您所在的位置: 上海有色 > 有色金属产品库 > 氧化铋硫化 > 氧化铋硫化百科

氧化铋硫化百科

氯氧化铋的生产

2019-01-31 11:06:04

氯氧化铋是三氯化铋的水解产品,首要用于塑料工业,使塑料制品具有美丽的珍球光泽。用量一般为氯氧化铋:树脂为0.4%~0.8%,可根据种类要求适量增减。 一、工艺流程。 如图1,包含溶解、转化水解、洗滤、烘干等工序。图1  氯氧化铋出产工艺流程 二、首要技能条件。 水淬后的铋粒,用稀释一倍的硝酸溶液溶解,生成溶液。 食盐转化:将溶液参加到饱满食盐水(密度1.2克/厘米3)中,拌和均匀,若发生白色水解物,则稍加稀溶化。 水解:将相当于氯化铋溶液体积4倍的稀释水加热至95℃,参加相当于稀释水体积0.7%~0.8%的于稀释液中,在拌和下将铋液倒入,再用热水稀释至pH=2.3,弄清后,与上清液别离,用蒸馏水洗刷BiOCl至pH>5。 枯燥:BiOCl在95~100℃下恒温枯燥脱水,枯燥后经过80目。 三、首要设备。 不锈钢溶解罐一个:硬聚氯乙烯塑料焊制转化槽一个;水解槽一个:离心机一台。 四、产品质量。 产出之氯氧化铋成分为(%):BiOCl>98.5,H2O<0.5,酸不溶物低于0.1。

酸浸法处理氧化铋渣

2019-03-05 12:01:05

西南地区某广在处理氧化铋渣时,选用酸浸法,其工艺流程如图1。图1  氧化铋渣的酸浸法工艺流程图 整个流程包含硫酸二段逆流浸铜、浸铋、水解置换、海绵铋熔铸等首要工序。 一、硫酸浸铜。 氧化铋渣经球磨机破碎呈粉状,用硫酸溶液浸出,其反响为:      为了进步浸出作用,选用二段逆流浸出:即一次硫酸浸出后之渣,再进行二次硫酸浸出,二次硫酸浸出后之渣,进入下道工序,而二次硫酸浸出后之溶液,回来一次硫酸浸出,一次硫酸浸出后之溶液,用来收回铜。 技能条件及目标: 一次浸出液固比(3~3.5)∶1;一次浸出拌和时刻40~60分钟;一次浸出液终酸pH约2;一次浸出液弄清时刻10小时以上;二次浸出液固比(3~3.5)∶1;二次浸出拌和时刻2小时;二次浸出加酸量:工业60升,在80~l00分钟内加完。 铜浸出率43%:硫酸耗费2530千克/吨精铋。 二、浸铋。 硫酸浸出后的浸出渣,含有铋、铅与未彻底浸出的铜和铁以及银、碲、砷.锑等。浸出时,发作如下反响:  浸出后的浸出渣,再用稀溶液洗刷后,送往下道工序,用硫酸洗铜与收回银,洗铜液与硫酸浸出之硫酸铜溶液一道,加石灰乳碱性沉铜,产出Cu(OH)2渣,从中收回铜。而稀洗刷液与浸出液一道送去提铋。 技能条件及目标: 提出液固比(3~3.5)∶1;加酸量每批加工业400~430升;拌和时刻2小时;弄清时刻10小时以上;稀洗渣溶液酸度HCl 15~20克/升;洗渣时液固比2∶1;洗渣拌和时刻30分钟;洗渣弄清时刻10小时以上。 铋浸出率92%:耗费8380千克/吨精铋。 三、水解与置换。 将浸出液进行水解,使铋水解沉积而与部分杂质别离,其反响为:水解程序是将自来水注入三氯化铋谘液中,能够进步产出的氯氧化铋的档次(含铋70%以上),为了削减液量而用稀碱液水解,或将三氯化铋溶液参加自来水中,即便终究酸度相同,都会使氯氧化铋含铋档次下降为65%左右,而且沉积物的沉降速度和过滤速度都明显下降。 图2表明BiOCl溶解率、水解水量与pH值的联系。 因为BiOCl中还含有Cu、Fe、CaSO4等杂质,需用工业重溶,而且鼓风拌和,然后别离出不溶性的CaSO4与PbSO4。为了削减铋的丢失,残渣用pH≤1的溶液洗刷,以进步铋的收回率。图2  BiOCl溶解率。水解水量与pH联系 用重溶后的三氯化铋溶液,送往置换槽,用铁板置换海绵铋。因为天然置换速度太慢,为了加快速度,选用直流电电积法:置换后液回来浸出,而置换出的海绵铋放入熔融的苛性钠中熔化。 技能条件及目标: 水解稀释比为溶液∶水=1∶10;水解后弄清6小时;置换后液含铋低于1克/升。 水解后液排放标准为加石灰中和至pH为5~6。 四、酸浸法设备。 破碎用球磨机一台;浸出并带机械拌和的2米3浸出槽四个,设备的原料为硬塑料;过滤用硬塑料制的0.5米3真空吸滤槽5个;置换用3600×900×1100毫米水泥烙沥青槽4个,阴、阳极均为950×800×10毫米钢板;水解槽共6个,巨细与原料同置换槽。 五、海绵铋熔铸。 置换出的海绵铋在铸钢锅内加固体碱熔融,然后进行精粹。 技能条件及目标: 加料温度350~400℃;熔化温度450~550℃。固体碱耗费200千克/吨海绵铋。

氧化铋生产工艺现状

2019-02-25 13:30:49

湿法的首要工艺流程: 1、精粹铋→熔化→水淬→硝酸溶解 溶液浓缩结晶→结晶煅烧→氧化铋 2、精粹铋→熔化→水淬→硝酸溶解 溶液加碱中和→氧化铋过滤洗刷→枯燥→氧化铋制品 火法的首要工艺流程: 精粹铋—→熔化—→雾化焚烧—→产品搜集—→产品分级。   目前国内的氧化铋出产厂商大都选用湿法硝酸系统出产氧化铋,因为出产过程中因硝酸介质的引进导致发生很多NXOY污染环境,产品中也不可防止残留NXOY;不论选用煅烧或枯燥,均难防止氧化铋粉末的聚会,影响产品粒度,粒度均在5μm~7μm以上,且粒度散布不均匀,对产品的使用也有较大的影响。国内选用火法出产氧化比铋产品粒度在3μm~5μm。日本和德国则多以熔体雾化–焚烧法出产氧化铋,产品粒度在1μm~2μm。中国是世界上氧化铋产值最大的国家之一。首要用硝酸法出产工艺,产品难以彻底满意该部分高端商场的需求

盐浸法处理氧化铋渣

2019-03-05 12:01:05

处理氧化铋渣,常选用硫酸加食盐浸出,其工艺流程如图1所示。图1  氧化铋渣盐浸法工艺流程图 从图1可见,氧化铋渣的盐浸法(混酸浸出)包含混酸二次浸出、中和水解等工序,产出之BiOCl,可经火法还原为粗铋;也可用重溶、铁屑置换,产出海绵铋,碱熔后铸成粗铋。 一、浸出 硫酸加食盐混酸浸出本质上是一种氯盐浸出,即用含有NaCl的硫酸溶液浸出氧化铋渣,使铋呈氯化物溶出。NaCl参加后有两方面效果:一是作为添加剂,带入和添加溶液中氯离子浓度,进步被提取金属在溶液中的溶解度;一是作为氧化剂,参加反响将被提取金属溶解。 氧化铋渣中铋以Bi2O3状况存在,在浸出中按下式反响:  这个反响本质是借助于BiOCl从中转化而完结的。所以上反响分两步进行:  氧化铋在混酸中的溶解曲线如图2所示。图2  Bi2O3在H2SO4-NaCl溶液中溶解曲线 从图2可见,当H2SO4为1N,NaCl浓度大于100克/升吋,铋的溶解兴旺20克/升。 依据物相分析得知,氧化铋渣中的铅以PbO状况存在,浸出中以PbCl2形状溶入溶液中,跟着溶液中NaCl浓度的添加,PbCl2在溶液中的溶解度增大。表1展示出这种联系。 PbO溶于混酸的反响如下:   表1  PbCl2在食盐溶液中的溶解度当溶液中有很多NaCl存在时:溶液中一起还存在很多的硫酸根,所以氧化铅能够生成硫酸铅:尽管PbSO4的溶度积比氯化铅的溶度积更小,可是生成的硫酸铅又进一步参加反响:所以PbCl2是铅浸出的终究产品。 氧化铋渣中的铜以CuO与Cu2O状况存在,浸出时,一部分生成硫酸铜,一部分生成:   当向溶液鼓入空气时,因为空气的氧化效果,可加快Cu2O的 溶解,进步铜的浸出率:氧化铋渣中的银以金属银状况存在,浸出时一部分构成氯化银。 经过浸出,铋、铜进入溶液,便于别离收回。铅与银虽部分被浸出,但当浸出结尾因为浸出液酸度下降,液温下降时,氯化铅与氯化银又从头结晶沉积,经过处理结晶、浸出渣而收回。 技能条件与目标: 浸出液组成:H2SO4 250升、NaCl 300千克、氧化铋渣500千克;液固比(4~5)∶1;浸出时刻2小时;浸出温度95℃。 铋浸出率高于95%:铜浸出率高于90%;浸出渣率40%左右;银入渣率高于90%;硫酸耗费为1250升/吨铋;食盐耗费1500千克/吨铋。 浸出设备:1500升带拌和机的珐琅反响釜四个,球磨机一台。 二、中和与水解 选用二段逆流浸出,从产出的二次浸出渣中收回银与铅;而将一次浸出液弄清一昼夜后,抽取上清液中和、水解,别离铜、铋,产出BiOCl,再从中收回铋;后液用铁屑置换,产出海绵铜,从中收回铜。 为了避免一次浸出液中分出硫酸铜结晶,有必要坚持浸出液含Cu2+低于60克∕升,为确保不发生铋的再沉积现象,浸出液的pH值应始终坚持低于1。 当浸出液含有高浓度的铜和铋时,不能用铁屑置换,不然会得到铜与铋的混合物。所以选用加碱和水稀释,以进步溶液的pH值,使铋呈BiOCl沉积别离。 选用加Na2CO3或NaOH以升高溶液的pH值,当pH值从0.6升至1.8时,溶液中铋离子浓度明显下降,pH值与溶液含铋离子浓度联系如表2。 表2  浸出液终究pH值对残Bi3+的影响当pH 1.8时,溶液含铋小于50毫克/升,尽管铋含量很低,但对下工序从溶液中置换铜影响很大。为了确保海绵铜含铋低于0.04%,当溶液中含铜为25克/升时,有必要使含铋量小于10毫克/升,所以有必要将浸出液终究pH值进步2.3以上。 水解最好分两步进行:第一步用碱液将pH值调至1.5;第二步将溶液体积用水稀释两倍,使pH值上升至2.3。中和与水解次第不能倒置,避免BiOCl被污染。水解反响为:氯氧化铋被污染主要是因为部分规模pH值偏高引起氢氧化铁沉积。若终究用碱调pH值,杂质铁含量有时达2%;而终究选用水稀释时,即便进步pH值至3,也无铁离子水解沉积。水解能使溶液中99.6%以上的铋沉积,产出易于弄清与过滤的颗粒较粗的BiOCl。 技能条件与目标: 中和:用30% NaOH溶液或40% Na2CO3溶液中和一次浸出液至pH 1.5。 稀释:用两倍体积水稀释,使溶液pH值由1.5进步至2.3。 常温操作,水解后溶液弄清一昼夜。 碱耗由一次浸出液终酸断定。铋水解收回率高于98%;BiOCl含铋量大于70%。 水解设备:质料为钢槽衬腔。其间碱液槽容量2米3,尺度φ1200、H2000毫米;水解槽容积10米2,尺度φ2000、H3500毫米。 三、置换 水解沉铋后液参加铁屑置换铜:技能条件及目标: 置换温度95℃,加温拌和至溶液通明不显蓝色为结尾。 铁屑耗量为理论量1.5~2倍;置换铜收回率高于95%。 置换设备:因为置换周期短,选用带拌和的1500升珐琅反响釜两个,蒸汽夹套加温,每批结尾后中止拌和,弄清别离,排放上清液,再注入沉铋后液,开动拌和,先使用海绵铜中搀杂的铁屑置换,然后参加新铁屑,直至沉铋后液分批置换结束,再放出铜渣沥干,作为收回铜的质料。

