您所在的位置: 上海有色 > 有色金属产品库 > 回收80钒铁 > 回收80钒铁百科

回收80钒铁百科

国家金属钒铁标准

2019-01-04 09:45:31

钒铁主要用于冶炼合金钢。如在弹簧钢、轴承钢和铸铁上都有广泛的应用、钒铁的含钒量30%以上,在电炉中炼制。钒的各种化合物广泛应用于化学工业中作触媒剂。钒所以这样广泛地用于钢铁工业上,是由于钒能同钢中的碳生成稳定的碳化物,它可以细化钢的组织和晶粒,提高晶粒粗化的温度。因此,钢中加入少量钒就可显著地改善钢的性能,大大提高钢的强度、韧性、耐磨能力、承受冲击负荷的能力和抗腐能力等。          我国钒铁的技术条件,国家标准(GB 4139-87)作了规定。钒铁按钒和杂质含量的不同,分为6个牌号,其化学成分见表1。    表1 钒铁化学成分牌号化学成分 /%VCSiPSAlMn不小于不大于FeV40-A40.00.752.000.100.061.0 FeV40-B40.01.003.000.200.101.5 FeV50-A50.00.402.000.070.040.50.50FeV50-B50.00.752.500.100.050.80.50FeV75-A75.00.201.000.050.042.00.50FeV75-B75.00.302.000.100.053.00.50      钒铁以块状供货;最大块重不得超过8kg,通过10mm*10mm筛孔的碎块,不得超过该批总重的3%。

钒铁的基本知识

2018-12-12 09:37:10

钒作为元素周期表钒族元素中的一员,其原子数为23,原子重量为50.942, 熔点为1887°C,沸点为3337°C。纯钒呈现为闪亮的白色,质地坚硬,为体心立方结构,晶格系数为3.024 Å。 钒在地壳中为第17位常见的元素,且很少以单质的形式直接使用。然而钒确实是一种很有价值的合金元素,可以添加于钢中、铁中,并以钛-铝-钒合金的形式用于航天领域。钒的化合物也十分有用,可以被广泛地用来生产如催化剂、化妆品、染料、以及电池等。基于钒的广泛用途,以提取和使用钒为目的的全球产业也随之得以发展。该产业几乎存在于世界的各个大陆上。

国际硅铁标准(ISO 5445-80)

2019-01-03 14:43:37

硅铁牌号和化学成分见表1 表1 硅铁牌号和化学成分牌号化学成分 /%Si Al PSCMn①Cr①Ti①>≤>≤≤FeSi10813-0.20.150.06230.80.3FeSi151420-10.150.061.51.50.80.3FeSi252030-1.50.150.06110.80.3FeSi454147-20.050.050.210.50.3FeSi504751-1.50.050.050.20.80.50.3FeSi656368-20.050.040.20.40.40.3FeSi75Al7280-10.050.040.150.50.30.2FeSi75Al1.5728011.50.050.040.150.50.30.2FeSi75Al272801.520.050.040.20.50.30.3FeSi75Al37280230.050.040.20.50.50.3FeSi90Al18795-1.50.040.040.150.50.20.3FeSi90Al287951.530.040.040.150.50.20.3① 如无另外规定,则这些数值仅作为资料列出。 粒度:硅铁的颗粒粒度见表2。 表2 硅铁的颗粒粒度等级粒度范围/mm过细粒度(最大) /% 过粗粒度(最大)/%总量1100-31520610275-200206在上或三个方向上,不得有超过规定粒度范围最大极限值*1.15的粒度335-100186410-7518753.15-358863.15-10101073.15-6.310108--注:按级组批的产品,各炉之间含硅量相差不得超过3%(绝对值)。

