您所在的位置: 上海有色 > 有色金属产品库 > 焦炭粒级

焦炭粒级

抱歉!您想要的信息未找到。

焦炭粒级专区

更多
抱歉!您想要的信息未找到。

焦炭粒级百科

更多

无需焦炭的非高炉炼铁技术

2019-03-07 09:03:45

珀斯──澳大利亚西澳州首府,从前被称为“国际上最孤单的城市”。但是,这些年来,我国客人却对这“最孤单的城市”情有独钟,一再到访。2007年9月4日,领导在相关人员的陪同下,观赏了澳大利亚力拓矿业集团的直接熔融复原炼铁工厂。炼铁车间观看了复原铁的冶炼进程,并就环保、出产成本、工艺先进性,以及非高炉炼铁技能在我国使用的远景等具体询问了技能人员。此前,我国人大常委会委员长,以及我国多家大型钢铁厂商的管理者都观赏过这个炼铁项目。“熔融复原”炼铁技能有何奇特之处,引得许多政界商界要人的垂青? 资源压力下的新路当今国际的干流高炉炼铁技能仍然是自古就有的竖炉炼铁,这种办法炼制的铁占国际铁产值的95%以上。         我国钢研科技集团公司先进钢程及材料国家重点实验室郭培民教授介绍,通过数百年开展,现代高炉炼铁工艺现已适当老练,但流程杂乱、能耗高、环境污染严峻和出资巨大这些高炉炼铁与生俱来的问题仍未处理。更要害的是,高炉炼铁对冶金焦炭依赖性太强,从现在已探明国际煤炭储量中,焦煤仅占5%,且散布很不均匀,正是这个资源约束,催生了无高炉炼铁技能。北京科技大学冶金与生态工程学院副院长张建良教授介绍说,现在的无高炉炼铁首要有两种办法,即直接复原法和熔融复原法,国际上现已根本老练的三大非高炉炼铁技能,别离是奥钢联的COREX、韩国浦项的INEX、力拓矿业的HIsmelt,都选用熔融复原法。真实完成了商业化出产的非高炉炼铁技能的只要一家,即奥钢联的COREX技能。它是在奥地利和德国政府的财务支持下,于20世纪70年代开端研制,1989年完成商业出产。榜首代完成商业化出产的非高炉炼铁COREX-1000工厂年产能40万吨,1989年在南非完工。1995年至1999年间,国际上又先后建成四座年产能60万~80万吨的第二代COREX-2000出产厂,别离坐落韩国的浦项、南非的撒丹那(Saldanha)和印度的两个城市。全球专一在建的第三代COREX工厂是我国宝钢年产能150万吨的COREX-3000工程,该工厂方案2007年下半年开端商业化出产。          非高炉炼铁技能间的竞赛奥钢联的COREX尽管先行一步,却也存在先天缺点:国际上大部分铁矿资源是粉矿,并且粉矿比块矿报价低,奥钢联开发的COREX技能却只能炼块矿。可以炼粉矿的熔融复原技能随即应运而生,韩国浦项制铁研制的“FINEX”和力拓矿业的“HIsmelt”就是在这样的布景下诞生的。韩国浦项制铁公司于1992年和奥钢联签署协议,引进COREX-2000技能,并在此基础上研制出以粉矿为复原目标的FINEX技能。2007年5月30日,FINEX商业化项目正式开工。这个历时15年之久的项目共花费7亿美元研制经费,取得300多项专利。澳大利亚力拓矿业集团亚洲及我国区总裁路久成介绍,力拓矿业集团从上世纪80年代初开端研制HIsmelt技能,历经20余年,累计出资已超越10亿美元。现在实验性的HIsmelt工厂发展程度“已到达试营产值的80%,估计到2008年到达年产80万吨的设计能力,并进行商业化运营”。 我国的非高炉炼铁远景1996年我国钢铁产值初次超越1亿吨大关,跃居国际榜首位后,现已接连10年保持着国际榜首,一起,我国仍是专一钢铁总产值超越2亿吨的最大钢铁出产国、最大钢铁消费国、最大钢铁净进口国和最大铁矿石进口国。拿到这些“桂冠”的一起,我国也顶着一顶“钢铁能耗全球榜首”的帽子,在首要炼钢国中,我国吨钢能耗排在首位,是日本的3倍,美国的1.7倍。而非高炉炼铁技能的首要优势就是节能环保。力拓矿业集团亚洲及我国区总裁路久成说,力拓的HIsmelt技能,不只比奥钢联的COREX技能能耗低,也比国际上绝大多数传统高炉炼铁技能能耗低20%左右,废气排放更是远远低于高炉炼铁。

