您所在的位置: 上海有色 > 有色金属产品库 > 磷酸锂钒电池

磷酸锂钒电池

抱歉!您想要的信息未找到。

磷酸锂钒电池专区

更多
抱歉!您想要的信息未找到。

磷酸锂钒电池百科

更多

为何纯电动客车独爱磷酸铁锂动力电池?

2019-01-03 09:36:39

近日,国家工信部发布2017年第8批《新能源汽车推广应用推荐车型目录》(以下简称“目录“)。其中纯电动动力新能源车型在国内发展势头依然强劲,推荐纯电动产品共249个车型,占总车型的91%。 数据显示,在纯电动车型中,有142款纯电动车型使用磷酸铁锂动力电池,81款车型使用三元动力电池,9款车型用钛酸锂电池,5款车型用锰酸锂电池。分布比例如下: 在推荐的249款纯电动车型中,纯电动客车共有113款,纯电动新能源专用车共有107款,纯电动乘用车共有29款车型。占比如下: 在113款纯电动客车中,使用磷酸铁锂电池的车型约为98款,占总体比重的87%;三元电池仅为1款,约占整体比重的1%;钛酸锂电池使用数量为9款,约占整体比重的8%;使用锰酸锂电池的车型为3款,约占整体比重的2%。 磷酸铁锂电池为何在纯电动客车领域独占鳌头? 磷酸铁锂电池方面,纯电动客车磷酸铁锂电池的系统能量密度区间约为87-135Wh/kg,车辆的续驶里程区间为200-576km不等;三元电池方面,纯电动城市客车使用的宁德时代三元动力电池,系统能量密度达到136.05Wh/kg,续驶里程450km。 纯电动客车独爱磷酸铁锂动力电池主要是因为其拥有比三元电池更高的安全性。新能源客车载人较多,一旦出现安全事故往往容易造成比乘用车更大的危害。而动力电池被认为是影响新能源汽车安全性能的主要因素,这直接关系到电池行业的发展,并影响到国家政策和舆论的导向。 因此,尽管三元动力电池的续航能力更好,能量密度也优于磷酸铁锂电池,但在安全性作为首要考虑问题的客车领域,基于我国磷酸铁锂电池产业化、技术成熟度较高的背景下,纯动力客车领域还是倾向于使用安全性更高的磷酸铁锂电池。

