含钒石煤是我国特有的一种钒矿资源,其储量丰富,对钒的提取冶炼具有很大优势,但传统平窑钠化焙烧-水浸工艺的钒回收率,生产成本高,食盐焙烧过程中所放出的Cl2、HCI等有害气体严重污染了环境。国家已经因此强制关闭了数百家采用NaCll为添加剂,且毫无污染治理措施的平窑生产钒产品的小企业。空气焙烧和钙化焙烧工艺虽然避免了Cl2、HCl等有害气体的污染问题,但要根据石煤的矿相结构和化学成分而定,工艺的适应性较差。近几年来,伴随我国钢产量的迅速增长,钒需求量的逐渐上升,从石煤中提钒的研究引起了人们的高度重视。石煤提钒既是石煤综合利用的一个重要发展方向,又是我国钒冶炼产业发展的新方向。因此,新型低耗环保高回收率提钒工艺的研发迫在眉睫。       一、矿石物相分析及化学组成       (一)矿石物相分析       样品来源于贵州某地,分为块状和粉状,分别进行了岩相鉴定和电镜分析,其结果如下。       1、主要物相。脉石为主,次要物相为金属铁、含钒硅铝铁酸钾、石墨。       2、镜下特征。脉石呈大小粒状,多数为石英,粒径为0.05mm左右,少数为含钒硅滋酸钾。金属铁呈大小粒状,一般粒径为0.015~0.02mm之间为主,少数大者可达1mm左右,金属铁里都能见到发白的含钒元素(碳化钒)。石墨呈条状,其含量在10%左右。含钒的硅铝铁酸钾呈细粒状,一般在0.015~0.025mm左右。       (二)矿石的X-衍射分析结果       矿石的X-衍射分析结果如图1所示。图1  石煤的X-衍射分析结果       (三)矿石的化学组成       石煤矿先破碎到2~3 cm直径的小块,然后经破碎机破碎至直径0.5mm的颗粒,最后用球磨机干磨至一200目占100%,进行化学分析,其分析结果见表1。   表1  原矿主要化学成分分析结果     %成分V2O5CSiO2Al2O3MgOCaONa2O含量3.267.6053.0316.621.220.490.59成分K2OFe2O3FeOTFeMnOCrCr6+含量3.362.702.383.840.00190.064痕量成分SP2O5AsTiO2ZnCuMo含量0.700.190.0430.980.0180.0190.087成分NiPbCd烧失量固定碳灰份挥发份含量0.0340.00040.001214.715.6285.299.09       二、石煤提钒理论研究       石煤提钒流程的选择应根据不同地区石煤物质组成、钒的赋存状态和价态等特征进行全面考察。石煤中钒的氧化是钒转化的基础和必要条件。因此在制定提钒方案之前,应对石煤中钒的价态、溶解性、氧化和转化作用作深人研究。       (一)石煤中钒的赋存状态       含钒石煤的物质组成比较复杂,钒的赋存状态变化多样。按钒的赋存状态分类,主要有含钒云母型(碳质岩型)、含钒粘土型(硅质岩型)和介于两种之间的中间类型。试验矿样的钒物相分析结果如表2所示。   表2  原矿样钒物相分析结果钒物相氧化铁及粘土云母类矿物难溶硅铝酸盐TVV2O5含量 占有率0.586 17.982.626 80.550.048 1.473.26 100.00       从表2可见,原矿中的钒主要以吸附状态赋存于云母类矿物中,少量以类质同相形式取代Fe3+进入氧化铁及粘土矿等氧化矿物,并有极少量以类质同相形式取代A3+进入难溶硅铝酸盐相。       (二)石煤中钒的价态       我国南方数省含钒石煤的物质组成比较复杂,钒的赋存状态和赋存价态变化多样,搞清这些间题,对制定石煤提钒的合理工艺流程具有重要的指导意义。钒在石煤中的价态分析的研究结果表明,各地石煤原矿中一般只有V3+和V4+存在,极少发现V2+和V3+。除了个别地方石煤中V4+高于V3+外,绝大部分地区石煤中钒都是以V3+为主。试验矿样的钒价态分析结果如表3所示。   表3  不同价态钒的分配率钒价态V3+V4+V5+TV钒含量 占有率0.627 34.340.527 28.860.672 36.801.826 100.00       从表3可见,3种价态的钒的含量相差不是很大,但以五价形式为主,且三价钒与五价钒的含量相当,与多数文献中所研究的石煤中钒的价态情况有较大差别。结合表2分析可知,V3+部分以类质同相形式取代Fe3+、A13+等进人氧化铁矿、粘土矿等氧化矿物及难溶硅铝酸盐相,部分以吸附状态赋存于云母类矿物中,而V4+和V5+则几乎全部以吸附状态赋存于云母类矿物中。       (三)石煤中不同价态钒的溶解性       1、V3+。石煤中V3+存在于粘土矿物二八面体夹心层中,部分取代A13+。这种硅铝酸盐结构较为稳定,通常石煤中V3+难以被水、酸或碱溶解,除非采用HF破坏粘土矿物晶体结构,因此可以认为V3+基本上不被浸出。只有V3+氧化至高价以后,石煤中的钒才有可能被浸出。       2、V4+。石煤中V4+可以氧化物(VO2)、氧钒离子(VO2+)或亚钒酸盐形式存在。VO2可在伊利石类粘土矿物二八面体晶格中取代部分Al3+,这部分V4+同样不能被水、酸或碱浸出。石煤中游离的VO2+不溶子水,但易溶于酸,生成钒氧基盐VO2+,稳定,呈蓝色。   VO2+H2SO4=VOSO4+H2O      (2)V5+。V5+离子半径太小,不能存在于粘土矿物二八面体之中。石煤中V5+主要以游离态V2O5或结晶态(xM2O·yV2O5)钒酸盐形式存在,易溶于酸。       三、氧压直接酸浸出提钒       石煤氧压直接酸浸出提取钒新技术是由昆明理工大学研发的一种全湿法工艺流程,如图2所示。该法主要针对石煤提钒技术中的不足和缺点,抓住石煤提钒技术中的核心技术和关键技术,研究和开发在压力场或加压条件下,对石煤中的钒进行提取,在强化冶金条件的基础上,大辐提高钒的回收率,同时做到无废气排放,保护环境。图2  石煤氧压直接酸浸出提钒工艺流程       (一)有氧和无氧的对比试验       1、试验条件。时间4h、温度150℃,H2SO4用量25%,液固比1.2∶1,粒度-200目,添加剂(硫酸亚铁)5%。       2、试验结果。在有氧与无氧条件下分别进行3次平行试验,其浸出率结果见表4。    表4  有氧和无氧对比试验的浸出率结果试验条件试验次数平均值123有氧试验 无氧试验77.30 34.0275.27 36.5174.23 35.6975.60 35.41       从表4可见,有氧条件下的浸出率远高于无氧条件下的浸出率,说明氧气在反应器里起了明显的作用。由于原矿中有难以被水、酸所溶的V3+形式存在的钒,在通人氧气后,溶解在水溶液中的O2把Fe2+氧化成Fe3+,然后Fe3+再将V3+氧化成易溶于酸的V4+。因此,与无氧条件相比,通氧条件下钒的浸出率能大幅度提高。       (二)浸出时间对钒浸出率的影响       1、试验基准条件。温度150℃,H2SO4用量25%,液固比1.2∶1,粒度-200目,添加剂用量5%。       2、试验结果。以时间为变量,取5个点(1h、2h、3h、4h、5h)进行试验,试验结果如图3所示。图3  时间对钒浸出率的影响       从图3可见,钒的浸出率随时间的延长而提高,但是达到一定时间后(3h),钒浸出率反而有所降低,但是降低很缓慢。钒浸出率的峰值在3h~4h之间。钒的浸出率有所下降的原因可能是随着时间的延长,在密闭容器中,原矿结团,钒被包裹,其浸出率下降。因此选定浸出时间在3h~4h之间比较符合实际。       (三)浸出温度对钒浸出率的影响      1、试验基准条件。时间4 h,H2SO4用量25%,液固比1.2∶1,粒度-200目,添加剂用里5%。      2、试验结果。以温度为变量,取5个点(120℃、135℃、150℃、165℃、180℃)进行试验,结果如图4所示。图4  温度对钒浸出率的影响       从图4可看出,温度越高,钒的浸出率就越高。主要由于温度越高反应速度越快,相同时间内(4h),浸出的钒量就越大,因此浸出率就高。但是温度不能无限制的升高,其对浸出率的影响必有一极值点,且要综合考虑能耗、生产成本以及工业生产中设备的承受能力。温度的选择,只从浸出率的高低来看,应尽可能地选择高温,但在多段浸出的情况下,浸出率相差不大,则应选择低温,以利于减低能耗,适应工业生产需要。       (四)硫酸用量对钒浸出率的影响       1、试验基准条件。时间4h,温度150℃,液固比1.2∶1,粒度一200目,添加剂用量5%.       2、试验结果。以硫酸用量为变量,取5个点(15%、20%、25%、30%、40%)进行试验,结果如图5所示。图5  硫酸用量对钒浸出率的影响       从图5可看出,硫酸的用量对钒浸出率的影响比较大,钒的浸出率,呈上升趋势,在25%~30%之间钒的浸出率基本上没有多大的提高。