某细粒级低品位钼铅矿的选矿试验研究

2019-02-21 11:21:37

我国是国际钼资源较丰厚的国家之一,同国际首要钼资源美国(Climax矿山含钼0.212%)和智利(Sierra Gorda铜矿伴生钼档次0.100%)比较,我国的钼矿床矿石档次显着偏低。对低档次钼矿石,在确保钼精矿的档次和收回率的一同,还要考虑其它有价元素的归纳收回。 某细粒级低档次钼铅矿石中的金属矿藏首要为辉钼矿、方铅矿、黄铁矿等,首要的脉石矿藏为石英、长石、云母、透闪石、方解石和绿泥石等。其间首要有价元素为钼、铅,档次别离为0.079%、0.45%,其它金属元素如铜、锌、铁、金、银等档次较低。矿石首要为硫化矿,钼首要是以辉钼矿的方式存在,占总钼的96.51%;铅首要是以方铅矿的方式存在,占总铅的95.65%。 针对该矿石的特色,实验终究断定选用“钼铅混合浮选-混合粗精矿再磨钼铅别离”工艺技术流程,可取得较好的实验目标,钼精矿钼档次47.66%、钼收回率83.67%,铅精矿铅档次62.56%、铅收回率85.69%。 一、矿石性质 (一)原矿化学成分分析 原矿首要化学成分分析成果列于表1。 表1    原矿首要化学成分分析成果化学成分MoPbSFeCuZnAsCaF2质量分数0.0790.452.284.310.0240.0380.00113.30 续表1化学成分SiO2Al2O3CaOMgONa2OK2OAu*Ag*质量分数51.5210.419.821.811.625.200.046.95    *Au、Ag单位为g/t。(二)原矿钼、铅化学物相分析 钼、铅的化学物相分析成果别离见表2和表3。能够看出,该矿石中钼和铅的氧化率都较低,首要为硫化矿。 表2    钼的化学物相分析成果表3    铅的化学物相分析成果(三)矿石中重要矿藏的嵌布特征 矿石中金属矿藏首要为辉钼矿、方铅矿、黄铁矿、磁铁矿、磁黄铁矿,其次为黄铜矿、闪锌矿、钼铅矿、钼华、褐铁矿、赤铁矿、蓝辉铜矿、斑铜矿、铜蓝、毒砂、白铅矿等。脉石矿藏首要有钾长石、钠长石、石英、方解石、白云母和黑云母,其次为透闪石和绿泥石、磷灰石等。 辉钼矿多呈大小不等的鳞片状、叶片状、板状或脉状,散布极不均匀,粒度大小不一,一般为0.02~0.l0mm,+74μm占33.72%,-74+20μm占38.22%,-20μm占28.06%。部分与脉石矿藏关系密切,呈微细鳞片状、叶片状浸染在脉石中,结晶程度较差,不利于辉钼矿的单体解离;部分与黄铁矿、磁铁矿等矿藏一同沿脉石矿藏的破碎裂隙充填告知;还有一部分与方铅矿、闪锌矿共生或被包裹在其间。 方铅矿呈自形、半自形粒状或他形粒状嵌布,与脉石关系密切,部分与黄铁矿、磁铁矿、闪锌矿共生或被包裹在其间,少数方铅矿中还包裹有片状辉钼矿,极少数方铅矿被白铅矿告知,呈细粒浸染状嵌布的方铅矿较难单体解离,不利于收回。粒度为0.02~0.15mm,+74μm占58.81%,-74+20μm占27.08%,-20μm占14.11%。 二、实验成果与评论 依据该矿石的矿藏组成及矿石性质特色,断定选矿准则流程为“钼铅混合浮选-混合粗精矿再磨钼铅别离”的选别工艺流程。 (一)钼粗选捕收剂用量实验 火油是浮选辉钼矿的常用捕收剂,探究实验标明,该矿中钼、铅较易上浮,粗选不需要添加辅佐捕收剂,只添加火油即可。在磨矿细度-74μm占65%的条件下以火油为捕收剂,松醇油作为起泡剂,因为火油具有消泡作用,所以在火油用量实验中,松醇油的用量也随之有所改变,实验成果见图1。图1  捕收剂火油用量实验成果 1-钼档次;2-钼收回率;3-铅档次;4-铅收回率;下同 从图1的实验成果能够看出,当火油用量为100g/t(此刻松醇油用量50g/t)时作用最佳。 (二)粗选石灰用量实验 石灰是硫铁矿常用的按捺剂,为了充沛按捺硫的上浮,进行了石灰用量实验,成果见图2。 成果标明,添加少数石灰可适当进步钼收回率,石灰用量500g/t为宜。图2  粗选石灰用量实验成果 (三)磨矿细度实验 磨矿首要是处理辉钼矿从矿石中单体解离出来,钼、铅的档次都较低,为了下降选矿本钱,需要在较粗的磨矿细度下浮选,一同辉钼矿具有杰出的天然可浮性,关于0.15mm的粗石英颗粒,当含1%暴露的辉钼矿运用恰当捕收剂后就能够上浮。 在优化粗选条件的基础上进行了原矿磨矿细度实验,实验成果见图3。实验成果标明,当磨矿细度大于65%-74μm时钼、铅收回率添加并不显着,磨矿细度越细,磨矿本钱会大幅度添加,归纳考虑,挑选磨矿细度为65%-74μm为宜。图3  磨矿细度实验成果 (四)精选实验 钼铅混合精矿中还含在部分未解离的钼铅连生体及与脉石的连生体,为了使钼铅更好地别离,得到合格的选矿产品,钼铅混合粗精矿有必要再磨,然后进行钼铅别离。 1、再磨细度实验 以一次精选后的钼铅混合粗精矿进行再磨实验,为得到高品质选矿产品,精选时添加适量的石灰,实验成果标明其用量100g/t即可,以磷诺克斯为铅矿藏按捺剂,实验流程如图4,成果如图5。实验成果标明,钼铅别离再磨细度80% -38μm即可。图4  钼铅混合精矿再磨细度实验流程图5  再磨细度实验成果 2、磷诺克斯用量实验 由钼、铅别离不同按捺剂比照实验标明,磷诺克斯的按捺作用较好,为此进行了磷诺克斯用量实验,实验成果见图6。图6  钼铅别离磷诺克斯用量实验成果 图6实验成果能够看出,磷诺克斯用量以20g/t较为适宜。 (五)闭路实验 在开路实验的基础上,对实验条件进行了必要的调整和优化。为进一步进步钼铅别离作用,选用水玻璃、磷诺克斯、BK510组合药剂作为铅矿藏的按捺剂。钼铅别离后,跟着钼铅混合粗精矿精选次数的添加,铅脱药现象显着,为了确保铅收回率,在闭路实验中添加了少数高挑选性选铅捕收剂BK906,取得的闭路实验成果见表4。 表4    闭路实验成果(六)浮选尾矿归纳收回实验 闭路实验的浮选尾矿中含硫(含SO42-中的硫)2.18%,为了归纳收回其间的硫矿藏,对闭路浮选的尾矿进行了选硫实验。黄药是硫铁矿的常用捕收剂,且在pH小于6的介质中最易浮,实验中以丁基黄药为捕收剂进行了选硫实验,成果标明,当黄药用量为100g/t时,能够得到含硫40.49%、收回率(对原矿)为57.01%的硫精矿。 (七)选铁探究实验 为归纳收回有价金属,对浮硫尾矿进行了磁选选铁探究实验,选用“一段粗选-再磨-一段精选”流程,铁粗精矿再磨至80% -38μm细度后,经精选可取得铁档次为66.45%、对原矿收回率为7.55%的铁精矿。 三、定论 (一)工艺矿藏学研讨标明,矿石中金属矿藏首要为辉钼矿、方铅矿、黄铁矿、磁铁矿、磁黄铁矿等;脉石矿藏首要有钾长石、钠长石、石英、方解石、白云母和黑云母等。该矿石中首要有价元素钼、铅含量较低,其档次别离为0.079%、0.45%,其间钼矿藏散布不均、嵌布粒度极细且结晶程度较差。矿石首要为硫化矿,钼首要是以辉钼矿的方式存在,占总钼的96.51%;铅首要是以方铅矿的方式存在,占总铅的95.65%。 (二)选矿实验研讨标明,选用“钼铅混合浮选-混合粗精矿再磨钼铅别离”工艺技术流程,为进步钼铅别离作用,选用水玻璃、磷诺克斯、BK510组合药剂按捺铅矿藏,取得的闭路实验目标为:钼精矿钼档次47.66%,钼收回率83.67%;铅精矿铅档次62.56%,铅收回率85.69%。 (三)对闭路浮选的尾矿进行了归纳收回实验,可得到含硫40.49%、收回率为57.01%的硫精矿。对浮硫尾矿进行了磁选选铁实验,可得到含铁66.45%的铁精矿,使资源得到归纳利用,到达归纳收回的意图。