锂离子电池磷酸铁锂正极材料的研究进展

2019-01-04 13:39:36

锂离子电池因其具有能量密度高、自放电流小、安全性高、可大电流充放电、循环次数多、寿命长等优点,越来越多地应用于手机、笔记本电脑、数码相机、电动汽车、航空航天、军事装备等多个领域。锂电池产业已经成为国民经济发展的重要产业方向之一。目前,锂离子电池正极材料分为以下几类:①具有层状结构的钴酸锂、镍酸锂正极材料;②具有尖晶石结构的锰酸锂正极材料;③具有橄榄石结构的磷酸铁锂正极材料;此外还有三元材料。磷酸铁锂正极材料的理论比容量为170mA/g,电压平台为3.7V,在全充电状态下具有良好的热稳定性、较小的吸湿性和优良的充放电循环性能,因此成为现今动力、储能锂离子电池领域研究和生产开发的重点。LiFePO4基本性能LiFePO4基本结构磷酸铁锂正极材料具有正交的橄榄石结构,pnma空间群,如图1所示。在晶体结构中,氧原子以稍微扭曲的六方紧密堆积的方式排列。Fe与Li分别位于氧原子八面体中心4c和4a位置,形成了FeO6和LiO6八面体。LiFePO4充放电原理磷酸铁锂电池充放电的过程是在LiFePO4与FePO4两相之间进行的,如图2所示,其具体机理为:在充放电过程中,Li+在两个电极之间往返嵌入和脱出。充电时,Li+从正极脱出,迁移到晶体表面,在电场力的作用下,经过电解液,然后穿过隔膜,经电解液迁移到负极晶体表面进而嵌入负极晶格,负极处于富锂状态。与此同时,电子经正极导电体流向正极电极,经外电路流向负极的集流体,再经负极导电体流到负极,使负极的电荷达到平衡。锂离子从正极脱出后,磷酸铁锂转化为磷酸铁;而放电过程则相反。其充放电反应式可表示成式(1)和式(2)充电时放电时LiFePO4改性由于磷酸铁锂正极材料本身较差的导电率和较低的锂离子扩散系数,国内外研究者在这些方面进行了大量的研究,也取得了一些很好的效果。其改性研究主要在3个方面:掺杂法、包覆法和材料纳米化。掺杂法掺杂法主要是指在磷酸铁锂晶格中的阳离子位置掺杂一些导电性好的金属离子,改变晶粒的大小,造成材料的晶格缺陷,从而提高晶粒内电子的导电率以及锂离子的扩散速率,进而达到提高LiFeP04材料性能的目的。目前,掺杂的金属离子主要有T14+、CO2+、Zn2+、Mn2+、La2+、V3+、Mg2+。包覆法在LiFeP04材料表面包覆碳是提高电子电导率的一种有效方法,碳可以起到以下几个方面的作用:①抑制LiFeP04晶粒的长大,增大比表面积;②增强粒子间和表面电子的导电率,减少电池极化的发生;③起到还原剂的作用,避免Fe的生成,提高产品纯度;④充当成核剂,减小产物的粒径;⑤吸附并保持电解液的稳定。材料纳米化相较在导电性方面的限制,锂离子在磷酸铁锂材料中的扩散是电池放电的最主要也是决定性的控制步骤。由于LiFeP04的橄榄石结构,决定了锂离子的扩散通道是一维的,因此可以减小颗粒的粒径来缩短锂离子扩散路径,从而达到改善锂离子扩散速率的问题。纳米材料的优点主要有:①纳米材料具有高比表面积,增大了反应界面并可以提供更多的扩散通道;②材料的缺陷和微孔多,理论储锂容量高;③因纳米离子的小尺寸效应,减少了锂离子嵌入脱出深度和行程;④聚集的纳米粒子的间隙缓解了锂离子在脱嵌时的应力,提高了循环寿命;⑤纳米材料的超塑性和蠕变性,使其具有较强的体积变化承受能力,而且可以降低聚合物电解质的玻璃化转变温度。Ren等对纳米化的磷酸铁锂制备进行了详细的研究,他们利用亲水性的碳纳米颗粒作为模型制备出介孔磷酸铁锂正极材料。发现其具有亚微米大小的颗粒中心在2.9nm和30nm的双峰孔分布,介孔的引入也有利于电解质的流动和锂离子的扩散。在1C倍率下,放电比容量为137mA·h/g。在30C高倍率充放电后,材料的容量仍能恢复到160mA·h/g。可以看出纳米化的磷酸铁锂电化学性能得到了显著地提升。从长杰等利用液相沉淀法合成了纳米级磷酸铁,并以此为铁源,通过碳热还原技术制备了粒径均匀的纳米级球形磷酸铁锂正极材料。经分析检验结果表明,材料的首次放电比容量达161.8mA·h/g,库仑效率为98.3%,室温下在0.2℃、0.5℃,1℃, 2℃及5℃倍率充放电其首次放电比容量分别为156.5mA·h/g, 144mA·h/g,138.9mA·h/g,125.6mA·h/g和105.7mA·h/g,材料具有较好的电化学性能。Chen等以偏磷酸亚铁和石墨的纳米层状模板,通过水热法制备出拥有纳米层状形态的LiFeP04颗粒。通过SEM分析,尽管原纳米层模板LiFeP04纳米层模板之间存在差异,但最终得到的LiFeP04模板的纳米层状态保存完好。拉曼光谱表明,原纳米有机基团的分层模板成功地转换成细小的具有有序石墨结构的碳颗粒,并很好地分散在层状LiFeP04颗粒之间。经使用循环伏安法和电阻抗法评估,锂离子扩散系数分别是1.5X10-11cm2/s和3.1X10-13cm2/s,而电子电导率为3.28mS/cm,远远高于普LiFeP04的电导率(结语采用离子掺杂、包覆、材料纳米化3种改性方法对磷酸铁锂正极材料在电导率低、锂离子扩散速率慢、低温放电性能差等方面的不足有很大的改进。其中离子掺杂通过掺杂导电性好的离子,改变了颗粒大小,造成材料的晶格缺陷,从而提高了材料电子的电导率和锂离子的扩散率;包覆主要以碳包覆为主,抑制LiFeP04晶粒的长大,增大了比表面积,从而增强粒子间和表面电子的导电率;材料的纳米化一方面增大了材料的比表面积,为界面反应提供更多的扩散通道,另一方面,缩短了离子扩散的距离,减小了锂离子在脱嵌时的应力,提高循环寿命。此外,磷酸铁锂正极材料改性方面仍存在一些不足,如离子掺杂改进材料的导电率和锂离子扩散速率方面仍存在分歧;纳米材料的制备工艺、生产成本要求较高;此外,除了考虑实验室条件下的可行性研究外,还要考虑大规模工业化的生产要求,这些都有待于进一步研究。因此,通过以上方法来全面提高磷酸铁锂的综合性能仍然是当前和今后该领域研究和应用的主要发展方向之一。文章选自:《化工进展》 作者:张克宇,姚耀春