钢渣回收铁的技术

2019-02-21 12:00:34

钢渣是炼钢过程中发生的废渣,数量约为钢产量的15%~20%。近年来,跟着我国钢铁工业的飞速发展,钢渣的排放量也随之添加。钢渣中含有适当数量的铁,均匀含金属铁约为10%左右。不同种类的钢渣,能够作不同的用处。TFe高的钢渣能够作炼钢质料、炼铁质料,以及作烧结质料用,剩余的尾渣一般用于修路、回填、制作钢渣水泥等。太钢集团临汾钢铁有限公司年排转炉钢渣量30万t,转炉废渣中铁的含量为17%~28%。这些转炉钢渣除部分归纳利用外,其他悉数堆放在东王渣场。归纳收回转炉渣中的这部分铁,对节省厂商资源、下降环境污染、添加厂商经济效益,有很大的久远和现实意义。为此,本实验以临钢钢渣为质料,进行了收回铁的工艺研讨。     一、实验质料及办法     (一)实验质料     实验钢渣样取自太钢集团临汾钢铁有限公司。该钢渣样中,首要矿藏成分为硅酸二钙、硅酸三钙、氧化钙和玻璃体。经工艺矿藏学研讨证明,钢渣中金属铁粒度散布极不均匀,磁铁矿、赤、褐铁矿结晶粒度纤细,与质固溶体嵌布联系密切,较难单体解离。通过选矿可直接收回的金属矿藏,首要有金属铁、磁铁矿、赤铁矿和褐铁矿。     钢渣经多元素化学分析,其组成见表1。 表1  化学多元素分析成果元素TFeFeOSi02A1203CaOMg0SPK20Na20含量/%23.0820.2016.164.2046.884.820.180.360.180.17     (二)实验办法     结合钢渣性质,别离进行了湿式弱磁选和湿式强磁选比照实验,然后得到适宜的工艺道路。     二、实验成果及评论     (一)湿式弱磁选实验     1、湿式磁选磨矿细度实验     钢渣湿式磁选磨矿细度实验是在弱磁场中进行的。实验固定磁场强度0.16T,磨矿细度别离为-200目产品的含量60%、70%、80%、90%、95%。由实验数据可得铁档次、收回率与磨矿细度联系,如图1所示。     由图1能够看出,磨矿细度对铁精矿的铁档次与收回率有较大影响。在磨矿细度-200目70%时,铁收回率约为64%,档次约为59%;在磨矿细度-200目80%时,铁收回率进步到了约66%,但档次下降到了约50%。归纳考虑各方面要素,磨矿细度以-200目占75%为宜。    2、湿式弱磁选磁场强度实验     钢渣湿式磁选磁场强度实验,是在固定磨矿细度-200目92%,磁场强度别离为0. 16T,0.145T、0.125T、0.10T下进行的。由实验数据可得铁档次、收回率与磁场强度的联系,如图2所示。    从图2能够看出,跟着磁场强度添加,铁精矿的档次有所下降,但都在50%以上,收回率明显进步。在磁场强度为0.175T时,到达了66.75%。因此,本次实验选弱磁场强度0.175T较为抱负。     3、湿式弱磁选实验成果及分析     钢渣湿式弱磁选验证实验,是在固定磨矿细度-200目75%、磁场强度为0.175T的条件下进行的。实验成果见表2。 表2  湿式弱磁选验证实验成果产品名称产率/%全铁档次/%全铁收回率/%铁精矿31.0060.6066.99尾渣69.0013.4233.01原渣100.0028.98100.00     从表2能够看出,铁精矿产率为31.00%,铁精矿档次能够到达60.60%,全铁收回率为“66.99%,实验成果比较抱负。     (二)湿式强磁选实验     1、湿式强磁选磁场强度实验     实验钢渣样中有弱磁性矿藏赤、褐铁矿,为了进一步收回这部分赤、褐铁矿中的铁,进行了湿式强磁选磁场强度实验。实验用质料为湿式弱磁选磁场强度验证实验的弱磁尾渣。由实验数据可得铁档次、收回率与磁场强度联系,如图3所示。    从图3能够看出,跟着磁场强度的改变,铁精矿档次改变不大,收回率有所添加。但强磁选精矿档次只是有20%左右,无法取得合格的铁精矿。     2、湿式强磁选再磨细度实验     从钢渣湿式强磁选磁场强度实验成果可见,强磁选精矿档次只是只要20%左右,这可能是因为钢渣中赤、褐铁矿结晶粒度细微,没有到达单体解离原因。因此,进行了强磁选再磨细度实验,实验磁场强度1.278T,实验成果见表3。 表3  弱磁选尾渣强磁选磨矿细度实验成果磨矿时刻/mm产品名称产率/%档次/%收回率/%TFeTFe15铁精矿 尾渣 磁选尾渣38.93 61.07 100.0024.00 5.00 12.3975.38 24.63 100.0020铁精矿 尾渣 磁选尾渣40.88 59.12 100.0025.58 5.10 13.4877.60 22.40 100.00     从表3能够看出,弱磁选尾渣通过再磨,在同一磁感应强度下进行选别,铁精矿档次只能到达24%~25%,距合格的铁精矿质量要求相差甚远,并且当选弱磁选尾渣铁档次只要13%~14%。持续进步再磨细度,必然添加磨矿本钱,经济上不行合理,因此没有必要持续深入研讨。     (三)铁精矿质量检验分析     为了查看选矿产品质量,特进行了铁精矿质量分析,铁精矿质量分析成果详见表4。 表4  钢渣湿式弱磁选铁精矿和尾渣多项化学分析成果(%)组分TFeSi02SPCuPbZnSnK20Na20As铁精矿60.604.560.120.280.0250.0760.0110.0010.770.0470.004尾渣13.4237.700.100.240.0160.0710.0090.0010.650.0410.001     从表4的实验成果分析可知,湿式弱磁选工艺能够从该钢渣中选出档次为60%以上的铁精矿。可是,该铁精矿含磷超支,需在冶炼过程中留意除磷。     三、定论     (一)将钢渣在磨矿细度-200目75%,磁场强度0.175T的条件下进行湿式弱磁选,研讨成果表明:铁精矿产率31.00%,选矿比3.23,铁精矿档次能够到达60.60%,全铁收回率为66.99%。     (二)湿式弱磁选工艺能够从该钢渣中选出档次为60%以上的铁精矿。可是,该铁精矿含磷超支。