某难选高磷赤褐铁矿提铁降磷选矿试验研究

2019-01-24 09:36:23

铁矿石作为钢铁工业的主要原料是一个国家的重要战略资源,近年来随着钢铁冶金工业的飞速发展,对铁矿石原材料的需求也越来越大。但是地球上有限的富铁矿和易选铁矿资源将逐步枯竭,研究高磷铁矿石的高效分选技术显得十分重要。高磷铁矿的选矿一直是选矿界的一大难题,我国高磷铁矿石储量占总储量的14.86%,达74.5亿t。因此加大对高磷铁矿石选矿和降磷的研究,开发有效、经济、实用的新方法、新技术势在必行[1、2]。云南某高磷铁矿矿石储量大,原矿含铁42%左右,铁矿物主要以赤铁矿和褐铁矿形式存在,有害杂质磷含量达0.586%,且磷矿物与铁矿物相互浸染,嵌布粒度极细,属高磷难选铁矿石。通过大量试验,确定采用还原焙烧-磁选-反浮选工艺处理该矿石,获得了铁精矿铁品位为61.72%、铁的回收率67.48%,铁精矿磷含量为0.20%选矿指标。 一、矿石性质 云南某高磷铁矿石中主要矿物为赤铁矿和褐铁矿,还有少量磁铁矿。脉石矿物主要为方解石、绿泥石、石英等。主要元素分析结果及物相分析结果见表1和表2。 表1  原矿主要化学成分(质量分数)/%表2  铜物相分析结果由表1和表2可知,该铁矿物主要目的元素是铁,原矿铁品位达到42.66%;有害元素硫和砷含量较低,有害元素磷的含量较高,为0.586%;该铁矿属于铁质泥铁矿,铁主要以赤褐铁矿形态存在,属高磷赤褐铁矿石,且磷矿物与铁矿物相互浸染,主要呈粒状分布于赤铁矿和褐铁矿中,嵌布粒度极细,属于非常难选铁矿石。 二、试验方案 对矿样分别进行了单一流程试验(强磁选、重选、直接浮选)和联合流程的试验(分级磁选、分级重选、磁浮/浮.磁联合选别和磁.重/重一磁联合选别),均未得到较好指标的铁精矿,精矿中磷的含量也不能降到0.2%以下。为此,改变思路,决定先用还原焙烧的方法把原矿还原为磁铁矿,再用磁选方法选出铁品位较高的铁精矿,再用反浮选的方法将铁精矿中的磷降到0.2%以下,得到品位合格和杂质磷不超标的铁精矿。 三、试验结果 (一)还原焙烧试验 焙烧温度、还原剂用量和焙烧时间是焙烧试验的主要影响因素。温度太低,反应进行太慢;温度太高会生成弱磁性的富氏铁或硅酸铁,从而影响精矿指标。焙烧时间太短,反应没有完全进行,会降低精矿品位和回收率;焙烧时间太长,会消耗大量的热能,同时使反应生成物的磁性大大降低,影响后面磁选的效果[3]。 将原矿破碎到-2mm后与粒度为-1mm、用量为5%的焦炭混合,还原焙烧20min,然后磨至-0.074mm粒级占100%,在磁选电流为2A条件下进行磁选,还原焙烧温度对试验效果的影响见图1。图1  焙烧温度试验结果 由图1可见,随着焙烧温度升高,铁品位和回收率均呈上升趋势。当焙烧温度达到1000℃之后,铁品位和回收率均下降。可见适宜的焙烧温度为1000℃。 将原矿破碎到-2mm后与-1mm的焦粉混合,焙烧温度为1000℃时还原焙烧20min,然后磨至-0.074mm粒级占100%,在磁选电流为2A条件下进行磁选,还原剂焦炭的用量对试验效果的影响见图2。图2  还原剂用量试验结果 由图2可见,随着焦炭用量增加,铁品位和铁回收率均呈先上升后下降的趋势,在焦炭用量为8%时出现极值。可见适宜的焦炭用量为8%。 将原矿破碎到-2mm后与-1mm焦炭混合,焦炭用量为8%,在1000oC下还原焙烧,然后磨至-0.074mill粒级占100%,在磁选电流为2A条件下进行磁选,还原焙烧时间对试验效果的影响见图3。图3  还原焙烧时间试验结果 由图3可见,随着还原焙烧时间延长,铁品位和铁回收均呈先上升后下降的趋势,在还原焙烧时间为30min时,铁品位和回收率均达到最大值。可见适宜的还原焙烧时间为30min。 (二)磁选试验 1、磁场强度试验将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨至-0.074mm粒级占100%,进行磁选,磁选电流对试验效果的影响结果见图4。图4  磁选电流试验结果 由图4可以看出,磁选电流太高时精矿铁品位达不到60%,磁选电流太低则铁精矿回收率达不到50%。磁选的电流为2.5A时选别指标较为适宜,此时的精矿品位为61.77%,回收率为68.25%。 2、磨矿粒度试验将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨矿,在磁选电流为2.5A条件下进行弱磁选,磨矿粒度对试验效果的影响结果见图5。图5  磨矿粒度试验结果 由图5可以看出,物料越细,铁矿物单体解离越充分,精矿铁品位越高,但物料太细导致磁选时铁的损失严重。根据试验结果,确定适宜的磨矿粒度为-0.054mm粒级占90%。 3、综合试验通过条件试验,确定各工艺参数后进行了综合试验。将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨矿至-0.054mm粒级占90%,在磁选电流为2.5A条件下进行弱磁选,可获得铁品位为60.86%、磷含量为0.42%、回收率为70.68%铁精矿。 (三)铁精矿降磷试验 由于该铁矿所含的磷矿物与铁矿紧密共生,浸染于氧化铁矿物颗粒边缘,并有少量的磷存在于铁矿石及铁质粘土的晶格中,部分磷矿物在焙烧过程中与铁矿物分离开,磷的含量由原来的0.59%降到了0.42%,但仍有部分磷矿物留在磁选精矿中,造成铁精矿的磷含量超标,所以进行了铁精矿反浮选降磷试验[4]。 以碳酸钠为pH调整剂、淀粉为抑制剂、RP为捕收剂、2油为起泡剂,对弱磁选精矿进行了一粗一精反浮选脱磷,试验流程见图6,试验结果见表3。图6  反浮选流程 表3  反浮选试验结果由表3结果可知,反浮选流程可以得到铁品位61.68%、回收率91.87%的铁精矿(相对于原矿为65.93%),铁精矿中磷降到了0.21%。 (四)全流程试验 在以上条件试验的基础上进行了全流程试验,试验流程见图7,试验结果见表4。图7  还原焙烧-磁选-反浮选全流程 表4  全流程试验结果由表4结果可知,采用还原焙烧.磁选.反浮选工艺处理该赤褐铁矿石,获得了铁精矿铁品位为61.72%、铁的回收率67.48%,铁精矿磷含量为0.20%的选矿指标。 四、结语 1、云南某铁矿石铁矿物主要以赤褐铁矿形式存在,磷含量达0.586%,矿物嵌布粒度微细,用常规物理选矿方法难以获得符合冶炼要求的铁精矿。通过大量试验,确定用还原焙烧-磁选-反浮选工艺流程处理该矿石,获得了精矿铁品位61.72%、磷含量0.20%、铁回收率67.48%的较好选别指标。 2、随着铁矿石资源的日益紧张和冶炼对原料越来越高的要求,本研究提出的焙烧-磁选-反浮选工艺为类似难处理微细粒高磷赤褐铁矿的开发利用提供了新的思路。 参考文献: [1] 林祥辉,罗仁美.鄂西难选铁矿的选矿与药剂研究新进展[J].矿冶工程,2007(3):28-29. [2] 孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):11-13. [3] 肖军辉.某细粒难选赤褐铁矿提铁降磷新工艺工业试验[J].金属矿山,2007(1):44-46. [4] 李广涛,张宗华.四川某高磷鲕状赤褐铁矿石选矿试验研究[J].金属矿山.2008(4):43-46. 作者单位 江西理工大学(艾光华、余新阳) 广西大学(魏宗武)

日钢高铝渣低硅炼铁技术

2019-01-10 09:51:47

通过优化配料工艺、创新炉料结构,探索装料制度、成功应用多环布料,研究高铝渣的性能、掌握高铝矿冶炼技术,成功实施高风温、高顶压、高煤比、低硅冶炼等技术,在炉料品位降低,焦炭质量犬幅度降低的情况下,取得了较好的经济效益。   在选择经济矿冶炼的同时,必须面对经济矿带来的一些不利因素,其中矿石中的Al2O3高,就是一个突出问题。   一般认为炉渣中Al2O3在14%以内,属于低铝炉渣,适宜冶炼;14%~16%属于中铝炉渣,冶炼有一定难度;Al2O3超过16%,就可以称为高铝炉渣,冶炼就相当困难。许多企业甚至认为,高于17%以后,基本无法正常冶炼。   通过对高铝炉渣性能的深入研究,基本掌握了高铝渣的冶炼技术。日钢炉渣中的Al2O3含量较低也在15.5%以上,较高平均达到18%以上,属于高铝炉渣冶炼。   Al2O3超过16%以上,炉渣的熔化温度就会急剧上升到1500oC以上,炉渣的黏度会增加。炉渣黏度过大,炉渣黏稠,就会造成高炉滴落带内的阻损很大,致使炉料下降和煤气上升困难。在炉缸表现为渣铁难于分离,渣铁滞留量增大,炉缸堆积;在炉外表现为渣铁结壳,流动性能差,炉前组织困难;较后,高炉受风能力越来越差,导致高炉失常。   针对高铝炉渣黏度高、熔化温度高的问题,对高铝矿冶炼时的造渣制度和热制度作重新调整,确定造渣制度要以二元碱度为主要调节手段,三元碱度作为参考,四元碱度为中心的总方针,并且提出镁铝比(MgO/Al2O3,)的概念。通过酸碱料调节二元碱度,参考炉渣中Al2O3含量,通过调整烧结矿中的MgO,控制炉渣中MgO的含量,随Al2O3含量变化,控制镁铝比,较后使炉渣四无碱度控制在0.95~1.0左右。   热制度以控制铁水显热为依据,日常调剂以控制铁中含硅量为手段,保证铁水物理温度≥l480oC,较终达到提高炉渣热焓,降低炉渣黏度,提高炉渣流动性的日的,有效地改善了炉缸的工作状态,改善了高炉顺行,取得了较好效果。   低硅冶炼是一项综合技术。由于日钢的原、燃料条件逐步转差,低硅冶炼不能依靠改善焦炭质量,提高入炉品位等“精料”手段来实现。对于面临的困难,炼铁技术人员,进行了充分的分析研究,并由铁前部牵头组织,针对烧结、球团、炼铁三个系统每旬定期召开攻关会议,强调低硅冶炼对炼铁、炼钢的重要意义,同时强调降硅要从系统内部着手,要完全通过提高操作水平来保障低硅冶炼的实现。   烧结厂主要工作是:稳定成分、提高强度、改善粒级、降低亚铁等。   炼铁厂主要措施是:稳定操作、活跃炉缸、提高渣碱度、降低硅偏差等.通过改进操作,日钢高炉的平均硅含量降低到0.37%,实现了低硅冶炼。   低硅冶炼是多环布料技术、合理渣相选择,高顶压、高风温等技术成功应用后的一个具体体现,是炼铁系统进步后的必然。