一张图了解磷酸铁锂

2019-01-03 15:20:48

锂电正极材料磷酸铁锂的制备方法简述

2019-01-04 17:20:18

一、磷酸铁锂简介  磷酸铁锂的晶格结构图 磷酸铁锂在自然界中以磷铁锂矿的形式存在,具有有序的橄榄石结构。磷酸锂铁化学分子式为:LiMPO4,其中锂为正一价;中心金属铁为正二价;磷酸根为负三价,常用作锂电池正极材料。磷酸铁锂电池的应用领域有:储能设备、电动工具类、轻型电动车辆、大型电动车辆、小型设备和移动电源,其中新能源电动车用磷酸铁锂约占磷酸铁锂总量的45%。 二、磷酸铁锂作锂电正极材料与其他锂电池正极材料相比,橄榄石结构的磷酸铁锂更具有安全、环保、廉价、循环寿命长、高温性能好等优点,是最具潜力的锂离子电池正极材料之一。 安全性能高 磷酸铁锂晶体中有稳固的P-O键,难以分解,在过充和高温时不会结构崩塌发热或生成强氧化物,过充安全性较高。 循环寿命长 铅酸电池的循环寿命在300次左右,使用寿命在1~1.5年之间。而磷酸铁锂电池循环次数可达2000以上,理论上使用寿命能达7~8年。 高温性能好 磷酸铁锂电热峰值可达350℃-500℃,而锰酸锂和钴酸锂只有200℃左右。 环保 磷酸铁锂电池一般被认为不含重金属和稀有金属,无毒,无污染,是绝对的绿色环保电池。 磷酸铁锂作为正极材料的充放电作用机理不同于其他传统材料,其充放电参与电化学反映的是磷酸铁锂的磷酸铁两相,充放电反应如下: 充电反应:放电反应:充电时,Li+ 从LiFePO4中脱离出来,Fe2+ 失去一个电子变成Fe3+;放电时,Li+ 嵌入磷酸铁中变成LiFePO4 。Li+的变化发生在LiFePO4 / FePO4 界面,因此其充放电曲线非常平坦,电位也较稳定,适合做电极材料。 三、磷酸铁锂的制备 制备磷酸铁锂的原料丰富。部分常见锂源、铁源、碳源、磷源如下: 磷酸铁锂粉体的制备在一定程度上会影响其作为正极材料的性能。目前制备磷酸铁锂的方法很多,如高温固相反应法、碳热还原法以及尚未规模化的水热法、喷雾热解法、溶胶-凝胶法、共沉淀法等。 1.高温固相反应法 高温固相反应法是制备磷酸铁锂是目前发展最为成熟也是使用最广泛的方法。将铁源、锂源、磷源按化学计量比均匀混合干燥后,在惰性气氛下,首先在较低温度(300~350℃)下烧结5~10h,使原材料初步分解,然后再在高温(600~800℃)下烧结10~20h得到橄榄石型磷酸铁锂。高温固相法合成磷酸铁锂工艺简单,制备条件容易控制,缺点是晶体尺寸较大,粒径不易控制、分布不均匀,形貌也不规则,产品倍率特性差。 2.碳热还原法 碳热还原法是在原材料混合中加入碳源(淀粉、蔗糖等)做还原剂,通常和高温固相法一起使用,碳源在高温煅烧中可以将Fe3+ 还原为Fe2+,避免了反应过程中Fe2+变成Fe3+,使合成过程更加合理,但是反应时间相对较长,对条件的控制更为严苛。 3.喷雾热解法 喷雾热解法是一种得到均匀粒径和规则形状的磷酸铁锂粉体的有效手段。前驱体随载气喷入450~650℃的反应器中,高温反应后得到磷酸铁锂。喷雾热解法制备的前驱体雾滴球形度较高、粒度分布均匀,经过高温反应后会得到类球形的磷酸铁锂。磷酸铁锂球形化有利于增加材料的比表面积,提高材料的体积比能量。 4.水热法 水热法属于液相合成法,是指在密封的压力容器中以水为溶剂,通过原料在高温高压的条件下进行化学反应,经过滤洗涤、烘干后得到纳米前驱体,最后经高温煅烧后即可得到磷酸铁锂。水热法制备磷酸铁锂具有容易控制晶型和粒径,物相均一,粉体粒径小,过程简单等优点,但需要高温高压设备,成本高,工艺比较复杂。 除上述方法外还有共沉淀法、溶胶-凝胶法、氧化-还原法、乳化干燥法、微波烧结法等多种方法。 四、总结  尽管磷酸铁锂的制备方法较多,但是除高温固相反应法得以工业化应用以外,大都处于实验室研究阶段。随着对磷酸铁锂制备及改性等技术研究的不断深入,磷酸铁锂作正极材料的产业化速度也会不断加快