氧化铋矿物的分离和自然铋与辉铋矿的分离

2019-02-27 11:14:28

铋在地壳中白勺均匀含量为2×10-5%,独自白勺铋矿床很少见到、铋矿藏一般与pb、cu、w、sn、ni、co等等元素白勺硫化物其生。具有工业价值白勺铋矿床大都为热液矿床,其间最重要为高温文辉铋矿型和中温热液多金属铋型。高温热液型中铋以天然铋和辉铋矿(bi2s3)状况存在于w、sn及as白勺矿石中,与之共生等等。铋作为上述矿石白勺副产物。中温热液型中铋一般最重要以其生等等。铋作为上述矿石白勺副产物。中温热液型中铋一般最重要以辉铋矿为主,此外还有天然铋及铋白勺硫代酸盐类,与cu和ni、co以及as白勺硫化物共生,铋作为铜矿石及其他矿石白勺副产物。在矿床白勺氧化带,原生铋矿藏可风化构成铋华(bi2o3)和碳酸铋矿藏[如泡铋矿(bi2o3.co2.h2o)、基性泡铋矿(2bi2o3.co2.h2o)、含水泡铋矿(bi2o3.co2.nh2o)、球泡铋矿(bi2o3.h2o)]。现在已发现白勺含铋矿藏已有50余种,但只要上述数种矿藏具有工业价值。铋矿石化学物相分析[1,2],一般只测定氧化铋矿藏、辉铋矿和天然铋。下面介绍此三种矿藏白勺别离办法。 一、氧化铋矿藏白勺别离氧化铋矿藏系指铋华和铋碳酸盐矿藏。10%hcl可用于浸取氧化铋,天然铋和辉铋矿不溶解。但浸取过程中如有fe3+存在,则天然铋和辉铋矿白勺浸取率添加,为此,于hcl中参加sncl2。也有人以为参加抗坏血酸效果更好。羟胺也起相同白勺效果。hcl浓度和浸沉取温度都对浸取和别离效果有显着影响,故应严厉把握操作条件。文献中还引荐了其他一些别离氧化铋白勺办法,也各有特点。如用c(h2so4)=0.25mol/l-50g/l溶液,在氮气或流中浸取1h;用5%hcl-30g乙酸溶液,于80℃浸取10min。二、天然铋与辉铋矿白勺别离别离氧化铋之后,可运用下述任一办法使天然铋与辉铋矿别离:(1)天然铋之后,可运用下述任一办法使天然铋与辉铋矿别离:(1)天然铋能从agno3溶液中置换出金属银,而自身进入溶液中。了避免bi3+水解,向agno3溶液中参加一定量酸一般用20%-20g/lagno3溶液或3-6%hno3-17g/lagno3溶液,作为天然铋白勺溶剂,在规则条件下,天然铋浸取率为99%左右,辉铋矿仅溶解1.5%。本法适用于天然铋含量高白勺试亲。(2)在加热白勺情况下,辉铋矿可溶于浓hcl,天然铋不溶。浸取时试亲中白勺氧化铁与hcl效果,所生成白勺fecl3对天然铋有氧化效果,故应参加还原剂(如羟胺)以消除fe3+白勺影响。本法更适合于以辉铋矿为主白勺试样

氯气选择性浸出硫化铋矿

2019-01-31 11:06:04

此法选用操控电位的方法,用选择性浸出硫化铋矿,一起抵抗杂质的浸出。避免了很多的铁离子在流程中的循环和三价铁的再生问题,提高了产品质量,渣的过滤、洗刷功能也得以改进。浸出进程根本反应为:选择性浸出,铋的选择性较高,但消耗量比较大,一部分单质硫会被氧化生成硫酸根,的污染和腐蚀问题也比较严重,设备需求密封。从经济上分析,比用浸出没有显着的优越性。 选择性浸出的工艺流程见图1。图1  选择性浸出铋准则工艺流程图

硫化铋-氯离子-水系E-pH图

2019-02-18 15:19:33

杨显万等核算制作了298K下Bi2S3-Cl--H2O系E-pH图和E-lg[Cl-]图(见图1和图2),图中相应的反响方程式和平衡方程式略。图1  Bi2S3-Cl--H2O系E-pH图图2  Bi2S3-Cl--H2O系E-lg[Cl-]图从图3、图1和图2能够看出:图3  Bi(Ⅲ)-S-H2O系电位-pH图(一)在不含Cl-的溶液中,反响Bi2S3+6H+=2Bi3++3H2S不可能发作(其平衡pH=-3.67),且Bi2S3的氧化电位较高(0.42V)。在含Cl-的溶液中,上述反响的平衡线明显右移(pH=-0.027),一起Bi2S3的氧化电位也明显下降。也就是说,在含能够与Bi构成合作物的Cl-的水溶液中,Bi2S3无论是酸溶仍是氧化都比在不含Cl-的溶液中要简单。因此在含Cl-的酸性介质中,经过湿法冶金来处理Bi2S3在热力学上是可行的。 (二)Fe3+和Cu2+完全能够氧化Bi2S3,溶液中Fe3+的存在有利于Bi2S3的浸出。 (三)坚持溶液有必定的酸度是很有必要的,的参加具有如下的效果:有利于元素硫的生成。促进氧化铋矿的溶解,进步铋在溶液中的溶解度,避免铋盐的水解。 (四)Bi2S3可经过两种途径浸出 化学溶解:化学氧化:在选用矿浆电解技能处理铋矿时,还存在着Bi2S3的阳极氧化:(五)分出元素硫的平衡pH值上限为-2.34,下限为-5.54。当pH值大于-2.34时,硫化物中的硫应氧化成HSO4-或SO42-。事实上,因为动力学的原因,80%以上的硫仍以单质形状产出。

关于氧化铜的硫化浮选工艺全面介绍

2019-02-26 11:59:27

当时氧化铜的选别办法有很多种,一般常用也较为有用的仍是浮选工艺,浮选后硫化后用黄药捕收仍是处理氧化铜矿的首要办法。下面咱们就全面介绍硫化浮选法的工艺。此法是将氧化铜矿藏先用或其他硫化剂(如)进行硫化,然后用黄药作捕收剂进行浮选。硫化时,矿浆的pH值愈低,硫化进行得愈快。而等硫化剂易于氧化,作用时间短,所以运用硫化办法浮选氧化铜矿时,硫化剂是分希增加。硫酸铵和硫酸铝有助于氧化矿藏的硫化,因而硫化浮选时参加该两种药剂能够显著地改进浮选作用。可用硫化法处理的氧化铜矿藏,首要是铜的碳酸盐类,如孔雀石、蓝铜矿等;也可用于浮选赤铜矿,而硅孔雀石如不预先进行特殊处理,则其硫化作用很差,不能硫化。 近些年来,国内外有人用多作硫化剂,来硫化浮选孔雀石和硅孔雀石。如美国的S·Chander教授选用四和来硫化浮选孔雀石,并选用多种测验手法从不同旁边面证明了四与比较,不只减少了黄药的用量,并且大大进步了浮选目标。1993年,原苏联Л·A·Tлa3yHOB别离运用、二、四及五来硫化浮选硅孔雀石,成果发现,在上述几种硫化剂中五的硫化作用好,用其硫化过的硅孔雀石浮选目标好。 某氧化铜矿选用惯例硫化浮选法。该矿床的首要特征是铜矿石储量大、矿石档次低。氧化率高、结合氧化铜含量高,铜矿藏呈极细粒嵌布,归于难选氧化铜矿石。 该选矿厂处理的矿石以氧化矿藏为主,约占铜矿藏的60%~80%,氧化铜矿藏中又以孔雀石为主,硅孔雀石次之。氧化铜矿藏嵌布粒芳极细,多呈“染色体”,少数与褐铁矿共生。硫化铜矿藏以斑铜矿为主,辉铜矿及蓝铜次之,黄铜矿较少。脉石矿藏首要是白云石,次为石英,尚有少数的褐铁矿、电气石和黄铁矿。选厂选用阶段磨矿阶段浮选流程,生产目标为:原矿含铜0.76%,铜精矿含铜17.66%,回收率为75.04%。 硫化浮选进程中,为加强硫化作用,应按必定份额和用量分段增加,来到达较好硫化作用。生产实践标明,不同矿石有不同的较好用量规模,把握妥当,泡沫矿化杰出,可进步回收率2%~3%。的较好用量是:氧化率45%以下,用量不超越1700g/t;氧化率55%~65%,用量2200g /t;氧化率75%以上,用量不超越3500g/t。并且应坚持合作运用调整剂磷酸乙二胺和硫酸铵,以强化硫化进程。 选铜一般运用设备是:颚式破碎机-球磨机-螺旋分级机-拌和桶-浮选机,到这儿一般就能够出来铜精粉了,可是一般我们还需要装备斜管稠密箱进行尾矿的浓缩,下一步装备真空过滤机进行脱水到15%左右。

硫化铜精矿的强氧化熔炼

2019-01-08 09:52:48

硫化铜的强氧化熔炼,是在强化传质传热条件下的精矿自然溶炼。早期处理硫化铜矿时,也属于自热造锍熔炼。那时,开采出来的矿石品位高,含铁和硫高(黄铁矿型铜矿石)。块状矿石在鼓风炉内熔炼,只需加2%~4%的焦炭补充热量和支撑料柱。过程进行所需要的热主要来自黄铁矿的氧化反应。随着铜消费和生产的增加,这样的块矿相当少了。熔炼处理的原料逐渐转为粉状精矿,其设备也相应地以反射炉为主。无论是熔化粉状精矿的反射炉,或是先经结制块的鼓风炉以及电炉等这一类传统熔炼方法,均难以实现自热溶炼。能源紧张和环境保护的压力推动了新冶炼技术的研究与开发;制氧技术的进步使氧气成本大大下降,在冶金工业中使用工业氧气已是非常普遍现实的事;以喷射方式强化固-液-气相互之间的反应,在理论和实践上都取得了巨大的进展。这一切导致了硫化精矿的自热熔炼在一个新的高度上重新出现。研究工作广泛深入。在实践上日益显出高的经济效益。表1列出了现代铜火法冶炼技术的发展情况。 表1  现代铜火法冶炼技术发展序 号工 艺发明国或首先使用国开始工业应用年代国 家公司名称1 2 3 4 5 6 7 8 9 10 11奥托昆普闪速溶炼 因科氧气闪速熔炼 三菱法炼铜 诺兰达法溶炼 白银炼铜法 瓦纽可夫溶炼法 特屁恩特溶炼法 顶吹沉没熔炼(Ausmelt及IS)法 氧气顶吹旋转炉 氧气顶吹自热熔炼 反射炉氧气喷洒溶炼荷 兰 加拿大 日 本 加拿大 中国白银 俄罗斯 智 利 澳大利亚 加拿大 俄罗斯 美 国奥托昆普公司 国际镍公司 三菱金属公司 诺兰达矿业公司   哈萨克斯坦某公司 特屁恩特公司 芒特艾萨公司 阿费顿矿业公司 中国(金川)公司 莫伦西公司1949 1953 1974 1973 1977 1977 1977 1991 1974 1994 1984     硫化铜精矿的自热熔炼是基于精矿中以下矿物的氧化反应和造渣反应。      实际冶金计算中,一般按精矿中硫量直接计算,1kg硫放出热为9283kJ。     在铜精矿闪速熔炼冶金计算时,按精矿中铁含量[Fe]精、硫含量[S]精和铜含量[Cu]精计算:      表2列出了一些溶炼方法的能耗、烟气二氧化硫浓度比较。     表2  各种溶炼方法的能耗、烟气中SO2浓度比较熔炼方法产出铜锍品位/%能耗/J·t-1(阳极铜)烟气中SO2/%反射炉熔炼生精矿 反射炉熔炼热焙砂 电炉熔炼干精矿 奥托昆普闪速炉1000℃热风加少量O2 奥托昆普闪速炉200℃热风 因科闪速炉 三菱法连续炼铜(熔炼炉) 诺兰达连续炼铜 顶吹沉没熔炼炉(ISA)①35 43.5 35 59.0 61.4 54.3 65.5 75.0 54.122.154×1010 1.818×1010 2.834×1010 1.80×1010 1.388×1010 1.160×1010 2.468×1010 1.433×1010 1.964×1010约1 约1 小于2.5 大于13 大于15 80 14~15 17 14~15.7     ①云南铜业股份有限公司2003年生产指标(能耗指标是在尚未配套余热发电系统条件下的数据)。

硫化镍

2017-07-04 14:59:01

硫化镍晶体呈 黄铜 黄色,粉末呈黑色。密度:5.3-5.6g/mL,25/4℃。熔点797℃。生态学资料对水体是危害的,即使小量产品不能接触地下水、水道或污水系统,未经政府许可勿将材料排入周围环境。性质与稳定性常温常压下稳定避免的物料:氧化物、酸。相对密度5.3~5.65(α);5.0~5.6(β);5.34(γ,30℃)。熔点797℃(α);810℃(β);γ-NiS在396℃时转变为βNiS。α-NiS溶于盐酸,在空气中转变成Ni(OH)S。β-NiS在2mol/L HCl中煮沸,迅速溶解。它们均溶于 硝酸 和 王水 。储存方法常温密闭避光,通风干燥。注意事项玻璃在制作过程中有时会在其内部残留一种叫硫化镍的特殊杂质。之所以说它特殊,是因为它不会像一般物质一样 热胀冷缩 ,恰恰相反,它会热缩冷胀。由于 钢化玻璃 是由普通玻璃高温骤冷处理之后制成的,在这一过程中,硫化镍的体积先是受热缩小,后又冷却膨胀,这使钢化玻璃内部出现很大的应力,这就会使钢化玻璃出现自爆现象。这样的钢化玻璃通常会在制成后不久自爆,但极个别情况时,当硫化镍恰好位于钢化玻璃中间时,自爆就会延迟,最长可以延迟到几年之后。玻璃中有NiS杂质,也就是硫化镍,这个玩意无法从玻璃里完全剔除,总有一定量的NiS存在于玻璃里,这种杂质想性质同水比较相似属于 冷胀热缩 的东西, 钢化玻璃 在钢化的过程中他会缩小,冷却过程中又会变大(伴随位移的),但是因为冷却时间很短,不足以让它还原成常温的大小,所以在冷却完成后还会继续变化,这种变化就可能会造成钢化玻璃自爆,这是钢化玻璃不可避免的。 