高磷铁矿石氯化离析-弱磁选新工艺研究

2019-02-22 09:16:34

磷是钢铁冶炼进程中首要的有害元素之一。跟着冶金工业的开展,钢铁厂商对铁精矿磷含量的要求越来越高,故开发铁精矿高效降磷技能现已火烧眉毛。 现在高磷铁矿石的降磷办法首要有:①物理选矿法。该办法是将矿石细磨至磷矿藏与铁矿藏充沛解离,然后经过磁选、重选或浮选来降磷,但降磷作用不太抱负;②化学选矿法。该办法经过用硝酸、或硫酸对铁矿石进行浸出来完结降磷,是一种较为有用的降磷办法,并且磷矿藏无须完全单体解离,只要能露出出来与浸出液有触摸就可到达降磷的意图。但该法耗酸量大、本钱高.并且简单导致矿石中可溶性铁矿藏溶解,构成铁的丢失。③微生物浸出法。该办法首要是经过微生物代谢产酸下降系统的pH值来使磷矿藏溶解,一起代谢酸还会与Ca2+,Mg2+,Al3+等离子螯合构成络合物,然后促进磷矿藏的溶解。存在的问题是仍处于实验阶段,离真实的产业化尚有较大距离。④冶炼法。该法是在铁水入转炉或电炉前,用碱性氧化物或碱性渣使铁水中的磷构成磷渣来完结脱磷。此法作用非常好,但本钱昂扬,且在我国基本上还处于基础研讨阶段。 本研讨选用一种新办法-氯化离析-弱磁选工艺来对高磷铁矿石进行提铁降磷。 一、实验矿样 实验矿样为云南某高磷铁矿石样品,含铁41.56%,含磷1.13%,铁首要以赤褐铁矿、菱铁矿、硅酸铁、磁铁矿等方式存在。试样风化现象比较严峻,原始粒度组成为+5mm占35%左右,-5+1mm占45%左右,-1mm占20%左右,实验前将其加工成悉数小于5mm备用。 试样的光谱分析、化学分析、铁物相分析成果见表1~表3,加工成-5mm后的粒度分析成果见表4。 表1  试样光谱分析成果%表2  试样多元素化学分析成果%表3  试样铁物相分析成果%从表1~表3可知:试样中可收回的有价元素只要铁,其他有价元素铜、锌、铅、钼、镍、钴、钛、金、银等含量均较低;有害元素硫、砷含量不超支,但磷含量严峻超支,为1.13%。试样中的可选性铁为赤褐铁矿、菱铁矿和磁铁矿中的铁,三者占全铁的91.15%。 表4显现,铁和磷在各个粒级的散布较为均匀。 表4  -5mm试样粒度分析成果 二、实验流程 氯化离析的基本原理是:氯化剂在高温作用下被分解成高活性的氯化体;氯化体与矿石中的金属氧化物发作反响,敏捷生成具挥发性的金属氯化物;挥发性金属氯化物被炭质复原剂激烈吸附,其间的金属在复原剂构成的复原气氛作用下离析出来并掩盖在复原剂表面,可经过选矿得到较好的收回。 氯化离析曩昔一般用于处理镍、钴、铜矿石,用于处理铁矿石则归于一种新办法。本实验运用该办法对云南某高磷铁矿石进行提铁降磷研讨,实验工艺流程见图1。 实验中调查氯化剂品种和用量、复原剂品种和用量、离析焙烧温度和时刻、离析产品磨矿细度、弱磁选磁感应强度对铁精矿目标的影响。所用氯化剂别离为L1,L2,L3,L4,复原剂别离为焦炭,褐煤,无烟煤,烟煤。复原剂均加工到-1mm运用。图1  氯化离析-弱磁选实验流程 需求阐明的是,原矿经离析焙烧后会有必定的烧失量,因而实验中铁精矿收回率均对离析产品计。 三、实验成果与评论 (一)氯化剂品种和用量实验 氯化剂的品种和用量直接影响氯化离析进程中挥发性金属氯化物的生成,进而影响铁精矿的目标。在复原剂(焦炭)用量为10%,离析温度为1000℃,离析时刻为60min,弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的条件下,别离选用不同用量的4种氯化剂按图1流程进行实验,实验成果见图2~图5。图2  氯化剂L1用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图3  氯化剂L2用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图4  氯化剂L3用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图5  氯化剂L4用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 从图2~图5可知:L1,L2,13提铁降磷的作用不抱负,精矿铁档次较低,且磷含量均在0.30%以上。而L4具有显着的提铁降磷作用,跟着其用量的添加,精矿铁档次和收回率逐步升高,磷含量逐步下降,当其用量为15%时,精矿铁档次达75.25%,磷含量降至0.226%,铁收回率为82.32%,尔后精矿目标改变较小。因而,挑选L4作为氯化剂,并断定其用量为15%。 (二)复原剂品种和用量实验 复原剂在离析进程中起着供给复原性气氛和作为载体吸附挥发性金属氯化物的两层作用。现在用得较为遍及的固体复原剂首要为焦炭、褐煤、无烟煤和烟煤,其间焦炭具有强度较高、复原透气性好、杂质少等长处,不足之处在于报价较为贵重,而褐煤、无烟煤、烟煤与焦炭比较报价低廉,但灰分高,杂质多,易污染矿石。在氯化剂L4用量为15%,离析温度为1000℃,离析时刻为60min,弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的实验条件下,比较这4种复原剂对铁精矿目标的影响,实验成果见图6~图9。图6  褐煤用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图7  烟煤用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-收回率图8  无烟煤用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图9  焦炭用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 从图6~图9可知:选用褐煤、无烟煤、烟煤作为复原剂时,尽管跟着复原剂用量添加,精矿铁档次和铁收回率逐步升高,磷含量逐步下降,但磷含量一向在0.30%以上;而选用焦炭作为复原剂时,跟着焦炭用量的添加,精矿铁档次逐步升高,铁收回首先升高后下降,磷含量则一向未超越0.30%,并且呈不断下降的趋势。因而,挑选焦炭作为复原剂,并断定其用量为10%,此刻精矿铁档次为75.25%,磷含量为0.226%,铁收回率为82.32%。 (三)离析温度实验 因为离析是一个化学相变的进程,故温度是要害影响要素之一。温度过低,不能供给满足的化学反响能,不利于反响的进行;反之,温度过高,简单导致矿石软化粘结,并且将来生产本钱高,操作难度大。在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析时刻为60min、弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的条件下,按图1流程进行离析温度实验,实验成果见图10。图10  离析温度实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 图10显现,跟着温度的升高,精矿铁档次和铁收回率呈先升高后下降的趋势,磷含量呈先下降后升高的趋势;此外,在焙烧进程中发现,温度为1050℃时,矿石有软化粘结现象,温度持续升高至1100℃时,矿石有80%以上粘结在一起,影响选别目标。归纳考虑,焙烧温度取1000℃比较适宜,此刻能够得到铁档次为75.27%,磷含量为0.227%,铁收回率为82.62%的铁精矿。 (四)离析时刻实验 在其他条件必定的情况下,离析时刻越长,离析反响进行得越完全,但一起也会因其他元素有更多的时机参加反响而影响铁精矿目标;反之,离析时刻过短,有用的正反响不能完全完结,也会影响铁精矿目标。在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的条件下,按图1流程进行离析时刻实验,实验成果见图11。图11  离析时刻实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 图11显现,跟着离析时刻的延伸,精矿铁档次和铁收回率呈先升高后下降的趋势,磷含量呈先下降后升高的趋势,但这些目标的改变程度都比较小。归纳考虑,断定离析时刻为45min,此刻精矿铁档次为76.06%,磷含量为0.217%,铁收回率为83.11%。 (五)弱磁选磁感应强度实验 在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,离析时刻为45min,球磨细度为-0.074mm占85.38%的条件下,按图1流程进行弱磁选磁感应强度实验,实验成果见表5。 从表5可知,跟着弱磁选磁感应强度的进步,精矿铁档次逐步下降,铁收回率和磷含量逐步上升。统筹各项目标,挑选弱磁选磁感应强度为0.16T。 (六)球磨细度实验 在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,离析时刻为45min,弱磁选磁感应强度为0.16T的条件下,按图1流程进行球磨细度实验,实验成果见表6。 表5  弱磁选磁感应强度实验成果注:矿石烧失率=9.68%,离析产品Fe档次为46.05,P含量为1.26%。下同。 表6  球磨细度实验成果%表6显现,跟着球磨细度的进步,精矿铁档次逐步上升,磷含量逐步下降,铁收回首先上升后下降。统筹精矿目标和磨矿本钱,挑选球磨细度为-0.074mm占85.38%。 (七)全流程归纳条件重复实验 经过以上实验,断定的全流程归纳条件为焦炭用量10%,氯化剂L4用量15%,离析温度1000℃,离析时刻45min,球磨细度-0.074mm占85.38%,弱磁选磁感应强度0.16T。按此归纳条件进行全流程重复实验,实验成果见表7。 表7  全流程归纳条件重复实验成果%从表7能够看出,选用所断定的工艺条件对实验矿样进行氯化离析-弱磁选处理,能够获得杰出的提铁降磷作用,铁精矿产率(对离析产品)为50.88%~52.00%,铁档次为75.33%~76.44%,磷含量为0.215%~0.218%,SiO2含量为5.44%~6.01%,铁收回率(对离析产品)为83.63%~85.66%。 四、定论 (一)云南某铁矿石铁矿藏首要为赤褐铁矿和菱铁矿,一起含磷较高,选用惯例的选矿工艺较难得出抱负的选别目标。 (二)在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,离析时刻为45min,磨矿细度为-0.074mm占85.38%,弱磁选磁感应强度为0.16T的条件下,选用氯化离析-弱磁选工艺处理该矿石,可得到铁精矿铁档次在75.33%以上,磷含量在0.218%以下,铁收回率在83.63%以上的杰出目标。 (三)对高磷铁矿石选用氯化离析-弱磁选工艺进行提铁降磷是一种新办法。很多的实验研讨标明,该工艺对高磷鲕状赤铁矿石、高磷菱铁矿石、高磷硫砷难选铁矿石等也能获得较好的选矿目标。