磷酸锌  

2017-06-06 17:50:04

磷酸锌  性质:无色斜方结晶或白色微晶粉末。表观密度0.8~1g/cm3。溶于无机酸、氨水、铵盐溶液。不溶于水、乙醇。加热到100℃时失去2个结晶水而成无水物。有潮解性。腐蚀性。由磷酸与氧化锌进行反应,在30℃以下加入晶种进行结晶,经过滤,热水洗涤,粉碎,干燥而制得。用作醇酸、酚醛、环氧树脂等涂料的基料。用于生产无毒防锈颜料和水溶性涂料。还用作氯化橡胶、合成高分子材料的阻燃剂。   磷酸锌可取代红丹、锌铬黄等传统防锈颜料,可用于钢架、船舶、电器、设备防锈使用。   磷酸锌在三价铁离子具有很强的缩合能力,这种磷酸锌的根离子与铁阳极反应,可形成以磷酸铁为主体的坚固的保护膜,这种致密的纯化膜不溶于水、硬度高,附着力优异呈现出卓越的防锈性能。磷酸锌是一种白色无毒的防锈颜料,是防锈腐蚀效果优异的新一代无毒性,无公害的防锈颜料,它能够有效的替代含有重 金属 铅、铬的传统防锈颜料,是使用效果理想的防锈颜料新品种。    磷酸锌不含铅等有重 金属 、无毒、无污染,对皮肤也无刺激作用,热稳定性好、防锈好、防锈力强,在涂料中用量少单位成本低。   用磷酸锌调剂制的涂料具有优异的防锈性能及耐水性用于各种漆基的涂料中用于制备各种耐水、酸、防腐蚀涂料如:酚醛漆、环氧漆、内烯酸漆、厚浆漆以及水溶性树脂漆,广泛用于船舶、汽车、工业机械、轻 金属 、家用电器及食品用 金属 容器等方面的防锈漆。          以上是磷酸锌的介绍,更多信息请详见上海 有色金属 网。