难处理富锗铅锌硫化氧化矿新技术

2019-01-21 18:04:55

为开发利用云南驰宏锌锗股份有限公司深部铅锌矿资源,北京矿冶研究总院和云南驰宏锌锗股份有限公司创造性地开发出“等可浮-异步选铅-锌硫异步混选-铅锌硫分离-氧化铅锌矿不脱泥硫化电位控制浮选”新技术,并成功应用于复杂难选铅锌硫化氧化混合矿的选矿过程,技术上取得了突破性进展。 1、依据铅硫、锌硫关系密切的特点,根据等可浮的原理把铅锌硫分成两部分:“铅硫”部分和“锌硫”部分,首次将异步和等可浮两个流程的核心技术有机结合起来,形成等可浮异步浮选和混选流程结构,成为硫化矿浮选的骨干流程;采用有效的针对性捕收剂,保证了铅、锌、硫、银、锗等金属得到最大限度的回收,确保了铅硫在低pH下分离,为后续氧化矿有效浮选创造了必要条件。 2、氧化铅锌矿不脱泥硫化浮选新技术,解决了矿石中铅锌氧化矿物和脉石矿物同为碳酸盐矿物、泥化程度高的难题,是获得混合矿浮选技术指标突破性进展的关键技术。 最终的选矿产品结构简单,便于操作管理,该技术整体上达到国际领先水平。

混合硫化-氧化锑矿石选矿工艺

2019-01-24 09:37:13

选矿厂采用手选-重选-浮选-重选流程 一、碎矿与手选 1、碎矿为两段一闭路流程。原矿最大块度为400毫米,由提升机提升卸入选矿厂的粗矿仓,用电磁振动给料机给入第一段600*900mm鄂式破碎机。矿石被破碎至-150mm,经1230双层振动筛洗矿并筛分为三个级别:-150~30mm粒度矿石再次筛洗后手选,-28~18mm粒级矿石进入第二段破碎,并全部破碎至-18mm,经螺旋分级机脱泥,返砂进入细矿仓储存,矿泥进入浓缩机中脱水浓缩后单独进行浮选处理。 2、手选为两段作业,采用正手选以选出成品硫氧富块锑精矿与贫精矿,贫精矿经破碎后进入第二段闭路碎矿系统。手选废石用自卸卡车运往废石场。 二、重选和磨矿 1、重选经破碎和手选后的矿石,进行两段选别,第一段分三级跳汰机(-18+8,-8+2,-2+0mm),棒磨后再进行一次跳汰(-4-0mm)均得硫氧混合锑精矿。第二段跳汰尾矿进入球磨。 2、磨矿棒磨机用于处理-18+8,-8+2毫米两个粒级的跳汰尾矿,球磨机用于处理第二段跳汰尾矿,细磨产物再用浮选法回收硫化产物,此外尚有一台球磨机用于磨细混合精矿。 三、浮选 第二段跳汰尾矿经闭路磨矿后进行硫化锑矿物的浮选,采用的是一次粗选,一次精选,一次扫选的浮选流程。 四、摇床重选 用来回收浮选尾矿中的氧化锑矿物。 此外,选厂还采用了浮选-重选联合流程处理原生及次生锑矿泥。

硫化矿酸浸的工业应用高温氧化酸浸

2019-03-06 09:01:40

一、高温氧化酸浸 高温氧化酸浸是指温度在200 — 230℃,压力在4~6 MPa条件下进行浸取。此刻硫化矿的硫都氧化为硫酸根,黄铜矿的总浸取反响能够写作: 2CuFeS2+H2SO4+8.5O2 ==== 2CuSO4+Fe2(SO4)3+H2O 共生的黄铁矿在这样的浸取条件下也被浸出,在酸度较低时,高铁离子水解生成赤铁矿,发生硫酸,如下式:   Fe2(SO4)3+3H2O ==== Fe2O3+3H2SO4 按此反响计量比核算,氧化每公斤硫需氧气2.12kg。如一种精矿含Cu 26%、Fe 31.3% 、S36%,则溶出每公斤铜需氧气2.93kg。在不同温度和pH值及氧化条件下,铁还能够沉积为针铁矿FeOOH,酸型黄铁矾(H3O)Fe3(SO4)2(OH)6以及碱式硫酸铁Fe (OH)SO4。可是因为这些沉积组成不一样,发生的硫酸量也不同。如生成(H3O)Fe3(SO4)2(OH)6的反响为: 3Fe2(SO4)3+14H2O ==== 2(H3O)Fe3(SO4)2(OH)6+5H2SO4 每摩尔Fe3+水解发生的酸(H+)仅为5/3mol,而生成赤铁矿时,每摩尔Fe3+水解发生的酸(H+)为3mol。 铁沉积的稳定性影响到浸取渣排放的安全间题,以赤铁矿的稳定性最好,不会进一步水解释出酸,遇石灰不反响。碱式硫酸铁等与石灰反响,铁离子进一步水解。因而不管生成碱式硫酸铁或许酸型的黄铁矾(H3O) Fe3(SO4)2(OH)6,当从渣中化提金时,石灰耗费量往往很大。 二、黄铜矿和混合矿的酸 加拿大谢尔特•高登(Sherritt Gordon)在1954年成功将加压浸应用于镍黄铁矿浸取的一同,也进行了许多酸浸研讨。他们研讨过一种混合的镍黄铁矿—黄铜矿—磁黄铁矿的浸取,成分为:Ni 10%、Cu5% 、Fe 30%、S 30%。当温度在210℃和氧分压700kPa时,镍和铜的浸取率可到达99%。 20世纪90年代,科明科(Cominco)工程服务公司、佩莱•瑟侗(Placer Dome)公司、通用黄金资源公司 (General Gold Resources) 等试验过高温浸取黄铜矿的工艺。如试验研讨了斑岩铜矿、黄铜矿、黄铜矿—斑铜矿混合矿(含Cu 41.4%、Fe 22.2%、S 28.0%)等的浸取,在200~210℃,2MPa氧分压下,60 min,铜浸取率都在99%左右。浸出液含铜36~78g/L、硫酸40~31 g/L、铁小于lg/L。 三、高杂质含黄铜精矿的酸浸 在高温氧化酸浸时,砷、锑、秘等金属与铁一同沉积。在高温酸浸一种黑黝铜矿为主的精矿时,样品成分为:Cu 26.5%、Sb 13.2%、 As 6.8%、Fe 2.0%、Zn 2.9%、S 19.4% 、Ag 0.27%,事前参加硫酸亚铁,使Fe/(As+Sb)=1.5/1(mol )。在220℃和600kPa的氧分压下,铜和锌的浸取率别离到达95.4%和95.0%。渣用氯化物溶液浸取银,浸出率到达95.4%。 除了生成铁  Fe2(SO4)3+2H3AsO4 ==== 2FeAsO4+3H2SO4 铁离子和根还生成碱式盐 2Fe2(SO4)3+2H3AsO4+(2+n)H2O ==== 2Fe2(AsO4)(SO4)OH·nH2O+4H2SO4 常见的含砷、锑铜矿除了黑黝铜矿(Cu12Sb4S13),还有硫砷铜矿(Cu3AsS4)、砷黝铜矿(Cu12As4S13)。高压浸取一种含(%):Cu 22.6、Sb 0.5、As 8.6、Fe 18.0、S 35.4、Ag 61g/t、Au 844g/t的精矿。在200℃经3h浸取或220℃下浸取1h,硫的氧化率到达99%,简直悉数的锑及多于94%的砷沉积到渣中。铜的浸取率在95%~98%,是因为溶解的铜又生成了一种含有Fe-Cu-As-S-O的沉积。进步浸取温度,生成的不稳定硫酸盐沉积量增大,在化时耗费更多的石灰。220℃的渣化浸金时耗费石灰达130kg/t,而200℃的浸取渣仅耗费50kg/t。金的化回收率在87%~96%之间。银的回收率很低,是因为构成银的黄铁矾盐的原因。 四、孔科拉流程 孔科拉矿石的首要铜矿藏是辉铜矿、斑铜矿,其次才是黄铜矿。因而它的精矿的特色是:高铜,低硫,低铁和高硅,而且含有钴矿藏,所以在熔炼时有必要配人黄铁矿和石灰。可是,这些特色使它十分合适选用加压浸取。孔科拉深部矿样中斑铜矿占铜矿藏的22%、辉铜矿18%、黄铜矿11%、铜蓝5%,首要脉石是钾长石(19%)、石英石(8%)和云母。钴首要以硫铜钴矿与铜矿藏共存。 南非的盎格鲁·阿美利加研讨室(AAC)受托付就孔科拉矿的冶炼,并结合恩昌加的难冶矿的使用,提出了一个酸的供需坚持平衡的联合湿法流程,流程图见图1。图1  孔科拉工程的流程 AAC的试验总共取了6个不同的钦可拉难冶矿样,其间一种典型的成分和孔科拉精矿样品一同列于表1。在进行了充沛的小试验之后,依照上述流程图进行接连的中间工厂试验,规划为4kg/h精矿和2kg/h难冶矿。氧化剂为纯氧。硫化矿加压浸取和难冶矿的两段常压浸出条件均见表2。 表1  孔科拉精矿和钦可拉难冶矿典型成分成分%CuCoFeAlMgCaMnNiSiZnCO3S孔科拉精矿41.440.46.513.010.880.350.0210.222约15难冶矿1.030.060.945.263.480.580.1429.70.022.48表2  孔科拉流程中试浸取条件矿藏工序温度/℃停留时间/h总压/kPa氧分压/kPa硫化矿分化碳酸盐6532300700加压浸取2001难冶矿一段常压302二段常压656    图2是浸取进程到达稳态时,各个取样点的铜、铁、钻和游离酸的均匀浓度散布。取样点1、2为碳酸盐分化前后的成分,当参加酸后,铜和铁都有显着的溶出,游离酸升至49g/L.取样点3至8别离是高压釜6个室的样品,因为样品是从200℃的釜中放出的,取样时有很多蒸汽蒸发,釜中溶液的浓度约为图中浓度乘以0.8后的数值。9是取自减压槽的样品。图2  孔科拉流程浸取进程中各首要成分的浓度散布这些结果标明,在釜中浸出的铁很快氧化、水解,然后沉积。沉积包含赤铁矿和铁的碱式硫酸盐。酸首要耗费于铜和钴的浸出反响,固体样品的分析标明,铜约在40mim时已浸出结束,而钴浸取则需求60min才干完结。铜矿藏的浸出次序为:斑铜矿>辉铜矿>铜蓝>黄铜矿。

氧化铜矿硫化浮选工艺的改进工作

2019-02-27 11:14:28

在我国氧化铜矿硫化浮选三十多年的出产实践中,在浮选工艺上也进行了很多的行之有效的改进工作,积累了极其丰富的经历,有力地促进了出产目标的进步,节约了动力和原材料耗费。 1. 优先选金工艺 为了改进氧化钢铁矿石中硫化钢和伴生金银的浮选,氧化铜选矿厂选用了优先选金-氧化铜矿硫化浮选的工艺流,于1983年头改造完结,进行出产调试,选出了含金75克/吨左右的金精矿,进步了金的收回率,对铜精矿档次和收回率的进步也有必定效果。 该工艺的特点是:首要运用少数的丁基铵黑药,丁黄药及松醇油,浮选硫化铜矿藏,防止大盈的按捺,经5分钟左右的浮选时刻,可得出高质量的铜精矿。然后再加,丁基黄药和松醇油浮选铜的氧化矿藏。 2. 环射式浮选机的运用 2.7米3环射式浮选机,对含铁高的氧化铜铁矿石的浮选适应才能和效果较好。在氧化铜矿选厂进行工业实验后,用66台更换了本来运用的162台XJK-1.1型(即5A型)浮选机进行出产试用。1981年通过披术判定,今后一向在出产中运用。与5A浮选机比较,该机容积处理才能进步10%,耗电削减12--26%,浮选药剂耗费节约10%。 环射武浮选机具有槽内矿浆循环量大,浆气触摸时机多,吸气量足,空气弥散度高、气泡上升旅程短、泡沫多,浮选速度怏等长处。加之该机为浅槽型,拌和力强,矿浆运动轨道呈“W”型,粗粒矿砂不易沉积,因此也克服了5A浮选机呈现的“压槽“现象。确保了出产的安稳,继续进行。 3. 归纳回牧的研讨 对代表270万吨难选矿石的氧化铜Ⅳ号矿样进行了Cu,Fe,Au,Ag归纳收回实验,提出了新的药方和流程。原矿含2.27%Cu,45%Fe,1.2克/吨Au和12.5克/吨Ag。铜氧化率95.79%,结合率23.17%。 实验结果表明,在优先选金作业中,必要捕收剂选用妥当,在使少数细泥浮游的一同,易浮的金、银和硫化铜矿藏也一同进入泡沫。丁铵黑药与氧肟酸“混合剂“共用,在粗选中,金的含量可由原矿的1.2克/吨富集到50克/吨以上,再通过精选.能够得出含Au>100克/吨,Ag>30克/吨的富银金精矿。 关于选金之后的氧化铜矿的浮选,实验结果表明,适量的可强化对脉石的按捺,有助于氧化铜的浮游;增加水玻璃能进步精矿富集比;少数的羧甲基纤维素对涣散矿泥,削减铜浮选泡沫中矿泥的含量有必定优点。而进步铜浮选目标的关键是选用适宜的捕收剂品种及其混用份额。 化验分析和岩矿判定结果表明,铜浮选中矿(包含扫选泡沫和精选I槽内产品)含结合铜较高(约50%),单体铜矿藏较少。将中矿回来或独自精选效果欠安。但在常温常压下用硫酸浸取(液固比=3:1,pH=2-3.拌和2小时),铜的浸出率可达65%-70%。其间游离氧化铜浸出率90%~95%,结合铜浸出率30%-40%。浸出液能够进一步用萃取电积方法处理。然后可使总铜收回率进步4%-6%。 在铜浮选过程中,90%的铁被留在中矿扫选槽内矿浆中。为简化流程,充分利用铜扫选残留的碳酸钠,补加少数硫酸锌(300-500克/吨),以油脂加工副产品(150-200克/吨)作捕收剂,浮出赤铁矿,再经弱磁选(800--1000奥斯特)选出磁铁矿,总的铁精矿档次>60%Fe(Cu 4. 浮选药剂的混合增加 氧化铜选厂做了起泡剂、捕收剂,调整剂混合后增加的实验,对进步浮选目标,下降药剂耗费,有显着效果。把,黄药,松醇油三种药剂改为经由同一条管道增加,削减了加药设备,减化了操作。