某鲕状高磷赤、褐铁矿回转窑磁化焙烧试验

2019-01-24 09:35:03

钢铁工业是国民经济的支柱产业之一,尤其是正处于国民经济高速发展中的我国钢铁工业就显得更为重要。解决铁矿原料不足、弥补供需缺口的途径有两条,一是寻找和开发新的铁矿原料基地;二是继续利用国外铁矿资源。我国的铁矿石资源中,具有易选、含杂低、含铁高、选矿工艺简单等特点的铁矿石正逐步面临枯竭;相反,具有含杂高(主要是P和S)、含铁低、嵌布粒度细等特点的难选铁矿石资源仍然没有得到合理的开发利用。     目前,难选铁矿石中的鲕状高磷赤、褐铁矿由于选矿工艺复杂,所得铁精矿产品铁品位低,含磷高仍然没有合理的选矿工艺利用这部分宝贵的铁矿石资源,故开发合理的选矿新工艺处理鲕状高磷赤、褐铁矿具有重大的现实意义。     一、试样性质     本次半工业试验试样来自四川某地区,嵌布粒度较细的高磷鲕状赤、褐铁矿,该矿石呈块状、硬度较大。原矿最大粒度在50mm以下约占全样的20%,一部分在25mm以下约占全样35%,其余的均在m15mm以下,从肉眼观察原矿中的脉石(石英、方解石等)矿物比较多,同时呈致密状分布,鲕状比较明显。原矿铁品位为39.38%,磷含量为0.763%。矿石主要铁矿物成分为赤、褐铁矿,其次为磁铁矿、硅酸铁矿、菱铁矿、黄铁矿等;矿石主要脉石矿物为石英、方解石、透辉石、普通辉石、绿泥石、文石、石榴石等。为满足工业试验的要求,将试样加工制备成-10mm以下进行试样的光谱分析、多元素分析、铁物相分析和筛分试验,试验结果依次见表1~表4。 表1  试样光谱分析结果   %元素AgAlAsBBaBe含量0.0030.280.04<0.001<0.02<0.001元素BiCaCdCoCuFe含量<0.0010.5<0.0010.0030.04>10元素GaGeMgMnMoNi含量0.001<0.0010.90.080.0030.006元素PPbCrSiSnTi含量<0.10.0070.00150.0020.02元素VWZnInTaNb含量0.08<0.01<0.005<0.01<0.005<0.01 表2  试样多元素化学分析结果  %元素FeSPAsSiO2MgOCaOAl2O3含量39.380.0160.76395.9815.982.981.126.09 注:As单位为×10-6 表3  试样铁物相分析结果铁物相TFe磁性铁碳酸铁黄铁矿硅酸铁赤、褐铁矿其它铁含  量39.381.894.920.565.1226.660.23占有率100.004.8012.491.4213.0067.700.59 表4  试样筛分试验结果粒级/mm产率/%Fe品位/%P品位/%Fe分布率/%P分布率/%个别累积个别累积个别累积个别累积个别累积-10+826.1226.1239.683.680.9020.90226.3126.3126.6526.65-8+530.0856.2040.1839.950.8980.90030.6856.9930.5657.21-5+2.515.9872.1838.8639.710.8650.89215.7672.7515.6472.85一2.5+111.9484.1239.2239.640.8620.88811.8984.3411.6484.49-1+0.457.2291.3437.8939.500.8830.8876.9491.587.2191.70-0.45+0.283.9895.3237.9239.430.7890.8833.8395.413.5595.25-0.28+0.13.1298.4438.1139.390.9010.8833.0298.433.1898.43一0.11.56100.0039.9339.400.8890.8841.57100.001.57100.00合计100.0039.400.884100.00100.00    从表1~表3的光谱分析结果、多元素分析结果、铁物相分析结果可知,试样中主要回收的元素是铁,其它有价值元素铜、锌、铅、钼、镍、钴、钛、金、银等含量均较低,无综合回收价值;有害元素硫、砷含量不超标,但磷严重超标为0.763%。试样中的可选性铁为赤、褐铁矿、菱铁矿和磁性铁,三者占原矿的84.99%。因此,该矿石主要是实现提铁降磷得到合格的铁精矿。     从表4可知,铁的分布随着粒度的变化不是很大,磷的分布随着粒度减小变化也比较小。     二、试验主要设备及降磷药剂     试验主要设备为φ800mm×9000mm回转窑、螺旋输送给料机、颚式破碎机、辊式破碎机、振动筛、雷蒙磨、末煤给煤机、螺旋分级机、水力旋流器、2台900mm×1800mm球磨机、筒式磁选机(B=0.30T)、永磁筒式磁选机(B=0.15T)、水淬螺旋连续运输机(自行研制)及辅助设备。     本次试验采用回转窑磁化焙烧,通过原矿的工艺矿物学研究表明,试样中的磷以胶磷矿形式赋存于矿石中,胶磷矿的特点是嵌布粒度相当细,并与铁矿物以晶格取代形式共生。同时,铁以鲡状形式嵌布于矿石中,粒度也比较细。这就决定了常规的磁化焙烧很难实现提铁降磷的理想效果,故采用自行研发的复合焙烧降磷药剂(代号为LCP)进行降磷。     该药剂属于盐类无机化合物,具有熔点低、亲磷矿物性、受干扰程度低等特点,主要机理是利用矿石在焙烧温度900~1100℃下,LCP迅速与铁矿石中的磷矿物反应生成以一种新矿物,实现磷矿物的有效转型,最终与铁矿物产生有效的分离。     三、半工业试验研究     经过前期的小型试验研究和扩大试验研究得出了适合该矿石的工艺流程为磁化焙烧一两段磨矿一两次磁选工艺流程,通过磁化焙烧过程添加自行研发的LCP组合降磷药剂,得到了铁品位65 %,含磷≤0.30%,铁回收率≥75%的选矿指标。故采用磁化焙烧一两段磨矿一两次磁选工艺流程进行回转窑(小800mm×9000mm)半工业试验研究,并根据半工业试验过程中所出现的问题和试验结果进行调整工艺参数,以寻求最优工艺参数得到理想的铁精矿产品指标,半工业试验工艺流程见图1。图1  半工业试验工艺流程     (一)焙烧条件试验     焙烧是整个工艺流程的关键因素之一,焙烧条件包括焙烧温度、焙烧时间(从物料进入回转窑到出料之间的时间差)、焦炭用量、降磷药剂(LCP)用量、焦炭粒度、球团直径。其中焙烧温度通过安装在回转窑上的温度传感器(A,B,C,D,E)来反映,高温带为A~B,长度2m,焙烧反应带为B~C,长度4m,烘干带为C~E,长度3m,焙烧时间通过调整回转窑的转速控制,回转窑不同转速通过调整变频器频率f实现,变频器不同频率对应焙烧时间关系见表5。 表5  变频器频率对应焙烧时间关系频率/Hz焙烧时间/min频率/Hz焙烧时间/min10904045207550303060    1、焙烧温度试验     焙烧温度通过回转窑的温度传感器来控制。回转窑变频器f=30Hz(焙烧时间为60min),LCP用量10%,焦炭用量8%,焦炭粒度-1mm,球团直径-20+5mm,弱磁选磁感应强度B1=0.30 T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焙烧温度试验,试验工艺流程见图1,试验结果见图2。图2  焙烧温度试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图2可见,温度在900℃~1000℃,随着焙烧温度升高,铁品位逐渐升高,铁回收率也呈升高趋势变化;温度升高至1050℃时,铁品位有所降低,铁回收率也有一定的降低。铁精矿中的磷含量随着焙烧温度的升高呈先降低后升高的趋势变化。