如何提高磷酸铁锂材料的振实密度

2019-01-03 09:36:46

磷酸铁锂作为常用的锂离子电池正极材料以其安全性能好、循环性能优异、环境友好、原料来源丰富等优点,成为当前锂离子电池正极材料的研究热点之一。但是磷酸铁锂的缺点也制约着它的发展,振实密度低、实际比容量低是其相对于另一大热的正极材料三元材料的一大短板。 下面介绍一些改善磷酸铁锂振实密度的途径。 1 合成方法 目前制备LiFePO4方法很多,不同制备方法对LiFePO4的振实密度影响很大。不规则的粉末颗粒不能紧密堆积,如果合成的LiFePO4粉末颗粒为不规则形貌,会造成产物的振实密度很低。一般来说,由规则的球形颗粒组成的粉体,因其不会有团聚和粒子架桥现象,从而具有较高的振实密度。得到规则球形颗粒的方法如下: ①用高密度球形FePO4前驱体合成球形LiFePO4颗粒 制得高密度球形前驱体是得到高密度球形产物的有效途径之一。先合成高密度球形FePO4前驱物,再与其他原料混合均匀,通过高温反应,使锂通过球形前驱体颗粒表面的微孔向各方向均匀、同步地渗入前驱体的中心,保持球形形貌。此方法中,球形前驱体可以消除反应过程中由于扩散途径不同引起的微观组分差异,生成组成均匀的LiFePO4,从而提高材料的性能。 ②喷雾干燥法制备球形LiFePO4颗粒 喷雾干燥(热解)法是将各金属盐按制备复合型粉末所需的化学计量比配成前驱体溶液,经雾化器雾化后,由载气带入设定温度的反应炉中,在反应炉中瞬间完成溶剂蒸发、溶质沉淀形成固体颗粒、颗粒干燥、颗粒热分解和烧结成型等一系列的过程,最后形成规则的球形粉末颗粒。 ③熔盐法制备球形LiFePO4颗粒 熔盐法通常采用一种或数种低熔点的盐类作为反应介质,合成过程会出现液相,反应物在其中有一定的溶解度,这大大加快了反应物离子的扩散速率,使反应物在液相中实现原子尺度混合,反应就由固-固反应转化为固-液反应。反应结束后,采用合适的溶剂将盐类溶解,经过滤洗涤后即可得到合成产物。 2 粒径分布 LiFePO4的振实密度与颗粒的粒径之间存在着密切的联系。如果由球形颗粒组成的粉体具有理想的粒径分布,使得小颗粒能尽量填补大颗粒之间的空隙,则可以进一步提高其振实密度,从而有利于提高电池的体积比容量。研究表明,纳米级别的LiFePO4振实密度一般较低,而微米级别的LiFePO4具有较高的振实密度。 多孔材料可以实现高的振实密度:大颗粒的产物振实密度一般较高,但也会导致锂离子在固体材料中的扩散路径变长,材料的电化学性能也变差。研究发现多孔的LiFePO4具有相互连接的三维孔通道,且孔之间的距离是纳米级的,孔隙之间相互连接的三维通道缩短了锂离子的脱嵌距离;且多孔材料这种独特的微观结构,使材料具有更大的比表面积,可使材料与电解液充分接触,增大了锂离子的扩散面积,提高了锂离子的迁移速率,有利于解决LiFePO4扩散系数小所导致的电化学性能差的问题。由于制备多孔材料时得到的都是尺寸较大且形貌良好的颗粒,所以多孔材料在保证了材料有较高振实密度的同时,也能具有良好的电化学性能。 3 碳包覆 研究表明碳包覆能增强LiFePO4颗粒之间的导电性,使其电化学性能有明显改善。但是过量的碳将严重降低LiFePO4的振实密度。选择合适的碳源,改进制备工艺,都可以使碳包覆层更加均匀,从而提高材料的振实密度。 4 金属离子掺杂 金属离子掺杂是在LiFePO4中掺杂金属离子,改变其晶格结构,从而提高其自身的导电能力。近年来部分研究表明,掺杂特定种类的金属离子能提高材料的振实密度,从而提高LiFePO4的体积比容量。 目前在提高LiFePO4振实密度的研究方面取得了一定的进展,但还存在一些问题。LiFePO4的形貌和粒度控制工艺通常很复杂,要想稳定大批量制备具有特定形貌和粒径分布的材料存在一定的难度。且不同的制备工艺,不同的原料对LiFePO4的振实密度也有很大影响,因此需要继续探索出简单、低成本且能控制LiFePO4材料的形貌和粒径分布的制备方法。