含-金砷的硫化物精矿的压热氧化浸出

2019-02-13 10:12:38

从含砷的精矿中收回金是最为杂乱的一个问题。这种精矿难处理的底子原因在于:金在硫化物(砷黄铁矿和黄铁矿)中呈细粒浸染状况存在,以及在某些精矿中存在有能吸附化溶液中金的活性含碳物质。    依据对处理这类精矿的很多研讨成果,现提出下列几种办法:    (1)氧化焙烧(一段焙烧或两段焙烧),然后对焙砂进行化处理(1.2);    (2)氧化焙烧,然后对焙砂进行熔炼,使之成为含铁冰钢或铜合金;    (3)氧化焙烧,然后用氯化挥发法从焙砂中收回金;    (4)将原始精矿(未焙烧的)直接熔炼成含铁冰铜;    (5)细菌浸出,然后对浸渣进行化。    一切这些焙烧工艺计划的一起缺陷是金在细粒含砷烟尘中的丢失大。在从焙烧后的焙砂中收回金时所遇到的困难就更大。例如,对焙砂进行化时金收回率不太高。对焙砂进行熔炼(例如,精矿直接熔炼)只能削减进一步处理以取得制品金的物料量。细菌浸出法比较新,可是,现在选用这种办法还不能得到很高的金收回率,而且也不能综合利用精矿中所含的硫。    解离与硫化物共生的细粒浸染金最有发展前途的办法是压热氧化浸出法。然后用吸附化法或普通化法从不溶的压热浸出渣中进一步收回金。    本文对砷黄铁矿和黄铁矿进行压热浸出的动力学和机理作了研讨,以期能够选定使硫化物充沛而敏捷地氧化的最佳条件。这些研讨的成果已被用于苏联某些矿石的浮选精矿试样的工艺研讨之中。        用粒度为+10~100微米的含金-砷精矿作为动力学研讨的试样。原始物猜中含铁32.7%,硫34.3%,砷6.0%。依据X-射线结构分析和矿相学分析的材料来看,这种物猜中的硫化物部分为砷黄铁矿和黄铁矿。一起用化学物相分析也证明晰有14%的砷是以氧化物状况存在。它们是在矿石和精矿的长时刻堆存、磨矿和浮选进程中构成的。    为了研讨上述硫化物产品的氧化动力学,曾利用了带有涡轮搅拌器的《维汁尼阔夫斯基,式钛质压热浸出器,其容积为1升。为了扫除或许发生的进程的分散按捺现象,在各次实验中所用的固液比均为1:50。压热浸出器中温度和压力都坚持稳定(其精确度分别为±2℃和0.2大气匝)。实验完毕后,矿浆进行过滤,不溶性浅渣在过滤器顶用水洗刷。,分析滤液中的砷和铁。不溶的压热浸出渣(扣过滤器-起)用4N的溶液进行处理,温度为30~40℃,处理时刻2小时。测定滤液中的砷相铁的含量。砷黄铁矿的氧化串是依据转入压热浸出液和提取液中的砷含量来核算的(应考虑到原始物猜中有14%的砷呈氧化物状况存在)。依据对上述溶液中铁的分析(不包括因为呻黄铁矿氧化)9成果而转入溶液中的铁》来测定黄铁矿的氧化率。    在氧的分压为2大气匝和:硫骏浓度为26.4克/升的条件下,研讨了温度对砷黄铁矿氧化速度的影响(见图1,a)。如此高的溶液酸度,一方面契合在对含金精矿压热氧化浸出的工艺溶液中实践的硫酸浓度,另一方面能够确保整个实验进程中溶液的酸度稳定,因为因为Fe(III)的水解效果而使溶液酸化的或许性很小,能够忽略不计。体现活化能的数值为13.4千卡/克分子。这就标明,所选用的压热浸出的条件能够确保浸出进程的顺利进行,而不会因分散效果致使浸出进程杂乱化。 [next]     在不同的氧压(温度130℃,硫酸浓度为26.4克/升)下,砷黄铁矿的氧化动力学如图1,6中所示。对这些成果的处理标明,氧化进程的速度与氧分压的0.75次幂成正比。这是一个有利于在动力学范围内进行氧化进程的弥补论据。溶液的酸度与温度和氧分压不同。它对砷黄铁矿氧化速度的影响甚小。咱们知道,Fe(Ⅲ)离子是适当强的氧化剂。在压热浸出进程中,它们能底子改动硫化物的氧化速度。因而,研讨Fe(Ⅲ)对砷黄铁矿氧化动力学的影响是很重要的。为此,曾在温度为130℃和氧分压为2大气压条件下作了一组实验。实验用的酸性溶液(26.4克/升H2SO4中含有硫酸铁(其浓度各不相同)。实验成果(见图1,a)标明Fe(Ⅲ)离子能大大进步氧化进程的速度。例如,在Fe(III)离子浓度为5克/升时,砷黄铁矿的氧化速度进步一倍多。将Fe(III)离子的浓度进步到20克/升时,可使氧化进程的速度进步三倍。     依据这些实验成果,提出了有关砷黄铁矿氧化的两个最或许的机理:(1)在氧的效果下直接氧化; (2)在Fe(Ⅲ)离子效果下进行氧化。此刻氧的效果能使Fe(II)化成Fe(III)。    在没有氧的情况下,用硫酸铁的酸性溶液CFe(Ⅲ)和H2SO4浓度分别为10克/升和26.4克/升。对原始物料浸出实验(图2,a)成果证明:在这样条件下砷黄铁矿的氧化速度与砷黄铁矿在氧压效果下,但没有人工增加Fe(Ⅲ)离子时的氧化速度不差上下。这就证明依照第二个机理进行氧化在原则上是或许的。在120℃和130℃时呈现的氧化进程的反常现象或许与必定数量的元素硫的构成有关,因为它们在高温下敏捷被氧化。     有关砷黄铁矿依照第一个机理进行氧化的或许性问题是十分杂乱的。虽然这一机理在原则上是有或许的,也不会引起人们置疑(至少是在氧化的开始阶段,因为那时溶液中Fe(III)离子的浓度极低),可是要用直接实验法点评这一机理在整个氧化进程中所起的效果仍是比较杂乱的。这是因为在溶液中自身存在有黄铁矿和砷黄铁矿的氧化产品--Fe(Ⅲ)离子。因而,利用了下列办法,即在氧的效果下(温度为100℃和H2SO4浓度为26.4克/升和Fe(III)浓度为10克/升),在硫酸铁酸性溶液中使精矿氧化。由此能够得出,在氧化进程按第二条机理进行的情况下,氧的分压对氧化速度的影响是十分小的,能够忽略不计。这是因为在Fe(Ⅲ)离子显着过量的情况下,其浓度能够认为是固定不变和等于原始的浓度,而不取于它们再生进程的速度。    这些实验成果(图2.6)标明,在氧的效果下,砷黄铁矿在硫酸铁溶液中的氧化速度比没有氧时要快一些。因而,这些实验成果标明,砷黄铁矿是一起依照上述两个机理进行氧化的。    在工业上,选用压热浸出法处理含砷硫化物精矿时,这两个机理中的每种各占多大份额,都将取决于具体完成这一浸出进程的条件。可是,在一切的情况下都应该估计到,当溶液中的Fe(Ⅲ)浓度适当高时,第二个机理的相对比重会随浸出进程的进行而进步。[next]    至于黄铁矿的压热浸出进程的氧化动力学方面也作了许多研讨。在这些研讨中,由Maxxen和Xannep,TepnaxXene和nannexcll所作的研讨成果最具体牢靠。因为这些研讨所得出的首要定论互相共同。在本文中力求将纯黄铁矿的氧化动力学规则与黄铁矿和砷黄铁矿一起氧化时得到的组成类似产品的氧化动力学进行了比较。    图3,a为不同温度条件下(酸浓度为26.4克/升,氧的分压为2大气压)黄铁矿的氧化动力学。阿尔尼乌斯(AppHHy)方程式说明晰氧化进程的速度与温度的联系,表观活化能的数值为11.5千卡/克分子,并证明晰氧化进程是在动力学范围内进行的。氧的分压对黄铁矿氧化速度的影响见图3,6(温度为130℃,溶液酸度为26.4克/升硫酸)。黄铁矿与砷黄铁矿不同,它的氧化速度与氧压力成正比。这与曾经的研讨数据彻底共同,也是黄铁矿与其他硫化物不同的一个重要特征。进步溶液的酸度,对加速氧化进程的影响较小。    因而,应当留意,砷黄铁矿的存在也不能改动黄铁矿氧化的根本规则性。    从工艺上看,黄铁矿与氧的反响速度比砷黄铁矿慢得多,而反响级数较高,这一点是很重要的。这样使咱们能在工艺方面得出重要的定论:(1)在挑选压热浸出参数时,首要应当考虑到敏捷而充沛使黄铁矿(是最难处理的硫化物)氧化的或许性,(2)因为硫化物氧化得不彻底而形成的金丢失,首要在于黄铁矿氧化得不行充沛,而不是砷黄铁矿氧化得不行彻底。    压热浸出工艺实验时,选用了下列组分的几种含金精矿试样。精矿试样中,含铁24.2~34.3%,硫21.8~27.3%,砷4.9~9.4%,金31.3~43.0克/吨。一切试样中的金均呈细粒染状况存在,并与黄铁矿和砷黄铁矿共生。某些试样还含有4~5%碳,这样又增加了处理工艺上的难浸性。    压热浸出是在《维什尼阔夫斯基》式钛质压热浸出器中进行,其容积为1升和5升。用水作为原始液相。36~80%铁(首要呈Fe3+状况),80~98%硫和12~40%砷转入压热浸出液中。不溶性的压热浸出渣的产率动摇在54~80%之间。压热浸出渣在经洗刷和石灰处理之后送去吸附化(用AM--26阴离子交流剂)或许进行普通的化处理。    所得成果证明:压热浸出时的温度、氧分压和浸出时刻是决定金收回率的首要因素。在最佳条件下进行压热浸出后,能够使对压热浸出渣进行吸附化时的金收回率到达90~95%。这就比对压热浸出渣进行惯例化时高2~3%o    与焙烧工艺比较,用压热浸出法的长处在于金的收回率较高。