综合考虑选择焙烧温度为1000℃,可以得到铁品位为65.74%,含磷0.236%,铁回收率为78.11%的选矿指标。     2、焙烧时间试验     通过焙烧温度试验得出了焙烧温度为1000℃比较合适,故在控制回转窑温度为1000℃,LCP用量10%,焦炭用量8%,粒度-1mm,球团直径-20+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焙烧时间试验。试验工艺流程见图1。试验结果见图3。图3  焙烧时间试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率   从图3可知,随着焙烧时间的增加,铁品位逐渐降低,铁回收率也呈逐渐降低趋势变化,整个变化过程中当f=40Hz时,出现一个极值点,对应焙烧时间为45min(表5);时间增加磷品位升高,时间减少磷品位也升高,出现两头高中间低的变化趋势。选择焙烧时间为45min可以得到铁品位为66.01%,含磷0.225%,铁回收率为79.09%的选矿指标。     3、焦炭用量试验     还原剂的种类比较多,如褐煤、无烟煤、烟煤等,这类还原剂一般含杂(硫、磷、砷等)比较高,容易带入精矿中影响产品质量,故只选择焦炭作为还原剂进行试验。焦炭在整个焙烧过程中主要起提供还原性气氛和还原载体的双重作用,焦炭用量直接影响焙烧产品质量。故就回转窑变频器f=40Hz(焙烧时间45min),LCP用量10%,焦炭粒度-1mm,球团直径-30+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行焦炭用量试验,试验工艺流程见图1,试验结果见图4。图4  还原剂用量试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图4可知,焦炭用量增加,铁品位升高,磷含量降低,铁回收率升高,但用量增加至8%再继续增加用量时,铁品位、磷品位、铁回收率变化比较小,故选择焦炭用量8%比较合理,可以得到铁品位为65.98%,含磷0.215%,铁回收率为78.89%的选矿指标。     4、焦炭粒度试验     焦炭粒度主要体现为焦炭的比表面性质,粒度越大,比表面积越小;反之,比表面积越大。此外,由于需将试样进行球团,粒度越大,相应的均匀程度不够;粒度越细,与试样的接触面积越大。在焙烧温度1000℃(回转窑温度传感器),回转窑变频器f=40Hz(焙烧时间45 min),LCP用量10%,焦炭用量8%,球团直径-20+5mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045 mm占80%以上的条件下,进行焦炭用量试验,试验工艺流程见图1,试验结果见图5。图5  还原剂粒度试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图5可知,粒度在-1mm以下均可以得到铁品位大于65%,含磷低于0.3%,铁回收率高于78%的选矿指标,焦炭粒度增大至+1mm时,铁精矿中的磷升高至0.328%。因此,焦炭粒为-1mm比较合理。     5、球团直径试验     球团直径的大小主要影响焙烧时间,直径越大,焙烧时间增加;反之,焙烧时间越短。此外,焙烧时间过长影响回转窑的单位处理量,同等条件下增加了选矿成本。因此,球团直径不宜过大或者过小。在焙烧温度1000℃,回转窑变频器f=40Hz(焙烧时间45min),LCP用量10%,焦炭用量8%,焦炭粒度-1mm,弱磁选磁场强度B1=0.30T, B2=0.12T,一段弱磁选磨矿细度-0.100mm占95%,二段弱磁选磨矿细度-0.045mm占80%以上的条件下,进行球团直径大小试验,试验工艺流程见图1,试验结果见图6。图6  球团直径大小试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图6可知,球团直径在-30+5mm之间比较合适,所得到的铁精矿中铁品位均大于65%,含磷低于0.3%,铁回收率高于78%。但从焙烧过程中发现-10 +5mm有“结圈”现象,因此控制球团直径在-30+10mm之间比较合理,这样既可以得到较好的选矿指标,又可以降低回转窑的“结圈”程度。     6、LCP降磷药剂用量试验     LCP降磷药剂属于复合药剂,根据其组分的市场价格,综合价格约400元/t,用量的多少不仅影响铁精矿中的磷含量,而且影响选矿成本。在焙烧温度1000℃,回转窑变频器f=40Hz(焙烧时间45min),焦炭用量8%,焦炭粒度-1mm,球团直径-30+10mm,弱磁选磁感应强度B1=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045mm占80%以上的条件下,进行球团直径大小试验,试验工艺流程见图1,试验结果见图7。图7  LCP用量试验结果 ■-Fe品位;▲-Fe回收率;◆-P品位(×10-2);●-P回收率     从图7可知,随着LCP用量增加,铁精矿中的磷含量逐渐降低至0.109%,但铁品位和铁回收率呈先升高后降低的趋势变化。当LCP用量为15%时,铁品位63.65%,含磷0.109%,铁回收率71.68%。因此,兼顾铁精矿品位、铁回收率、磷含量等因素,选择LCP用量为10%,可以得到铁品位65.71%,含磷0.223%,铁回收率78.91%的选矿指标。     (二)连续焙烧全流程试验     通过回转窑焙烧的主要工艺参数试验得到了磁化焙烧-弱磁选(阶段磨矿阶段选别)工艺流程的焙烧条件:焙烧温度1 000℃,f=40 Hz(焙烧时间45 min),焦炭用量8%,焦炭粒度-1mm,球团直径-30+10mm,LCP用量10%,弱磁选磁感应强度Bl=0.30T,B2=0.12T,一段磨矿细度-0.100mm占95%,二段磨矿细度-0.045 mm占80%以上。为考察所获得的工艺参数的可靠性和稳定性,在所取得的焙烧条件下进行连续72h工艺流程全流程试验,试验工艺流程见图1,试验结果见表6。 表6  连续72h焙烧全流程试验结果产物名称产率品位回收率FePFeP铁精矿50.4165.930.22578.9215.06尾矿49.5917.901.2911.0884.94合计100.0042.110.753100.00100.00     从表6可知,可以得到产率50.41%,铁品位65.93%,含磷0.225%,铁回收率78.91%的选矿指标,该指标与焙烧条件试验相比较,差别较小,故获得的工艺流程参数比较可靠,具有可重复性,产品指标稳定;此外,连续72 h回转窑焙烧过程中没有出现“结圈”现象,整个连续过程设备运转正常。     四、结论     (一)通过φ800 mm×9000mm回转窑磁化焙烧工业试验研究,得到了铁品位大于65%,含磷低于0.25%,铁回收率高于78%的选矿指标。     (二)采用自行研发成功的LCP复合降磷药剂有效地降低了铁精矿中的磷含量,得到了质量较高的铁精矿产品。LCP具有熔点低、价格便宜、来源方便、污染小等特点,在高磷铁矿石焙烧过程中添加一定量,可以有效地降低铁精矿中的磷含量。此外,用LCP对其它类型的高磷铁矿石也进行了大量的试验研究,也得到了较好的降磷效果。     (三)磁化焙烧(添加LCP降磷)一弱磁选(阶段磨矿阶段选别)工艺流程的成功,为难选高磷铁矿石的开发利用提供了一条新思路。     (四)在易选、含铁高、含杂低、工艺简单的铁矿石资源紧缺的状况下,难选含杂高的铁矿石资源的开发利用是必然趋势。因此,开发新技术、新工艺处理这部分宝贵的铁矿石资源将具有重大的现实意义。