石墨烯在锂硫电池中的应用

2019-01-03 09:36:39

随着便携式电子设备和电动汽车等产业的快速发展,人们对高能量密度电池的需求日益迫切,然而在传统锂离子电池中,正极材料因“插层式”的储锂机制导致其容量普遍较低,无法满足快速增长的市场需求。因此,新型高能量密度二次电池的探索和研发成为了储能领域的研究热点,锂硫电池就是其中之一。 一、锂硫电池简介 锂硫电池的工作原理基于硫和Li+可以发生可逆的氧化还原反应,两者之间的电化学反应式如下:基于该反应的硫正极的理论比容量高达1675mAh/g,是传统锂离子电池正极材料的10倍,同时硫储量丰富、成本低,因此锂硫电池受到了广泛关注,然而硫及多硫化物本身性质的缺陷,使得锂硫电池仍存在很多问题。 首先,硫是绝缘体,导电性差,给电荷传递过程带来困难;其次,多硫化锂可以溶解在电解质中,易迁移到金属锂一侧被还原成不溶性Li2S沉积在金属锂电极表面发生“shuttleeffet”现象;再次,可溶性多硫化锂被完全还原成不溶性硫化物时,会阻碍电子和离子的有效传输;最后,单质硫转化为不溶性硫化物后,由于两种物质密度的差异,会造成体积效应,降低电极稳定性。因此,锂硫电池存在实际容量低、循环性能差和信率性能不佳等缺点。 二、石墨烯在锂硫电池中的应用 针对上述问题,为了获得高性能的锂硫电池,研究者对硫正极进行了多种手段的复合与改性研究,设计并制备了一系列具有新颖结构和优异性能的复合硫正极材料。其中,碳材料因其导电性高、结构丰富、比表面积大等优势而得到了广泛应用,而石墨烯这一新型碳材料在提升锂硫电池性能方面有优异表现。 石墨烯是优异的电子导体,同时具有机械强度高、比表面积大等优点,同时化学改性的石墨烯及石墨烯衍生物具有一系列能为负载提供诸多活性位点的表面官能团,因此石墨烯在复合硫正极材料中得到了广泛的应用。 一方面,石墨烯被用作硫正极的导电载体,弥补硫导电性差的缺陷;另一方面,通过合理的结构设计与表面改性,石墨烯还能够抑制多硫化物的溶解。此外,在最近的研究中,科学家还发现通过石墨烯功能涂层的设计,能够减缓多硫化物在正负极之间的穿梭,抑制“shuttleeffet”现象。 1、石墨烯/硫复合正极材料研究进展 石墨烯极高的电导率可以弥补硫颗粒导电性差的问题,因此石墨烯材料多被设计成负载硫单质的导电基体或者导电网络,比如石墨烯泡沫结构可实现石墨烯与硫在纳米尺度的均匀复合,能够为硫提供快速与高效的电子传输通道,同时纳米孔还能够有效束缚多硫化物。 常规条件下获得的三维石墨烯尽管结构丰富,但极为蓬松,表观密度很低,导致硫负载后复合电极材料体积能量密度严重不足,为此,中科院沈阳金属所成会明院士利用CVD方法在泡沫镍上获得三维多孔石墨烯泡沫。图1 (a)柔性石墨烯/硫复合材料的制备流程;(b、c、d、e)石墨烯/硫复合电极材料照片及柔性展示 该方法不仅能够负载高比例的硫,而且硫的含量能够在3.3~10.1mg/cm2范围内进行调控,特别是负载量为10.1mg/cm2的电极,能够获得极高的比面积容量(13.4mAh/cm2)。 另外,考虑到石墨烯独特的二维片状纳米结构,采用以石墨烯纳米片作为包裹材料,构筑具有“核壳”结构的复合电极材料也是固定多硫化物,缓解其溶解的重要方式。先在碳纳米纤维表面均匀负载上硫,再使用石墨烯包覆在硫表面是一种很有效的方法。图2 具有同轴结构石墨烯/S/碳纳米纤维复合电极制备图 2、石墨烯功能涂层在锂硫电池中的应用 为提高锂硫电池的循环稳定性,除了对硫正极材料的组成与结构进行调控以抑制多硫化物的溶解,通过极片结构的设计来减弱“shuttleeffect”也是一条重要途径。例如,在硫正极和隔膜间添加一层缓冲层能够极大的提高锂硫电池的寿命。图3 石墨烯隔膜涂层有效阻挡多硫化物迁移示意图 石墨烯/硫/石墨烯-隔膜的创新极片结构设计,一方面将集流体由传统的Al箔改为石墨烯;另一方面对隔膜进行改性,改变了原有隔膜与硫正极直接接触的方式,在隔膜表面涂布一层石墨烯材料。 采用传统的极片结构,在循环过程中多硫化物溶解在电解液后,会穿过隔膜进入金属Li一侧,而在这一新颖结构中,存在于隔膜与正极材料之间的石墨烯层能够有效阻止多硫化物的迁移。另外,由于石墨烯材料优异的力学性能,石墨烯改性隔膜能够有效缓解硫正极在充放电过程中的体积变化,保持极片结构的完整性。 综述: 电化学储能在当今人们的生产生活中占有重要地位,无论是可再生能源的大量存储还是便携式设备的高密度存储,对电化学储能器件和材料的成本、储能密度、稳定性等指标都提出了较高的要求。 锂硫电池由于其理论比容量、比能量高,原料价廉易得,在未来电化学储能领域中将极具竞争力,如果通过石墨烯的应用能够改善锂硫电池实际容量低、循环性能差和信率性能不佳等缺点,在不远的将来,锂硫电池的表现可能会给我们带来更多惊喜。