硫化矿酸浸的工业应用中温氧化酸浸

2019-02-28 11:46:07

中温浸取大致在150~170℃,往往在开端阶段浸取速度比较快。可是跟着构成的单质硫量的增加,反响速度逐步下降。硫的熔点因结晶状况不同而异,斜方硫熔点385.8K。386.4K时斜方硫转化为单斜硫,熔点变为392K。尽管进步反响温度有利于硫化矿的浸取,可是实践中的经历标明,发生单质硫的最好温度规划是155~160℃。高于这个温度规划,液态硫的黏度随温度升高而显着增加,并且开端氧化为硫酸根。 前期的研讨把浸取温度都局限于110-115℃,也即低于硫的熔点,为的是避免熔融硫包裹未浸取的颗粒。因为液态硫非常易于滋润硫化矿,特别是硫化铜矿的表面,导致包覆或聚会。多年来现已发现许多化合物能够作为表面活性剂或分散剂,用于削减液态硫对硫化矿的滋润,然后削减硫对硫化矿包覆或聚会。其间用得最多的是木质素磺酸钠,还有邻二胺(OPD)和加拿大魁北克省的一种树皮和碎木材的提取物(商品名Quebracho)。浸取液中参加少数氯化物也能够非常有用地到达上述意图,在这个发现的基础上,开发了好几个流程。近来加拿大的迪那泰克(Dynatec )公司的研讨人员发现,无论是在浸取黄铜矿或许闪锌矿时,运用少数煤粉也能够非常有用地削减硫和硫化矿的聚会。 在中温酸浸的开发研讨方面,早在20世纪70年代其时苏联的研讨人员就发现,浸取温度在硫的熔点之上,加人少数氯化物能够强化镍铁磁黄铁矿的浸取,发生的硫不会阻挠硫化矿的进一步浸取。诺兰达(Noranda)矿业公司开发了一个浸取黄铜矿的流程,浸取温度在130~145℃。 近十多年中温浸取黄铜矿很受重视,人们在战胜产品单质硫对浸取反响的影响的研讨中,更重视从工业使用和工程方面寻觅解决方法。 在黄铜矿浸取时,浸取大部分铜的速度都非常快,只要大约10%~20%的铜需求比较长的浸取时刻。为了缩短在高压釜中的停留时刻,采纳两段收回铜,榜首段在较短的时刻内浸取85%~90%的铜。然后从渣中浮选收回未反响的铜精矿,枯燥后,熔融过滤,别离硫。余下的铜精矿再经磨矿后,回来浸取。尽管这种铜精矿是归于难浸的部分,并且仍含有许多单质硫,可是它们的浸取速度并不比质料铜精矿慢。而回来的单质硫在浸取过程中并不被显着氧化。因此,经过两次浸取,铜的总浸取率彻底能够到达98%~99%。在浮选时,大部分金进入硫化矿精矿。近来研讨标明,留在浮选尾矿中的金能够经过直接化收回,并且耗并不大。 关于含黄铁矿很高的低档次精矿,将黄铁矿悉数氧化是不合理的。迪那泰克采纳的方法是细磨矿石,稍稍延伸浸取时刻,使铜尽量浸出,但黄铁矿并不彻底氧化。金的收回率则决定于它的赋存状况以及在浮选时的散布。银或许生成银的铁矾盐,在银的含量较高时,必须用石灰在90℃左右分化铁矾盐,使银从其间释放出来才有或许收回。 一、迪那泰克增加煤粉的新工艺 在加压浸取方面富有经历的迪那泰克(Dynatec)公司在浸取锌精矿时,参加表面活性剂阻挠硫和硫化矿的包覆、聚会,并不非常收效。主要是因为表面活性剂在具有氧化性的酸溶液中分化。在很多的实验中发现,煤粉是最安稳和廉价的增加剂。不但在锌精矿浸取时如此,在铜精矿浸取时也相同有用,能够到达工业使用所需的浸取速度和较高的单质硫的产率。以含碳较低的煤为好,因为含碳高的煤是由芳烃化合物组成,而低碳的是烷烃化合物。实验结果标明,宜挑选碳含量25%~55%,主要是烷烃的煤。磨细到60μm。能够预先磨,也能够与矿粉一同磨。加人量与煤粉的成分和性质有关,在3~50kg/t矿石之间,一般在10kg/t左右。在浸取过程中煤粉的分化率不超越50%。 二、中温酸浸的CESL流程 1990年代,科明科(Cominco)工程效劳有限公司提出一种称作CESL的流程(CESL是该公司全称号缩写),选用二级浸取,处理目标包含低黄铁矿的黄铜矿和黄铜矿-斑铜矿混合矿。榜首级在150℃下用稀硫酸加少数加压氧化浸取,浸取液含有氯离子浓度约12g/L、15~20g/LCu2+ ,Cu2+是直接氧化剂。操控参加的酸量,使终究的pH值为2.3~3.5,铜转化为碱式硫酸铜。第二级常压浸取,浸取温度40℃,保持pH值为1.5~2,使碱式硫酸铜溶解,尽量削减铁进入溶液。因为反响是放热的,因此两段反响均不需加热。两段的浸取时刻均约1h。榜首段浸取时,铁转化为赤铁矿,90%的硫转化为单质硫,少数为硫酸根。一段浸出液萃取、蒸腾后,回来一段浸取,二段浸出液萃取别离铜,反萃后电积。流程如图1所示。全流程铜的收回率到达99%左右。萃取1和萃取2与萃取3有机相兼并,一同经洗刷反萃。图1  CESL酸浸萃取流程 (图中虚线为有机相走向) CESL流程还在不断改进,以习惯不同的质料,因此流程图也屡次改变。据估量,生产能力20万t的CESL流程的工厂的出资为2.25亿美元,为同规划火法厂的一半。生产成本估量在176~286美元/t电解铜。

碲化铋拓扑绝缘体应用前景广阔

2019-01-04 09:45:23

近年,拓扑绝缘体成为了物理学领域最为热门的话题之一,这些拓扑绝缘体材料可同时作为绝缘体和导体,因其内部结构阻止了电流通过,而其边缘以及表面却能保证电流运动。而最为重要的可能是拓扑绝缘体的表面可保证旋转极化电子运动,另外也防止了能量消耗时出现的电子分散情况。因这些种特性,未来拓扑绝缘体材料在晶体管、存储设备以及磁性传感器等能耗效率高的产品领域均有很大的应用前景。在《自然纳米科技》杂志上,来自加州大学洛杉矶分校(UCLA)的工程及应用科学院和澳洲昆士兰大学的材料研究所的研究员发表论文,展示了碲化铋拓扑绝缘子的表面传导渠道,说明了这些绝缘体的表面可以根据费密能级的位置来调节表面态的传导性能。USLA工程及应用科学院的教授Kang L. Wang说道:“我们的发现为新一代低功耗的纳米电子和自旋电子器件的研发创造了更大的空间。”碲化铋以其热电性能而出名,并因其独特的表面状态被推断为三位拓扑绝缘体。最近针对碲化铋散装材料开展的一些实验也说明了其表面态具有二位传导渠道。但是 这种能带隙小的半导体的热激发性以及纯度不够等原因造成的重要体散射也使得调整表面导电功能成为一项很大的挑战。而拓扑绝缘纳米技术的发展在这方面做出了补充。这些纳米材料绝大程度的夯实了表面条件,使得靠外力完全能控制表面状态。Wang和他的团队使用碲化铋纳米材料作为场效应晶体结构的传导渠道。这依赖于外部电场来控制费密能级,从而调控渠道的传导状态,最高传导率可达到51%。研究员们首次做到了展示调节拓扑绝缘体表面的可能性。中国小金属资源信息网

硫化锑精矿浸出氯氧化锑的中和

2019-02-25 09:35:32

中和的意图是脱除Sb4O5Cl2中的氯,使之转化为Sb2O3,一般用做中和剂:别的,在中和的一起参加适量的配合剂及转型剂,能够大大下降氧化锑中铅铁等杂质元素的含量(≤0.001%),并使氧化锑的晶形由斜方转化成立方,大大减小锑的光敏性,对坚持白度十分有利。中和进程中,用中和洗液调浆,在常温条件下中和,中和结尾pH值为7.5左右,并安稳10~20min。然后,过滤洗刷,中等规划以上工厂应该用带滤机,带滤机应设置过滤段和洗刷段,小规划工厂用真空抽滤槽过滤机,用纯水洗刷,洗刷快到结尾(8次以上)时,用AgNO3查看洗液无白色沉积停止。 由脆硫锑铅矿精矿和高锑铅阳极泥直接制成的高纯度氧化锑产品质量状况见下表。 表 新氯化-水解法及AC法直接制得的高纯氧化锑主要成分及杂质元素含量(%)No.Sb2O3PbAsFeCuBiSeSCl原料及办法299.830.00120.00980.00190.000690.00620.0020.00130.013脆硫锑铅矿精矿,新氯化-水解法399.910.00210.0170.0050.00290.00540.00230.00100.012499.810.00140.0210.00050.000260.00520.00240.00100.016599.850.0000.000170.00050.000010.0000.000-0.011高锑铅阳极泥,AC法799.850.0000.00000.00060.0000.0000.000-0.0095  注:新氯化-水解法未采纳除砷办法;AC法比新氯化-水解法多1个还原液的干馏进程,产出纯SbCl3后再水解。

高氧化率铅锑锌硫化矿选矿小型试验研究

2019-02-20 10:04:42

一般来说,含硫高的有色金属硫化矿矿石简略起火燃烧,国内外普遍存在,该类矿石有用金属氧化程度高,性质杂乱,选别难度大,现在尚无行之有用的选别技能,资源开发也不多。在大厂矿田,火烧锡石-多金属硫化矿矿石储量较大,该部分矿石含有锡、铅锑、铟锌等多种有用金属,储量丰厚,潜在价值高。其间锡石价值约占45%,能够用传统办法选别;铅、锑、锌归纳价值约占50%,但氧化率较高,别离到达10%~40%,用普通硫化矿选别办法无法取得抱负的选别目标。有必要探究有用的工艺流程和药剂准则,以到达归纳收回的意图,使难以运用的矿产资源提前得到归纳运用,给厂商和工业带来实践的经济效益,并给其他火烧硫化矿选别提供有利的学习。 一、原矿性质 (一)原矿分析 实验归纳矿样取自矿山原矿。该矿石首要有用矿藏为锡石、铁闪锌矿、脆硫锑铅矿、辉锑锡铅矿、黄铁矿、磁黄铁矿、毒砂以及稀贵金属银、铟、镉等,并含有少数的铜和铋,脉石首要是方解石和石英,试样的多元素化学分析成果见表1,矿藏组成分析见表2。 表1  实验原矿化学多元素分析成果(%)表2  实验原矿矿藏组成含量分析成果(%)(二)矿石性质特色 从原矿分析能够看出,原矿含锡档次较低,且锡石晶体嵌布粒度较细,并有较大一部分呈浸染 状嵌布于脉石与硫化矿中,特别与硫化矿亲近共生。各种硫化矿均呈以细粒为主的不均匀嵌布,且彼此嵌结比较细密,除黄铁矿磨至0.2mm以下根本解离外,其他硫化矿藏则需磨至0.1mm以下才彻底解离。其他,铅锑、锌矿藏的氧化率较高,锌矿藏的氧化率一般在11%左右,铅、锑矿藏的氧化率到达30%,最高时到达44%,35%%;一起还存在可浮性较好,性质与铁闪锌矿附近的磁黄铁矿,含量较高。 二、实验流程与药剂准则 依据矿石性质特色,该矿石属氧化矿、硫化矿混合结晶的杂乱矿石。同类矿石的生产实践标明,锡石简略过粉,硫化矿浮选粒度超越0.3mm就难以上浮,所以矿石磨至0.3mm比较适宜,该粒度不致构成严峻的锡石过粉。在此粒度下,锡石归纳解离度到达90.54%,铅锑锌矿藏的归纳解离度到达85%,浮出铅锑锌矿藏后,浮选尾矿中的锡石用重选办法处理,而铅锑矿藏则另与锌矿藏浮选别离收回。这是锡石2多金属硫化矿惯例的选别办法。因而,矿藏别离实验流程首要考虑了两个计划:铅锑优先浮选流程和全浮2铅锌别离流程。 该矿石选其他另一个要害问题是被严峻氧化的铅锑锌矿藏的浮选收回。关于氧化铅锌矿藏的浮选收回,国内外近几年首要研讨方向是:(1)研发氧化铅锌矿的选择性捕收剂,到达不必或少用完成分选的意图;(2)探究不脱泥分选工艺;(3)处理氧化锌矿与与碳酸盐的别离问题;(4)研讨氧化矿藏的选择性絮凝别离工艺;(5)深化优化惯例选矿工艺[1]。研讨工作虽然有必定的发展,但没有实质性的打破,选矿收回率低,归纳经济效益差。而大厂矿田被火烧氧化的铅锑锌矿藏又有其共同的性质特色,与氧化铅锌矿不同较大。据开始分析,该矿石被严峻氧化后,铁闪锌矿表面构成氧化铁薄膜,影响了锌矿藏的可浮性。脆硫铅锑矿表面构成硫酸铅掩盖,在矿浆中溶解亲水;Pb2+吸附在其间的辉锑矿表面后,亲水难浮[2]。这些特色决议了实验中有必要探究共同的药剂准则,以消除影响矿藏可浮性的各种因素。所以在两个流程实验中,侧重考虑了氧化铅锑锌矿藏的活化剂和选择性捕收剂以及它们与普通硫化矿浮选剂的组合效果。 三、成果与分析 (一)优先浮选流程实验 优先浮选流程工艺简略,所以实验中首要考虑了该计划。准则流程为:磨矿2铅锑浮选2锌硫混浮2锌硫别离。浮选给矿当选粒度为-0.3mm。依据当地选矿经历,实验探究了在中性至弱酸性(pH=6~7)矿浆条件下,选用丁铵黑药或乙硫氮做捕收剂,XSQ、或氯化做活化剂,独自或联合运用来优先浮选铅锑矿藏。开路条件实验流程图略,实验最好成果见表3。 表3  铅锑优先浮选条件实验成果(%)实验成果标明:选用铅锑优先浮选流程计划,铅锑精矿的档次和收回率均较低,较佳目标均为40%左右,锌精矿档次和收回率也偏低,只到达50%,70%左右。分析各产品粒度可知,铅锑精矿中+0.1mm的粗粒铅锑矿藏根本上没有上浮,丢失的铅锑金属大部份是在浮锌尾矿中,阐明浮选别离的粒度过粗。其他一个原因,部分铅锑矿氧化程度较深,在没有硫酸铜参加活化的情况下,这部分铅锑矿藏很难在优先浮选中上浮。阐明优先浮选流程并不合适该矿石的选别。 (二)全浮2铅锌别离流程实验 该计划准则流程为:磨矿2硫化矿全浮2硫化矿再磨2铅锑浮选2锌硫别离。硫化矿全浮给矿当选粒度为-0.3mm。铅锑、锌别离浮选给矿当选粒度为-0.1mm。 该计划先后进行了全浮作业药剂比照实验、全浮2别离流程开路实验和闭路实验。 1、全浮作业药剂比照实验   实验首要探究了氯化、、XSQ、X活化剂这几种药剂,在独自运用或合作运用的情况下对被火烧的铅锑锌氧化矿藏的活化效果,流程见图1。图1  全浮作业药剂比照实验流程图 比照实验成果标明,氯化和X活化剂对氧化铅锑锌矿藏的活化效果较差,的活化效果次之,XSQ的最好。实验发现易与矿浆中游离的铜、铅金属粒子发作化学反应,构成铜、铅的硫化物沉积,而相对添加了硫酸铜、XSQ与联合运用时的药剂用量。其他,在其它药剂条件根本相同的情况下,跟着全浮粗、扫选作业硫酸用量的添加,XSQ的用量可相对地削减。 实验条件(g·t-1):硫酸:3000;硫酸铜:450;黄药:512;2#油:147。 部分药剂比照实验成果见表4。 表4  全浮作业药剂比照实验成果(%)2、全浮2铅锌别离流程开路实验 在全浮作业药剂比照实验成果中,选定了XSQ做为氧化铅锑矿的首要活化剂,硫酸做为辅佐清洗、活化剂。实验对铅锑浮选作业的药剂准则做了比较详细的探究,先后对硫化矿按捺剂:、硫酸锌、、腐植酸钠、石灰进行了比照实验;其他,还探究了乙硫氮对铅锑矿的选择性捕收效果。流程实验较佳的比照成果见表5。 表5  铅锌别离较佳条件实验成果(%)实验成果标明:铅锑浮选作业在弱碱性矿浆条件下(pH=8左右),只选用惯例的+硫酸锌作按捺剂,合作运用少数的捕收剂乙硫氮,通过一粗二精一扫作业,便可取得较高质量的铅锑精矿,Pb+Sb金属含量到达45%以上,铅金属收回率到达58%左右。锌浮选作业选用石灰做黄铁矿、磁黄铁矿的按捺剂,用硫酸铜活化被按捺的锌矿藏,以少数黄药做捕收剂,通过一粗一精一扫作业,便可取得含锌48%,收回率73%以上的高质量锌精矿,锌矿藏比较照较好选。 (三)小型闭路实验 归纳比照全浮2铅锌别离流程与铅锑优先浮选流程的小型开路实验成果,全浮2铅锌别离流程的选别目标较好,故小型闭路实验仅选用该流程计划。与开路实验比较,闭路实验流程别离添加了一次铅精选和一次锌精选作业,以消除中矿循环回来对铅、锌精矿质量的不良影响,详细实验流程见图2。闭路实验成果见表6。图2  闭路实验流程 表6  闭路实验成果P%四、结语 1、大厂矿田火烧锡石2多金属硫化矿铅锑锌矿藏以表面严峻氧化为主,表面的氧化掩盖物严峻影响了矿藏的可浮性。 2、硫酸与XSQ归纳效果能铲除矿藏表面严峻氧化的多种掩盖物,使铅锑锌矿藏相对简略上浮。 3、乙硫氮对被氧化过的铅锑矿藏有较好的捕收效果。 4、选用全浮2铅锌别离工艺,用XSQ和乙硫氮别离做氧化铅锑矿的活化剂与选择性捕收剂,可取得较好的选别目标:铅锑精矿档次到达44.95%、收回率为60.92%;锌精矿档次到达46.37%、收回率为81.17%;全浮选尾矿中锡金属的收回率到达89.16%。 参考文献: [1] 方启学.西部氧化铅锌资源提取根本思路讨论[J].矿冶,2002,75-78(增刊):200. [2] 胡为柏.浮选(修订版)[M].长沙:中南工业大学.