铁合金焦基础知识

2019-03-14 10:38:21

铁合金焦是用于矿热炉冶炼铁合金的焦炭。铁合金焦在矿热炉中作为固态复原剂参与复原反响,反响主要在炉子中下部的高温区进行。以冶炼硅铁合金为例,其反响式为SiO2(液)+2C(固)=Si(液)+2CO(气),跟着反响的进行,焦炭中的固定碳不断耗费,主要以CO方式从炉顶逸出。焦炭灰份中的三氧化二铝、氧化铁、氧化钙、氧化镁和等,部分或大部分被复原出来,进入合金中;未参与反响的部分进入炉渣。焦炭中的硫和硅生成硫化硅和二硫化硅后挥发掉。冶炼不同种类的铁合金,对焦炭质量的要求纷歧,出产硅铁合金时对焦炭质量要求最高,所以能满意硅铁合金出产的铁合金焦,一般也能满意其他铁合金出产的要求。 硅铁合金出产对焦炭的要求是:固定碳含量高,灰份低,灰中有害物质三氧化二铝和等的含量要少,焦炭反响性好,焦炭电阻率特别是高温电阻率要大,挥发份要低,有恰当的强度和粮食的块度,水分少而安稳。 我国冶标(YB/T034-92)规则了铁合金焦的技能要求,要求粒度为2-8mm,8-20mm,8-25mm。

锰矿石冶炼富锰渣和生铁工艺流程

2019-01-04 17:20:18

锰矿石冶炼富锰渣和生铁工艺流程: 小高炉开启,原材料:锰矿石、焦炭。选择合量41以上的锰矿石(mn:23左右,fe:18左右).和碳质还原剂(通常用二级焦碳).原矿石和焦炭的配比为3.5:1,加进治炼炉里,经过炉加热炼两个小时成液体状。经管道流进指定的加有耐热材料的模具里(生铁重些从底下的口子流出.富锰渣从上面口子流出) 冷却后得到富锰渣和生铁。富锰渣和生铁出炉比例约为10:1。1.5吨原矿石经冶炼得到约一吨富锰渣和0.1吨生铁及付生铁。       冶炼一万吨原矿石需要消耗约三千吨二级焦炭。锰矿原矿石价格:锰矿石(mn:23,fe:18)  400元/吨 加减一度锰50元,加减一度铁15元。 二级焦炭:1300元/吨 一级焦炭:1800元/吨富锰渣(mn:33):1150元/吨. 生铁(含碳量2.5%--4%):2750/吨小高炉锰矿原矿石富锰渣焦炭生铁

锰硅合金冶炼工艺操作(一)