什么是磷酸铜

2019-03-13 11:30:39

磷酸铜 英文名称: Cupric Phosphate Anhydrous CAS:10103-48-7化学式:Cu3(PO4)2分子式:Cu3(PO4)2·3H2O 分子量: 380.59 性质:蓝色正交晶体。受热分化。不溶于水、液,微溶于热水,溶于酸、。由硫酸铜溶液与磷酸氢二铵效果而得。用作有机反响催化剂、菌剂、乳化剂、肥料及金属表面抗氧化剂等。.

磷酸锌价格

2017-06-06 17:50:00

近几年来,磷酸锌价格一直处于平稳状态,基本上没有太大的波动.但由于目前市场上锌库存的大量堆积,给磷酸锌价格带来了不小压力磷酸锌价格与锌价有着密切的联系,专家表示精炼锌过剩格局依旧:从供需基本面来看,精锌产量增速回落显著。7月份国内精锌产量为40.5万吨,环比减少4.7%,同比仅增长8.0%,较上月15.8%的同比增速明显下滑。由于全球锌精矿供应紧张,锌精矿加工费处于低位徘徊,国内锌冶炼商大多已经亏损。因此,在原料供应受限以及成本压力高企的情况下,国内锌冶炼商也开始减产,这影响了当月产量增长。虽然近期国内锌精矿加工费出现明显上升,但仍不足以刺激冶炼厂增加生产。我们预计国内精锌产量增长将继续下滑。同时需求端同样疲软,笔者了解到近日现货市场成交清淡,不少厂家因为没有订单处在停产状态,市场上接货的也大多为贸易商,从经济前景的普遍担忧以及当下国内经济增速确实明显回落的角度来看,已经实质影响到了下游行业的需求对于锌市的支撑作用。笔者预计,尽管当前生产增速和消费增速都有下滑,但整体市场的过剩格局短时间内很难改变。最新的世界金属统计局数据显示,今年前6个月全球精炼锌市场供应过剩26.6万吨,该数据要高于2009年全年的供应过剩21万吨,尽管1—6月期间精炼锌需求为60.7吨,高于去年同期水平。目前更为恶化的供需关系将使磷酸锌价格上方承压。第二季度以来,磷酸锌价格已经被锌价的下跌所连累,而磷酸锌价格能否承受住这次震荡?只有等待市场反馈来给出最后的答案了. 

锂储量有限,钠离子电池能否大放异彩?