说明硫酸浓度越大,则H+浓度就越大,进人云母晶格中的几率就越大,有利于破坏云母的结构,从而钒的浸出率就越高。       (五)液固比对钒浸出率的影响       1、试验基准条件。时间4 h,温度150℃,H2SO4用量25%,粒度-200目,添加剂用量5%。       2、试验结果。以液固比为变量,取5个点(1.1∶1、1.2∶1、1.5∶1、2.0∶1、3.0∶1)进行试验,结果如图6所示。  图6  液固比对钒浸出率的影响       液固比对浸出率的影响和硫酸用量对浸出率的影响有些相似,液固比越低,硫酸的相对浓度就越大,钒的浸出率就越高。从图6可见,第1点1.1∶1的浸出率低于第2点1.2∶1,这可能是由于液固比太小时奋矿浆豁度过高,硫酸活度降低,导致钒的浸气出率降低。”       (六)矿物粒度对钒浸出率的影响       1、试验基准条件。时间4h,温度150℃,液固比1.2∶1,H2SO4用量25%,添加剂用量5%。      2、试验结果。以粒度为变量,取5个点(-150目、-200目、-250目、-300目、-350目)进行试验,结果如图7所示。图7  原料粒度对钒浸出率的影响       从图7可见,当原矿粒度为150目-250目时,钒的浸出率基本保持在77.3%左右;但当原矿粒度小于-250目时钒的浸出率开始有所降低;当原矿粒度小于-300目时钒的浸出率则表现为明显降低。说明粒度过细会使原料在浸出过程中发生结团现象,导致钒浸出率降低。故在本试脸中原矿粒度不宜过低,考虑实际中磨矿问题原矿粒度应控制在150目~250目为宜。       (七)硫酸亚铁用量对钒浸出率的影响       1、试验基准条件。时间4h,温度150℃,H2SO4用量25%,液固比1.2∶1,粒度-200目。        2、试验结果。以添加剂(硫酸亚铁)用量为变量,取5个点(15%、20%、25%、30%、40%)进行试验,结果如图8所示。                      图8  FeSO4用量对钒浸出率的影响       从图8可看出,硫酸亚铁的加入使同条件下钒的浸出率有较大提高,且钒浸出率随添加剂用量的增加而逐渐增大,但增大趋势较为缓慢,当其用量超过8%时,基本不再增加。同时由于硫酸亚铁的加入会使浸出液中含有更多的金属铁离子,不利于后序钒萃取工艺,因此,添加剂用量不宜过多。由图8可知,当投入的硫酸亚铁添加剂量为石煤矿量的5%时,钒浸出率与同条件下无添加剂加入时相比,可提高8.07个百分点。因此综合考虑,添加剂用量以5%左右为宜。       (八)两段浸出综合试验       综合以上试验结果,取最佳试验条件进行5组两段浸出试验,考察验证钒的浸出率,结果见表5。       浸出条件如下:       1、一段浸出条件。恒温时间3h,浸出温度150℃,硫酸用量25%,固液比1.2∶1,粒度-200目,添加剂用量3%。       2、二段浸出条件。恒温时间4h,浸出温度150℃,硫酸用量35%,固液比1.2∶1,粒度-200目,添加剂用量5%。   表5  两段浸出试验结果编号12345总浸出率90.8191.7190.9692.9690.99       从表5可看出,5组两段浸出试验钒的总浸出率都达到了90%以上,说明在上述条件下进行石煤氧压直接酸浸出提钒具有一定可行性。        四、结论       (一)通氧条件下钒的浸出率远高于不通氧试验条件下钒的浸出率,证明石煤氧压酸浸提钒是一条切实可行的工艺路线。       (二)氧压酸浸过程中硫酸亚铁添加剂的加入可进一步提高钒的浸出率,当其用量为石煤矿量的5%时,钒浸出率与同条件下无添加剂加入时相比,可提高8.07个百分点。       (三)研究表明,含钒石煤氧压酸浸提钒工艺的最佳工艺参数为浸出时间3~4h,浸出温度150℃,液固质量比1.2∶1,硫酸用量25%~35%,矿石粒度-200目,添加剂用量3%~5%。       (四)试验石煤矿样经两段通氧加压硫酸浸出,钒浸出率可达90%以上。       (五)石煤氧压直接酸浸提钒新技术具有工艺流程短、操作简单、钒浸出率高、环境污染小等优点,是一种具有良好发展前途的环境友好型提钒新技术。氧压酸浸无污染提钒工艺是我国石煤提钒工艺改革的应有趋势。