2019-01-08 09:52:46

锰硅合金的生产与电炉高碳锰铁一样都是在矿热炉内进行的,采用有渣法冶炼。主要采用焦炭作还原剂,锰矿石、富锰渣和硅石作原料,石灰或白云石作熔剂在电炉内连续生产,操作方法与高碳锰铁相同;渣铁比受锰矿的金属含量波动影响较大,锰矿品位高,渣量则少,反之渣量就多,波动范围一般为0.8~1.5。    炉况掌握比冶炼高碳锰铁困难一些,为此在操作上更要求精心细致,正确地判断炉况并及时处理。为保证冶炼过程正常进行,在操作中需要特别重视还原剂的用量和炉渣成分。    一、炉况正常的标志和熔池结构    正常炉况的标志是:电极的插入深度合适,炉料均匀下沉,炉口冒火均匀,产品和炉渣成分稳定,各项技术经济指标良好。生产中密切观察炉况,及时正确地调整配料比例是保证正常炉况的关键。    锰硅合金矿热炉熔池是由炉料区、焦炭区、冶炼区和合金池四个不同区域构成。如图1所示,在炉料区锰和铁的高价氧化物被还原成低价氧化物,MnO与SiO2结合成复合硅酸盐,并在1250~1300℃熔化,锰和硅的还原主要是在焦炭区和冶炼区之间进行的。    二、焦炭层的作用    焦炭层对锰硅合金的冶炼是否正常起着关键的作用。焦炭层处于固态的炉料层与液态的冶炼层之间,其厚度和部位决定了电极工作端的位置和电炉操作的稳定性,不同容量或不同工艺参数的锰硅电炉都有着各自的最佳焦炭层厚度和部位。最佳焦炭层部位保证了电极能够在炉料中插入足够的深度和炉况的顺行;最佳的焦炭层厚度则保证MnO,SiO2等氧化物的直接还原反应得以顺利进行及其还原过程的稳定性。选择合适的焦炭粒度,适当的配炭量是维持焦炭层一定的厚度和部位的主要方式之一。[next]    三、配炭量对焦炭层和炉况的作用与影响    当炉料中的配炭量过量时,炉料电阻率减小,导电性增强,电表电流上涨,电极上抬,焦炭层增厚,焦炭层的部位上移,炉膛熔池坩埚缩小,刺火塌料现象增多,合金含硅量偏高。这种现象如果持续下去,则会由于电极插入深度不够,使高温区上移,炉口温度升高,电极上抬严重,炉内塌料增多,炉底温度降低SiO2得不到充分还原,合金中含硅量反而下降,同时出铁排渣不畅。对于封闭炉则会出现炉气压力升高且不稳定的现象。当炉况出现上述特征时,就可以判断为还原剂过剩,必须在料批中减碳,必要时配入不带焦炭的料批。    当炉料中焦炭量不足时,就会引起焦炭层减薄,此时虽然电极插入较深,但负荷会不足,炉料消耗速度慢,炉口翻渣频繁,炉口火焰低、发暗。由于还原剂不足,人炉SiO2还原率降低,炉渣中的SiO2和MnO含量增高。合金中的锰、硅含量偏低,磷含量升高,这时料批中应增加焦炭的配入量,或者单独附加焦炭。    因此,计算配料比,特别是还原剂焦炭的用量直接关系到合金的质量和炉况的顺行。焦炭层的厚度和部位不仅决定于配碳量,还决定于锰矿和焦炭的性质及粒度,以及电炉容量的大小和其他一些因素。在某一特定电炉和同样的原材料条件下,就主要决定于焦炭粒度和出铁工艺。    配碳量是先使用公式计算,再综合考虑炉子上的一些实际情况,进行具体修正后确定。例如炉渣碱度高时渣液较稀,出炉时带走的生料较多,配碳量可以稍多些;又比如炉眼较大时,出炉带走的残余焦炭较多,配碳量也应适当多一些。    四、矿渣碱度对炉况的作用与影响    在冶炼原理中已经介绍了锰和硅都是从液态硅酸锰中还原出来的。由于SiO2比MnO难还原得多,当SiO2能够被大量还原时,MnO的还原也是比较充分的。    为促使SiO2充分还原,需要提高SiO2的活度系数,炉渣碱度选择似乎应该越低越好;但是当碱度小于0.5时,虽然SiO2的活度大,但其炉渣的粘度也大(图2),熔液中SiO2的传质速度低;沪渣的导电性变差。炉内温度梯度大,距离电极稍远的一些区域渣液温度降低;还原SiO2所需的温度不够SiO2还原困难,硅的回收率降低;粘稠炉渣中的一些高熔点物质如SiC等在炉内积存结瘤,难以排出炉外。具体表现为:渣液粘稠,出炉排渣困难,排渣不彻底,熔池坩埚缩小,化料速度趋缓,生产效率低,合金中的硅低碳高,炉渣跑锰损失增大。    向炉料中添加适量的石灰或白云石等碱性物质,有利于改善炉渣的流动性和导电性,提高SiO2的还原率,改善炉况,提高产品冶炼的技术经济指标。[next]    当碱度小于0.75时,锰的回收率随碱度的提高而提高,硅的回收率也随着碱度的提高也有所提高(图3和图4).这说明在规定的限度范围内提高碱度可以改善炉渣的导电性和流动性,使输往炉内的电能可以在较大的范围内均匀分布,减小炉内反应区的温度梯度,有利于加快SiO2的传质速度,而不会由于碱度的提高SiO2活度下降而恶化SiO2还原的热力学条件。需要特别指出的是,为了提高炉渣碱度,不能只靠增加碱性物质来实现,重要的是要提高SiO2还原率。只有在提高SiO2还原率的前提下,炉渣跑锰量才低。单凭增加炉料中CaO,MgO的含量来提高炉渣碱度,往往限制了SiO2还原,也不能提高锰的回收率。通过增加炉料中的n(CaO+MgO)/n(SiO2)比值来提高炉渣碱度,其增加值是有限的,并且在这种情况下不但炉渣跑锰不低,渣量增大,而且由于SiO2活度随着碱度的提高而越来越小,SiO2还原的热力学条件严重恶化,导致硅的回收率迅速降低。分析图5可以得出如下结论:在生产锰硅合金时较高或合适的炉渣碱度是凭SiO2的还原度来达到的,只有SiO2的还原率得到提高,锰的回收率才能得到真正提高。    碱度过高时,成渣温度降低,炉内温度提不高,加上CaO与SiO2结合成硅酸钙,这些都造成SiO2还原的困难,合金含硅量上不去。此外,碱度过高,渣液过稀,不仅出炉时带走的生料多,而且出铁口容易烧坏,炉眼不好堵,因此,碱度太高不好。

高炉锰铁的生产---高炉锰铁冶炼操作

2019-01-25 15:49:34

锰铁高炉冶炼操作与生铁高炉相似,但锰铁高炉具有以下不同特点:    ①锰矿中MnO含量较铁矿中FeO含量低,MnO较FeO难还原。冶炼过程中渣量大,锰的回收率较低。    ②由于锰与氧的亲和力比铁强,还原MnO时需要较高的温度和较大的能量,因此高炉锰铁的冶炼焦比要比生铁冶炼高得多,焦炭负荷轻。    ③由于焦比高、焦炭负荷轻,焦炭和矿石之间粒度相差大。边缘气流易于发展,造成煤气流紊乱,易产生偏行管道。    ④锰铁高炉煤气量大,发热值高,造成炉顶温度高,煤气含尘量大,净化困难。    ⑤炉衬侵蚀快,炉底易堆积,使得炉衬寿命低于生铁高炉。    以上特点决定了锰铁高炉的操作制度有别于生铁高炉而具有自身的特点。    1.高炉锰铁冶炼的装料制度    高炉锰铁冶炼中原料、燃料及熔剂的装入方法直接影响高炉断面料层分布及上升煤气流的分布,高炉装料制度包括料线、料批、装料顺序和布料器工作制度。    (1)料线,即大钟下降后的下沿至料面距离,根据锰矿粒度小、密度大、滚动性差,焦炭粒度大、滚动性好的特点,锰铁高炉的料线选在碰焦点以下,通过反弹布料,使矿石布到边缘,焦炭布到中心,有利于中心煤气流的发展。    (2)批重,指每一批料矿石重量。小料批加重边缘,大料批发展边缘。根据锰铁高炉的冶炼特点,一般采用小料批加重边缘。    (3)装料顺序,指一批料中矿石、焦炭、熔剂装入料斗的顺序。矿石先装为正装(加重边缘),焦炭先装为倒装(发展边缘)。此外还有分装、半正装、半倒装等。    (4)布料器工作制度,采用布料器是使炉料在高炉断面分布均匀的一项措施,它还可用来纠正炉料下降和煤气上升的不均匀。锰铁高炉通常采用六点式布料器布料,即每批料旋转60度。    生产实践证明:锰铁高炉采用深料线、较小料批、正装或正分装为主的装料制度有利于炉况顺行。    2.送风制度    锰铁高炉的送风制度直接影响煤气的初始分布及炉况。送风制度的确定体现为鼓风动能,即风压、风量、风温及风口尺寸等参数的选择。    在原料强度好、粒度均匀且粉末少的情况下,可采用大风量及较小风速(大风口)。反之则采用小风量、较大风速(小风口)。高炉容积与鼓风动能成正比。即高炉容积越大、鼓风动能也越大。冶炼产品含Mn量越高,炉缸越易堆积,为此需要的鼓风动能也越大。    在高炉锰铁冶炼中,为保炉缸活跃,要采取措施吹透中心。除力争全风操作外,还应保持较高风速和较大的鼓风动能,以及调节风口长度和角度来实现这一目的。    3.热制度    高炉锰铁冶炼的热制度是指冶炼中炉温水平及维持手段。炉温水平的确定应建立在保证锰的还原率及有利于降低焦比的基础上。    炉温的高低主要取决于焦炭负荷、风温、煤气热能和化学能的利用情况。    焦炭负荷与矿石中的锰、铁含量,冶炼中的渣量,熔剂消耗量以及风温、高炉容积和工作状态有关。在以上条件较稳定的前提下,应保持较合适而稳定的焦炭负荷。当以上条件变化时应根据变化相应调整焦炭负荷,以保证炉温的稳定。    在高炉锰铁冶炼中,热风带入的热量是高炉热量的主要来源之一。提高风温可降低焦比,减少煤气生成量,有利炉况顺行。因此在设备条件许可下应尽量提高风温。    4.造渣制度    高炉锰铁造渣制度与原料条件有关。当锰矿品位高,Mn,Fe质量比高时,可采用无熔剂或少熔剂法生产高碳锰铁,此时炉渣为低磷、低铁富锰渣,可作为硅锰合金的原料。我国锰矿石含锰品位低,国内以熔剂法生产高碳锰铁,以碱性渣操作为主。炉渣碱度一般控制在生产实践表明:渣中MgO含量由5%提高到8%时,渣中MnO由8%降至5%。为此,在高炉锰铁冶炼中合适的炉渣成分为:CaO为30%~44%;SiO2为25%~30%;MgO为8%~12%;Al2O3为10%~15%,MnO为3%~7%。