硫化锌精矿

2017-06-06 17:50:00

硫化锌精矿是选矿中分选作业的产物之一,是其中有用目标组分含量最高的部分,是选矿的最终产品。将硫化锌精矿进行水冶等冶金加工,将比处理原矿显著改善过程的经济性。从税法角度来说,以精矿形式伴选出的矿石作为副产品,比如攀枝花矿山公司开采的钒钛磁铁矿,钒钛作为伴生矿,不征收资源税。通过选矿得出的有用成分富集的产品。每一个选别设备、选别作业或选别过程,都可得出自己的精矿。最终精矿则是选矿厂的最终产品,它的矿物化学组成、粒度及含水量均需满足冶炼厂或其他工业过程的要求。硫化锌精矿不溶于水、易溶于酸。见阳光色变暗。久置潮湿空气中转变为硫酸锌。一般由硫化氢与锌盐溶液作用而得。若在晶体ZnS中加入微量的Cu、Mn、Ag做活化剂,经光照后,能发出不同颜色的荧光。用作分析试剂、涂料、制油漆、白色和不透明玻璃,充填橡胶、塑料,以及用于制备荧光粉。由硫跟锌共热制得。随着科技的发展,硫化锌精矿被利用率已经越来越高,因此在近几年中,硫化锌精矿市场也逐渐成熟,硫化锌精矿价格也是水涨船高 

复杂难选硫化-氧化混合铅锌矿选矿分离技术

2019-01-17 10:51:24

长期以来,我国对多金属矿石的利用程度较低,多金属分离技术的选矿研究深度不够。受多金属分离技术限制,精矿互含较高,精矿品位波动较大,因此,加强对这类矿石选矿新技术、新工艺研究是非常必要的。除了在选矿药剂、选矿工艺、设备等方面要深入研究外,加强对浮选过程的分离控制研究也是必不可少的,它是提高精矿品位、降低生产成本的一条有效的途径。通过对多金属矿石的研究,为资源综合利用提供技术可行、经济合理的选矿工艺技术,促进经济发展、提高矿产资源战略储备量和合理化利用程度,具有十分重要的经济意义和现实意义。 1矿石性质1.1化学分析表1原矿化学多项分析/%单位为g/t原矿化学多项分析结果见表i,铅、锌物相分析结果见表2、表3.表2铅物相分析相别铅矾白铅矿方铅矿磷(砷钒)氯铅矿铁铅矾及其他形态总铅难溶铅矿含量/%表3链物相分析相别锌的总硫酸锌氧化物硫化锌其它形态总锌含量/%占有率/%由表2、表3可知,原矿中硫化铅占40.70%,氧化铅占43.50%,另有15.16%为难以回收的的磷(砷钒)氯铅矿。矿石中铅的分布较分散,锌主要以闪锌矿形式存在,硫化锌占锌总量的70.44%,氧化锌和其他形态锌占总锌的29.55%.试验矿样为硫化-氧化混合铅锌矿石,矿石性质极为复杂。 1.2矿物成分矿石中金属矿物以闪锌矿为主;其次有菱锌矿、黄铁矿、方铅矿、白铅矿、铅矾、菱铁矿、褐铁矿;少量及微量矿物有红锌矿、赤铁矿、磁铁矿、异极矿、铅铁矾、磷氯铅矿、黄铜矿、铜蓝、软锰矿、孔雀石等。矿石中非金属矿物以石英、长石、方解石、白云石为主。 复杂难选多金属矿石的分离技术关键是确定合理的产品方案、选择确定工艺流程方案、选择适宜的药剂制度、通过有效的工艺技术措施消除各作业有害离子影响、提高各类目的矿物的浮游及选别性能。 2.1确定产品方案该铅锌矿石性质复杂,铅赋存于多种形态铅矿物中。根据矿石性质研究结果分析,主要有用矿物将依类别产出,初步确定产出铅锌精矿、氧化铅精矿、锌精矿三种产品。 2.2选矿工艺流程方案选择工艺流程方案选择过程中,主要进行的是铅锌混合-分离浮选流程和铅锌部分混合-优先浮选流程对比,铅锌部分混合-优先浮选流程分别采用了依次选硫化铅-硫化锌-氧化铅,即先选硫化矿再选氧化矿;依次选硫化铅-氧化铅-硫化锌,即先选铅矿物,再选锌矿物。对比试验结果表明,采用铅锌部分混合-优先浮选流程方案可以获得较为理想的试验指标。 2.3铅锌部分混合-优先浮选流程闭路试验闭路试验流程见,闭路试验结果见表4.表4闭路试验结果产品名称产率/%品位/%Zn回收率/%Zn锌精矿铅锌精矿化铅精矿尾矿原矿单位为g/t先选硫化矿再选氧化矿闭路试验闭路试验中单一锌精矿品位49.65%,锌回收率77.81%;铅锌精矿Pb+Zn品位53.44%,Pb+Zn回收率51.61%;氧化铅精矿品位30.91%,氧化铅回收率31.79%;产品中铅总回收率为73.44%,锌总回收率为87.77%;银在精矿中得到富集,银的总回收率为75.2.4精矿产品物相分析闭路试验精矿产品铅、锌物相分析结果见表5.通过对精矿产品进行的物相分析结果可知,氧化铅精矿产品主要为白铅矿,铅锌精矿中硫化铅占70.27%,其他为铁铅矾及其他形式铅。锌精矿中硫化锌占87.37%,其他形态锌占11.8%.精矿产品性质与流程方案选别效果吻合,说明所采用的工艺技术方案合理、有效。 表5铅、锌化学物相分析结果名称铅矾中铅白铅矿中铅硫化铅中铅磷(砷钒)氯铅矿中铅铁铅矾及其他形式铅总铅硫酸锌中锌锌的总氧化物硫化锌中锌其他形态锌总锌锌精矿占含有量率%;一铅锌精矿占含有量率%;氧化铝精矿占含有量率%;3分析与讨论3.1铅锌精矿矿石中宜于浮选回收的方铅矿占有率仅为40.70%,白铅矿和铅矾中铅的占有率为43.5%,分布于碳酸盐及硫酸盐等盐类矿物中的铅难于综合回收,获得单合格铅精矿较难。其原因为:(1)该矿石氧化较深,铅矿物氧化产生的Pb2+使部分闪锌矿受到活化而易浮,使得铅锌矿物之间的可浮性差异很小而难以分离。(2)闪锌矿、方铅矿粒度细小,嵌布关系复杂,闪锌矿以各种不规则状嵌布于黄铁矿、方铅矿集合体中。造成铅锌精矿互含,铅锌分离困难。 3.2锌精矿矿石中锌品位较高为7.36%,锌氧化率29.56%,宜于浮选回收的锌矿物为闪锌矿,通过适宜的浮选工艺流程,77.81%的锌得到富集,使硫化锌矿物得到了较完全的回收,锌精矿中硫化锌占87.37%,其他形态锌占11.8%.该分离技术方案可产出较好的锌精矿产品。 3.3氧化铅精矿矿石中白铅矿占37.51%,由精矿产品物相分析结果可知,氧化铅精矿产品主要为白铅矿,占氧化铅中总铅的82.92%.说明主要的氧化铅矿物得到了较好富集。 原矿中伴生银为20g/t,主要分散富集于各类产品中,锌精矿中银品位68g/t,银回收率38.33%;铅锌精矿中银品位161g/t,银回收率27.05%;氧化铅精矿中银品位75.4g/t,银回收率10.05%.有必要对银的赋存状态与集中富集进行深入研究。 4结语云南某复杂难选多金属硫化-氧化混合铅锌矿石回收利用存在很大难度。采用铅锌部分混合-优先浮选流程,先选硫化矿再选氧化矿方案,依次浮选硫化铅锌-硫化锌-氧化铅,分别产出合格的铅锌混合精矿、锌精矿、氧化铅精矿三种产品,另有伴生银矿物在铅锌精矿和氧化铅精矿中较为富集。 选择合理的工艺流程方案和药剂制度,确定精矿产品方案,通过有效的工艺技术措施消除各作业有害离子影响,提高各类目的矿物的浮游及选别性能,是使复杂难选多金属硫化-氧化混合铅锌矿石得到有效的分离的技术关键。精矿产品物相分析结果表明,精矿产品的性质与流程方案选别效果是吻合的,说明所采用的分离技术方案合理、有效。 伴生银矿物分散富集于各类精矿产品中,对其进行有效的综合回收,还需开展更为深入的试验研究工作。