2019-03-07 09:03:45

导读 美国地舆查询估量,全球锂资源约为 3950 万公吨,而具有商业挖掘价值的锂储备量则仅为 1351.9 万公吨。在现在的工业情况下,这样的锂资源可用上超越300 年不成问题,但若是需求爆炸性生长,在一年 80万吨的情况下,不到 17 年就会竭尽。 动力问题 动力是支撑整个人类文明前进的物质基础。跟着社会经济的高速开展,人类社会对动力的依存度不断进步。现在,传统化石动力如煤、石油、天然气等为人类社会供应首要的动力。化石动力的消费不只使其日趋干涸,且对环境影响显着。因而,改动现有不合理的动力结构已成为人类社会可持续开展面对的首要问题现在,大力开展的风能、太阳能、潮汐能、地热能等均归于可再生清洁动力,因为其随机性、间歇性等特色,假如将其所发生的电能直接输入电网,会对电网发生很大的冲击。在这种局势下,开展高效快捷的储能技能以满意人类的动力需求成为国际规模内研讨热门。 锂离子电池 现在,储能办法首要分为机械储能、电化学储能、电磁储能和相变储能这四类。与其他储能办法比较,电化学储能技能具有效率高、出资少、运用安全、运用灵敏等特色,最契合当今动力的开展方向。电化学储能历史悠久,其间锂离子电池是开展较为老练的储能电池。 锂离子电池具有能量密度大、循环寿数长、作业电压高、无回忆效应、自放电小、作业温度规模宽等长处。但其依然存在许多问题,如电池安全、循环寿数和本钱问题等。并且跟着锂离子电池逐步运用于电动汽车,锂的需求量将大大添加,而锂的储量有限,且散布不均,这关于开展要求报价低廉、安全性高的智能电网和可再生动力大规模储能的长寿数储能电池来说,可能是一个瓶颈问题。因而,亟需开展下一代归纳效能优异的储能电池新系统。 钠离子电池 比较锂资源而言,钠储量非常丰厚,约占地壳储量的2.64%,且散布广泛、提炼简略。一起,钠和锂在元素周期表的同一主族,具有相似的物理化学性质,其根本的性质比照见表 1。 表1 与金属锂根本性质比照钠离子电池具有与锂离子电池相似的作业原理,运用钠离子在正负极之间嵌脱进程完成充放电。 充电时,Na+从正极脱出通过电解质嵌入负极,一起电子的补偿电荷经外电路供应到负极,确保正负极电荷平衡。放电时则相反,Na+从负极脱嵌,通过电解质嵌入正极。 在正常的充放电情况下,钠离子在正负极间的嵌入脱出不损坏电极材料的根本化学结构。从充放电可逆性看,钠离子电池反应是一种抱负的可逆反应。因而,开展针关于大规模储能运用的钠离子电池技能具有重要的战略意义。 钠离子电池优势 与锂离子电池比较,钠离子电池具有的优势: 1.钠盐原材料储量丰厚,报价低廉,选用铁锰镍基正极材料比较较锂离子电池三元正极材料,质料本钱下降一半; 2.因为钠盐特性,答应运用低浓度电解液(相同浓度电解液,钠盐电导率高于锂电解液20%左右)下降本钱; 3.钠离子不与铝构成合金,负极可选用铝箔作为集流体,能够进一步下降本钱8%左右,下降分量10%左右; 4.因为钠离子电池无过放电特性,答应钠离子电池放电到零伏。钠离子电池能量密度大于100Wh/kg,可与磷酸铁锂电池相媲美,可是其本钱优势显着,有望在大规模储能中替代传统铅酸电池。 钠离子电池存在的问题及解决办法 1.钠离子电池是一种有别于锂离子电池的电池系统,将锂离子电池电极材料直接运用到钠离子电池的研讨上是一种捷径。但寻觅新的具有高能量密度和功率密度的正极材料,一起寻觅在循环进程中体积改动小的负极材料,进步电池的循环稳定性,才是进步钠离子电池功能的重要途径,也是使钠离子电池提前运用到大规模储能的要害; 2.现在关于钠离子电池电极材料的组成办法比较单一,传统的固相法和凝胶溶胶法是首要的制备办法,且对电极材料的改性研讨较少。寻觅更简略高效的组成办法,一起对功能较好的材料进行改性研讨也是进步钠离子电池功能的一条途径; 3.安全问题是限制锂离子电池开展的重要因素,而钠离子电池相同面对安全问题。因而,大力开发新的电解液系统,研讨更为安全的凝胶态及全固态电解质是缓解钠离子电池安全问题的重要方向。 此外,钠离子的液态回忆这项难题现在也被霸占。(液态回忆:将液体形状改动,通过一段时间,本身会康复到之前的状况。) 跟着钠离子电池研讨的深化,将会开发出新的材料,电池的容量和电压将会进一步得到提高。钠离子较低的本钱,使得钠离子电池有望运用在智能电网或可再生动力的大规模储能中。