氯化物存在下硫化铜的氧化浸出过程

2019-01-25 13:37:06

湿法冶金方法处理硫化铜物料可避免二氧化硫的产生和排放, 但其中铜的浸出有赖于硫的水相氧化。在硫酸介质中, 无论用何种经济上可接受的氧化剂, 硫化铜矿物有效的氧化浸出都需要较高的温度和压力。例如在硫酸介质中用氧气浸出, 一般要求150℃以上的温度和1MPa 以上的压力, 工艺条件较苛刻〔1 ,2〕, 需要寻求一种操作更简便、条件更温和的湿法冶金工艺处理硫化铜物料。作者〔3〕曾在硫酸介质中引入少量氯化物, 用氧气常压下浸出辉铜矿精矿, 条件温和、浸出率高, 可以应用于其他硫化物料的处理。本文用此法处理一种硫化铜渣。    这里所称的铜渣是指高镍锍(习惯上称高冰镍) 选择性浸出所产生的渣。高镍锍在硫酸介质中用氧气加压浸出时, 可通过控制氧化条件, 选择性溶出镍而将铜留在浸出渣中〔4〕。铜渣实际上是以辉铜矿或类似的硫化铜矿物为主的铜精矿, 渣中含铜品位常高达60%以上, 但也含有一定数量的镍。此渣可出售给铜冶炼厂与铜精矿混合熔炼。若单独处理, 则不宜用火法。一则有二氧化硫的污染, 同时渣中的镍进入粗铜影响电解。本文报道在硫酸溶液中借助氯化物的作用以氧气氧化浸出铜渣的部分结果。    1  实验    1.1  物料和试剂    本工作所用铜渣为硫酸介质中高镍锍经一段常压与一段加压空气氧化所得的浸出渣, 其化学组成见表1 。表1  铜渣主要化学组成(%)CuNiFeCoPbAsSSiO2H2OAu(gt-1)Ag(gt-1)60.154.380.690.00317.580.515.997.08320[next]     铜渣的物相未作系统鉴定。但从镍锍选择性氧化浸出所涉及的化学反应〔1〕及相关文献〔5〕可知,渣中铜的物相主要有辉铜矿Cu2S 或类似化合物久辉铜矿Cu1.96S、蓝辉铜矿Cu9S5 , 同时还有少量铜兰CuS。此外, 由于镍锍选择性浸出后未充分洗涤, 铜渣中残存有硫酸铜和硫酸镍。而因镍锍选择性浸出时为实现铜镍的深度分离, 保证镍浸出液中Cu    浸出刚开始有约15%的铜立即溶出, 显然是铜渣中夹带的原选择性浸出液结晶的铜盐如硫酸铜和碱式硫酸铜的简单溶解所致, 并非硫化铜矿物的氧化所致。实际上在开始阶段氧化浸出较为缓慢,这归因于铜渣风化过程中矿粒表面形成的复杂铜镍氧化产物膜, 包括难溶的氧化镍。30~40min 后,随着表面产物膜的溶出, 铜的浸出显著加快。后期则因辉铜矿转变成铜蓝后, 浸出又趋缓慢。表面产物膜的保护作用导致铜渣的浸出行为与从辉铜矿精矿中的浸出有所不同。在辉铜矿的浸出中, 开始阶段铜的迅速浸出相应于辉铜矿的氧化, 至大部分辉铜矿转化为铜兰后浸出明显变慢。一般认为〔7 ,8〕, 辉铜矿的氧化浸出分为两个阶段。首先是辉铜矿经历一系列中间硫化物后最终变成铜蓝:                    Cu2S + 0.5O2 + 2H+ → (Cu2-xS) →CuS + Cu2+ + H2O    (1)    式中x= 0~1 , x =0对应于辉铜矿, x = 1 对应于铜蓝。中间产物Cu2-xS 包括Cu1.96S , Cu9S5 ,Cu7S5 和Cu7S4 等〔5 ,7〕。此阶段发生的是铜的溶出而无硫的氧化产物生成, 留下的固相中间产物从缺铜的辉铜矿至缺硫的铜蓝。第二阶段是铜蓝的氧化, 铜因与其结合的硫化物硫氧化成元素硫S0而游离进入溶液。酸度较低时也会有少量硫氧化至硫酸:                       CuS + 0.5O2 + 2H+ →Cu2+ + S0 + H2O    (2)                             CuS + 2O2 →Cu2+ + SO42-       (3)[next]    铜蓝在硫酸介质中的氧化过程比较缓慢, 而且是一个可逆过程, 不能进行到底, 即反应生成的元素硫又会按式(4) 与Cu ( Ⅰ) 反应生成铜蓝〔8〕:                                CuS-e = Cu++S0    (4)    不过, Cl-的参与可显著改善铜蓝的氧化。    2.2  氯离子的影响    在2mol/L硫酸液中加入不同量的氯化钠,85℃下以900ml/min的速度通氧浸出, 将不同时刻铜的浸出率绘如图2 。可以看出, 在浸出的初始阶段,无论是否加入NaCl , 铜浸出率相近, 但无氯离子存在时浸出率增长始终很慢, 6h浸出率仅稍高于50%。而浸出部分铜后, 即使少量(0.25mol/L) 氯化钠就能大幅度改善铜的浸出。    氯化钠浓度再增大则未引起铜浸出率更大的变化。氯离子在此处的作用有两种可能。其一, 氯离子可与矿物表面生成的Cu+立即络合成CuCl2- , 促使反应(4)向右移动而加速氧化溶解。其二, 铜蓝氧化生成的元素硫可能在矿物表面形成致密的覆盖层, 阻碍浸出反应继续进行。而Cl-可使元素硫层变得疏松, 从而使反应得以继续。总之,不论是何种作用, 都与元素硫的生成有关。[next]    因此, 氯离子的作用主要表现在浸出后期铜蓝的氧化浸出中, 而在初始阶段, 如反应(1) , Cu2S 氧化成CuS而无元素硫生成, 此时氯离子对铜的浸出并无明显影响。值得注意的是, 此处氯离子的作用与用CuCl2浸出辉铜矿不同。在CuCl2浸出时, 辉铜矿氧化浸出进入溶液的是Cu+,每浸出1mol铜即有2molCu+产生(2Cu2++ Cu2S →4Cu++S0) , 因此需要有大量Cl-才能使Cu+保持在溶液中〔9〕, 否则产生的Cu+沉淀为CuCl重新进入浸出渣中, 甚至在浸出过程中CuCl沉淀覆盖在矿物表面而阻碍氧化过程进行。相反, 在本工作中, 在矿物表面浸出产生的CuCl2-扩散至溶液主体后即被溶解的氧氧化至Cu2+ , 而Cu2+可不依赖Cl-的络合稳定地存在于溶液中, 因此浸出并不需要太多氯离子。而且如图2所示, 过多的氯化物加入甚至不利于浸出过程,因为溶液离子强度大会降低氧气的溶解度〔10〕。    2.3  氧气流量的影响    本工作中, 氧气是浸出反应的氧化剂, 其流量的增加有利于铜的浸出。不过需要指出, 直接参与反应的氧化剂是Cu2+,氧是通过将反应生成的Cu+氧化成Cu2+而间接参与硫化铜矿的氧化反应的。如图3 所示, 氧气流量的影响较明显, 不过在铜蓝氧化阶段,溶液体相中Cu+被O2氧化较之铜蓝氧化本身要容易得多, 此时影响铜蓝氧化的主要因素是氯离子。另外, 作者一项未发表的工作表明, 在同样的反应条件(包括氧流量) 下, 改善充气管的气体分布, 使氧气微泡更均匀地弥散在矿浆中, 可极大地提高铜的浸出率。在充气良好的情况下, 1h 左右铜即可几乎完全浸出。说明改善氧的分散即增加氧气与溶液的接触面积, 比简单地增加氧气流量有效得多。 [next]     2.4  硫酸的影响    辉铜矿的氧化浸出是一个耗酸过程, 需要消耗的酸量可用下式的计量关系求得:                 Cu2S + 2H2SO4 + O2 →2CuSO4 + S0 + 2H2O    (5)    在硫酸浓度0.25~2mol/L范围内试验研究了铜渣的浸出行为, 如图4 所示。可以看出, 在很低的硫酸浓度(如0.25mol/L)下, 除开始时铜渣中所含的酸溶性铜盐如硫酸铜和碱式硫酸铜简单溶解外, 此后铜浸出率几乎无变化, 说明未发生铜硫化物的氧化浸出, 随着硫酸浓度的提高, 铜的硫化物发生氧化, 导致浸出率增加, 至浓度2mol/L时浸出率最高。根据式(5)的计量关系, 每氧化浸出1mol 铜需消耗硫酸1mol 。本工作所用铜渣含铜60% , 以10∶1的液固比浸出, 每升溶液可浸出铜60g,约合1mol,要求消耗硫酸1mol。图4中铜浸出的最佳硫酸用量为理论值的2倍。浸出要求过量硫酸应与表面氧化膜的存在有关。    2.5  温度效应    提高温度有利于硫化铜的氧化浸出, 但图5也表明温度超过85℃后, 例如在90℃下浸出率反而下降。原因是升高温度一方面可加快反应速度,另一方面又会因降低氧气的溶解而不利于反应。90℃时升温对反应的加速不足以补偿它降低氧气溶解所带来的负面影响, 因此浸出作业在85 ℃下进行为宜。[next]    3  结论    (1) 在硫酸介质中加入少量氯化物, 可使氧气浸出辉铜矿或类似物料的过程在常压下实现。    (2) 辉铜矿氧化的初始阶段在浸出铜的同时生成铜蓝, 但无硫的氧化产物生成。氧气的通入量对铜的浸出率影响明显, 但此阶段氯化物用量的影响不大。    (3) 浸出的中间产物铜蓝继续氧化导致矿物表面元素硫层的形成, 此时加入少量氯化物即可显著改善铜的浸出, 但无需多加。    (4) 表面氧化膜的存在使浸出需要过量硫酸。    (5) 适当提高温度有利铜的浸出, 而以85 ℃为最佳, 继续提高温度因降低氧的溶解度致使浸出率反而下降。    参 考 文 献    1  Hofirex Z , Kerfoot D G E1 Hydrometgallurgy , 1992 , 29 : 357    2  Grewal I , Dreisinger D B , Krueger D et al1 Hydrometallurgy , 1992 , 29 : 319    3  Deng Tong , Muir D1 Trans NF Society of China , 1995 , 5 (1) : 36    4  Saarinen H U A , Seilo M1 US Patent 4323541 , 1982    5  Dutrizac J E , Chen T T1 Can Metall Q , 1987 , 26 : 265    6  黄振华, 陈廷扬, 詹惠芳1 有色金属(冶炼部分) , 1997 增刊: 67    7  Meadows N E , Ricketts N J , Smithe G D J1 In : Proc Conf Research and evelopment in Extractive Metallurgy1May 1987 ,115    8  Cathro KJ1Proc Aus IMM , 1974 , 252 : 1    9  Deng Tong1 EC &M’93 , 1994 , 85    10  Narita E , Lawson F , Han K N1 Hydrometallurgy , 1983 , 10 : 21

讨论硫化钠在硫化矿浮选、有色金属氧化矿浮选中的用途及其作用机理

2019-02-22 10:21:22

(a)硫化矿的按捺剂 (b)有色金属氧化矿的硫化剂(活化剂) (c)pH值调整剂 (d)硫化矿混合浮选产品的脱药剂。  在硫化矿中的效果机理: (a)硫化矿的按捺剂的按捺机理 1、当HS-离子浓度到达必定值后,在矿藏表面发作竞赛吸附, HS-离子架空已吸附在矿藏表面的黄药阴离子。 2、亲水的HS-离子自身又吸附在硫化矿表面,增大了矿藏的亲水性,因为使矿藏遭到按捺。 3、金属硫化物的溶度积比金属的溶度积小,溶液中S2-与黄药阴离子发作置换反响,将黄药架空下来,因此遭到按捺。 (b)有色金属氧化矿的活化剂  用Na2S将矿表硫化后,生成硫化膜而活化矿藏,用黄药类捕收剂浮选。  如白铅矿的硫化反响:PbCO3]PbCO3+2Na2S=PbCO3]PbS+2Na2CO3  (c)解吸硫化矿表面的捕收剂 因为HS-和S2-离子对硫化矿藏有很强的亲和力,它们在矿藏表面可发作激烈的吸附效果,只需矿浆中这些离子的浓度足够大,便可将矿藏表面已吸附的黄药解吸下来。 6)双电层(sten)模型结构: (1)有那几层?      内层(A)      外层(严密层B、分散层D) (2)有哪些面?      表面、严密面、滑移面C (3)散布在各个面上的点位 (a)表面电位(ψ0)  (b)斯特恩电位(ψδ)  (c)动电位(ϛ) (4)各层离子  定位离子  负配衡离子  水化配衡离子 7)核算PH为3.8时石英和赤铁矿的表面点位值,试依据矿藏表面电性断定石英和赤铁矿分选的可能性(已知石英PZC=2,赤铁矿PZC=7)                 解:PH=3.8时,     由核算结果可知,PH=3.8条件下, 赤铁矿表面荷正电,石英表面荷负点,用阴离子捕收剂如R--COOH可浮赤铁矿,用阳离子捕收剂如RNH3-可浮石英。      定论:PH=2~6.5范围内,可能使赤铁矿与石英分选。            pH>6.5或PH

硫化锌

2017-06-06 17:50:04

硫化锌化学性质  不溶于水、易溶于酸。见阳光色变暗。久置潮湿空气中转变为硫酸锌。一般由硫化氢与锌盐溶液作用而得。若在晶体ZnS中加入微量的Cu、Mn、Ag做活化剂,经光照后,能发出不同颜色的荧光。用作分析试剂、涂料、制油漆、白色和不透明玻璃,充填橡胶、塑料,以及用于制备荧光粉。由硫跟锌共热制得。物理性质  分子式(Formula): ZnS  硫化锌分子量(Molecular Weight): 97.43   CAS No.: 1314-98-3   白色或微黄色粉末。α变体为无色六方晶体,密度3.98g/cm3,熔点1700±28℃(202.66千帕--20大气压);β变体为无色立方晶体,密度4.102g/cm3,于1020℃转化为α型。存在于闪锌矿中。用途  作为一个重要的二,六化合物半导体,硫化锌纳米材料已经引起了极大的关注,不仅因为其出色的物理特性,如能带隙宽,高折射率,高透光率在可见光范围内,而且其巨大的潜力应用光学,电子和光电子器件。硫化锌具有优良的荧光效应及电致发光功能,纳米硫化锌更具有独特的光电效应,在电学、磁学、光学、力学和催化等领域呈现出许多优异的性能,因此纳米硫化锌的研究引起了更多人的重视,尤其是1994年Bhargava报道了经表面钝化处理的纳米ZnS:Mn荧光粉在高温下不仅有高达18% 的外量子效率,其荧光寿命缩短了5个数量级,而且发光性能有了很大的变化,更为ZnS在材料中的应用开辟了一条新途径。可用于制白色的颜料及玻璃、发光粉、橡胶、塑料、发光油漆等。历史  硫化锌荧光材料的研究从1868年法国化学家Sidot发现至今已有130多年的历史,在20世纪20年代到40年代对硫化锌材料的研究一直受到人们的关注。             以上是硫化锌的介绍,更多信息请详见上海 有色金属 网。

硫化铜镍矿和氧化镍矿的选矿和加工

2019-02-20 10:04:42

硫化铜镍矿和氧化镍矿,两者的选矿和加工办法彻底不同。 硫化铜镍矿石的选矿办法,最首要的是浮选,而磁选和重选一般为辅助选矿办法。浮选硫化铜镍矿石时,常选用浮选硫化铜矿藏的捕收剂和起泡剂。断定浮选流程的一个根本原则是,宁可使铜进入镍精矿,而尽可能防止镍进入铜精矿。因为铜精矿中的镍在冶炼过程中丢失大,而镍精矿中的铜能够得到较彻底的收回。铜镍矿石浮选具有下列四种根本流程。 直接用优先浮选或部分优先浮选流程:当矿石中含铜比含镍量高得多时,可选用这种流程,把铜选成独自精矿。该流程的长处是,可直接取得含镍较低的铜精矿。 1、混合浮选流程:用于选别含铜低于镍的矿石,所得铜镍混合精矿直接冶炼成高冰镍。 2、混合—优选浮选流程:从矿石中混合浮选铜镍,再从混合精矿平分选出含低镍的铜精矿和含铜的镍精矿。该镍精矿经冶炼后,取得高冰镍,对高冰镍再进行浮选别离。 3、混合—优先浮选并从混合浮选尾矿中再收回部分镍:当矿石中各种镍矿藏的可浮性有很大差异时,铜镍混合浮选后,再从其尾矿中进一步收回可浮性差的含镍矿藏。 铜是镍冶炼的有害杂质,而在铜镍矿石中铜档次又具有工业收回价值,因而铜镍别离技能是铜镍矿石选矿中的一个重要课题。铜镍别离技能分为铜镍混合精矿别离和高冰镍别离工艺两种。一般,前者用于铜镍矿藏粒度较粗且互相嵌布联系不甚严密的矿石,后者用于铜镍矿藏粒度细且互相嵌布非常细密的矿石。 金川铜镍矿是大型金属共生硫化铜镍矿。其榜首选矿厂选矿工艺流程首要包含:破碎为三段一闭路流程;磨矿和浮选工序改造为三段磨矿、三段浮选流程。 现在铜镍硫化物矿石首要选用火法冶炼。金川镍矿也不破例,其根本流程分备料(焙烧)—熔炼—吹炼—精粹(电解)等环节。因为该矿归于蛇纹石类型矿石,铜镍矿藏互相细密嵌布,直接选用机械选矿办法进行铜镍别离有困难,因而选用高冰镍浮选别离技能。铜镍混合精矿经转炉熔炼成高冰镍,然后经破碎和磨浮工艺,终究电解成终究产品——电解镍。 吉林磐石矿也是铜镍矿,其选矿工艺流程选用三段一闭路碎矿,阶段磨矿,铜镍混合—别离浮选,镍精矿三段脱水、铜精矿两段脱水的工艺流程。 氧化镍矿现在多选用破碎、筛分等工序预先除掉风化程度弱、含镍低的大块基岩。因为氧化镍矿中的镍常以类质同象涣散在脉石矿藏中,且粒度很细,因而不能用机械选矿办法予以富集,只能直接冶炼。 氧化镍矿的冶炼富集办法,可分为火法和湿法两大类。前者又可分为造硫熔炼、镍铁法和粒铁法;后者又有复原焙烧-常压浸法、高压酸浸法等。

硫化镍矿湿法冶炼

2019-02-27 12:01:46

有名的是在加拿大工业化的舍里特一高尔登法了该操作流程图。此法是将含贵金属少的钻硫化精矿(10-16%Ni, 1-2%Cu,0,3-0,5%Co,33-40%Fe,28-34%S,贵金属0.6g/t)在高压釜用和加压的空气于340-350K (70-80℃)经两段浸出,溶出镍和铜的络合物Ni(NH3)4 2+ , Cu(NH3)4 2+ .浸出完毕后,滤液在高压釜中,于500K用加压空气将S2O3 2+ 等硫的不饱和含氧酸的离子氧化为S042-的一起,使大部分铜沉积为CuS。剩余的铜用H2S处理,FeSO4作为催化剂加进滤液中,在高压釜中于3500kPa(35atm)氢压力,450-470K条件下高压复原,则得档次达99.87%的镍粉。残液中喷吹H2S,沉积钴和镍的混合硫化物,送往钴的收回工序(参看钻冶炼)。

硫化镍矿浮选方法

2019-02-12 10:07:54

含镍矿藏稀有十种,其中有工业价值的主要为镍黄铁矿(Fe、Ni)9S8、含Ni21%~30%;针硫镍矿NiS、含Ni64.7%;红镍矿NiAs、含Ni43%;含镍磁黄铁矿、含NiOX%。镍与铜常常共生,我国较大型的镍矿,都伴生有铜,实际上为铜镍矿。铜镍矿石中的铜矿藏,一般为黄铜矿,铜镍矿中常含有铂、钯等贵金属,应留意收回。     铜镍矿石浮选常用黄药作捕收剂,松醇油作起泡剂,硫酸铜作活化剂。镍矿藏一般要求在酸至弱碱性介质中浮选,镍黄铁矿浮选的最佳pH值为4,当黄药用量较高时,其浮选的pH值规模较宽,pH<9.5都可以浮游。在石灰构成的碱性介质中,或有存在时,硫化镍矿藏都会遭到按捺。     在酸性介质中(pH5.0~5.5),Fe2+和Fe3+离子对镍黄铁矿的浮选具有必定活化效果。但在碱性介质(pH9~10)中,Fe2+和Fe3+离子对镍黄铁矿的浮选具有激烈的按捺效果,由于此刻在镍黄铁矿表面生成FeO(OH)亲水膜,跟着铁离子浓度的添加,按捺效果加强,致使镍黄铁矿彻底被按捺。     含镍磁黄铁矿比其他镍矿藏难浮,要用硫酸铜活化,或用二氧化硫处理在酸性介质中浮选。

硫化锌价格

2017-06-06 17:50:00

在传统的有色金属消费旺季,硫化锌价格并没有走出波澜壮阔的上涨趋势。刚公布的一季度宏观经济数据全面向好,反映宏观经济的几个核心指标回升势头强劲,一季度GDP超预期同比增长11.9%,全国规模以上工业增加值同比增长19.6%,全社会固定资产投资同比增长25.6%,进出口同比增长44.1%,比上年四季度加快34.9个百分点,进出口复苏势头明显。历来受宏观经济影响较大的有色金属行业,在宏观经济强劲增长的大背景之下,沪锌势必具有一定的刚性需求,而且中国对锌的需求量占全球总量的39%,中国宏观经济保持稳定增长对硫化锌价格的走稳毫无疑问注入了一支强心剂.我们再来看下与硫化锌价格密切相关的锌价走势,虽然日内振荡比较剧烈,但日线图走势还保持比较温和的横盘整理态势,指数合约成交量有一定程度的减少,说明目前市场大多是一些短线资金在炒作,在没有明确趋势之前,大多资金还不会进场,这一趋势,笔者认为近期还不会打破,锌价仍将位于18200—19800元/吨的区间盘整。随着两大行业转向平稳发展,硫化锌价格的增长速度也必将放缓,尤其是在近期调控政策刚出台的背景之下,硫化锌价格受到的压制更加明显,近期始终无法向上突破就是最好的说明.

进口硫化锌

2017-06-06 17:50:00

关于进口硫化锌方面的消息,据上海有色网专家称在前几个星期某天上午在与冶炼和蓄电池企业交流行情时,我们得到一个重要信息,据他们介绍近日有一批近2万吨的国外进口硫化锌已经抵达上海、广州港口,目前正在办理入关事宜,我们认为近期国外消费市场的疲软使LME锌价连连走低,而国内现货价格在厂家货源短缺惜售的支撑下表现相对坚挺,两者之间的价格差距也开始逐渐拉大,在这种情况下部分商家可能已经瞄准这一契机,从国外采购相对质优价廉的进口硫化锌在国内销售。                               冶炼企业在与我们交流有关进口硫化锌此事时指出他们正在确认这个消息的真实性,如果确有此事,他们认为这将对冶炼企业及整个国内硫化锌市场产生较大冲击,因为国外硫化锌价格低于国内价格,质量方面也较好,下游企业将会将采购目标转向这批国外进口硫化锌,而目前各厂家都有一定数量的库存在等待9月份左右的旺季销售,这么大数量的国外进口硫化锌进入市场后难免会使一些厂家出现恐慌出货,国内货源供应大量增加,现货价格将可能再所难免的出现下滑。上海有色网专家表示近期一定会跟进这一批进口硫化锌的相关信息,在获取信息后会第一时间反馈在我们上海有色网相关版块上供各位用户获取最新的资讯,相信通过我们的努力一定能够使您受益匪浅。 

含-金砷的硫化物精矿的压热氧化浸出(三)

2019-02-18 10:47:01

至于黄铁矿的压热浸出进程的氧化动力学方面也作了许多研讨。在这些研讨中,由Maxxen和Xannep,TepnaxXene和nannexcll)所作的研讨成果最具体牢靠。因为这些研  究所得出的首要定论互相-致。在本文中力求将纯黄铁矿的氧化动力学规则与黄铁矿和砷黄铁矿一起氧化时得到的组成类似产品的氧化动力学进行了比较。 图3,a为不同温度条件下(酸浓度为26.4克/升,氧的分压为2大气压)黄铁矿的氧化动力学。阿尔尼乌斯(AppHHy。)方程式说明晰氧化进程的速度与温度的联系,表观活化能的数值为11.5千卡/克分子,并证明晰氧化进程是在动力学范围内进行的。氧的分压对黄铁矿氧化速度的影响见图3,6(温度为130℃,溶液酸度为26.4克/升硫酸)。黄铁矿与砷黄铁矿不同,它的氧化速度与氧压力成正比。这与曾经的研讨数据彻底-致,也是黄铁矿与其他硫化物不同的-个重要特征。进步溶液的酸度,对加速氧化进程的影响较小。     因而,应当留意,砷黄铁矿的存在也不能改动黄铁矿氧化的根本规则性。     从工艺上看,黄铁矿与氧的反响速度比砷黄铁矿慢得多,而反响级数较高,这-点是很重要的。这样使咱们能在工艺方面得出重要的定论:(1)在挑选压热浸出参数时,首要应当考虑到敏捷而充沛使黄铁矿(是最难处理的硫化物)氧化的可能性,(2)因为硫化物氧化得不彻底而形成的金丢失,首要在于黄铁矿氧化得不行充沛,而不是砷黄铁矿氧化得不行彻底。     压热浸出工艺实验时,采用了下列组分的几种含金精矿试样。精矿试样中,含铁24.2~34.3%,硫21.8 ~ 27.3%,砷4.9~9.4%,金31.3~43.0克/吨。一切试样中的金均呈细粒染状况存在,并与黄铁矿和砷黄铁矿共生。某些试样还含有4~5%碳,这样又增加了处理工艺上的难浸性。     压热浸出是在《维什尼阔夫斯基》式钛质压热浸出器中进行,其容积为1升和5升。用水作为原始液相。36~80%铁(首要呈Fe3+状况),80~98%硫和12~40%砷转入压热浸出液中。不溶性的压热浸出渣的产率动摇在54~80%之间。压热浸出渣在经洗刷和石灰处理之后送去吸附化(用AM--26阴离子交流剂)或许进行普通的化处理。 所得成果证明:压热浸出时的温度、氧分压和浸出时刻是决定金回收率的首要因素。在最佳条件下进行压热浸出后,可以使对压热浸出渣进行吸附化时的金回收率到达90~95%。这就比对压热浸出渣进行惯例化时高2~3%o 与焙烧工艺比较,用压热浸出法的长处在于金的回收率较高。