铁尾矿回收利用设计

2019-02-21 10:13:28

一、尾矿的性质(尾矿的工艺矿藏学研讨)     该尾矿取自本钢南芬铁矿的矿样。     (一)尾矿的化学和矿藏组成。尾矿的光谱分析、化学组成和矿藏组成别离见表1~表3。 表1  尾矿的荧光光谱分析成果    (%)元 素ONaMgAlSiPSClKCa含 量49.0880.1823.4081.8534.7770.1240.276-0.5712.306元 素TiMnFeCoZnRbSrVPb 含 量0.0870.1137.0960.0120.0110.0040.0050.090.007    表2  尾矿的化学多元素分析成果    (%)元 素PbZnCuSAsTfe含 量0.0010.0210.0010.520.029.31元 素SiO2MgOCaOAl2O3P 含 量72.533.433.341.650.081    表3  尾矿首要矿藏组成及相对含量    (%)矿藏称号磁铁矿赤铁矿、褐铁矿黄铁矿其他硫化物石英、长石相对含量2.05.50.8微51.0矿藏称号角闪石类、辉石类云 母绿泥石、黏土矿藏方解石其 他相对含量36.60.42.01.20.5        分析成果标明该尾矿的首要组成元素有O、Si、Fe、Mg、Ca、Al等,其次为K、Na、S、Ma等,首要化学成分有SiO2和铁的氧化物,其次是镁、钙、铝的氧化物,铜、铅、锌等有色金属元素及硫、砷含量较低。尾矿藏的首要金属矿藏为磁铁矿、赤铁矿,其次为褐铁矿、黄铁矿,微量的磁黄铁矿、毒砂等,其他金属矿藏、硫化物含量甚微。首要的非金属矿藏是石英、角闪石、透闪石等,其次为辉石、长石、阳起石、金云母、黑云母、白云母、绿泥石、方解石、菱铁矿、高岭石类黏土矿藏等,微量的绿帘石、(斜)黝帘石、滑石、电气石、磷灰石等。     (二)铁、硫的赋存状况。铁是尾矿中含量最多的金属元素,尾矿中铁和硫的化学物相分析成果见表4、表5。分析成果标明,铁首要赋存于赤铁矿(包含褐铁矿)及硅酸盐矿藏中,其次赋存于磁铁矿中,微量赋存于黄铁矿等硫化物及碳酸盐矿藏中。硫在尾矿中的含量虽低,矿藏组成相对简略,作为尾矿归纳运用,能够考虑收回,硫首要赋存于黄铁矿中,其次赋存于硫酸盐中。 表4  尾矿中铁的物相分析成果  (%)铁的相含 量散布率备 注磁铁矿中的铁1.4515.10首要的铁相赤铁矿、褐铁矿中的铁3.8339.90首要的铁相硫化物中的铁0.353.65首要为黄铁矿,其他硫化物甚微碳酸盐中的铁0.515.31菱铁矿、方解石等碳酸盐,铁含量甚微硅酸盐中的铁3.4636.04首要赋存于角闪石、辉石、阳起石、 绿泥石、云母等硅酸盐矿藏中总铁9.60100.00-   表5  尾矿中硫的物相分析成果  (%)硫的相含 量散布率备 注硫化物中的硫0.44991.45首要为黄铁矿,其他硫化物甚微硫酸盐中的硫0.0428.55硫化物氧化、水化构成的各种硫酸盐总 硫0.491100.00-         (三)尾矿的粒度分析及单体解离度测定。尾矿的粒度分析、铁矿藏、硫化物的单体解离度测定成果见表6~表8。 表6  粒度组成和铁含量散布粒级/mm产率/%铁档次/%铁散布率/%+0.256.839.146.49+0.156.8319.1913.63+0.109.4211.7611.52+0.07411.2811.3613.32+0.04316.366.9511.82+0.03710.357.948.54-0.03738.938.5734.68全样100.009.62100.00   表7  铁矿藏的单体解离度﹡粒级/mm单体解离度/%备 注+0.2550连生体首要与脉石毗邻连生+0.1566连生体首要与脉石毗邻连生+0.1063连生体首要与脉石毗邻连生+0.07468连生体首要与脉石毗邻连生,部分细粒者被脉石包裹+0.04371连生体首要与脉石毗邻连生,部分细粒者被脉石包裹+0.03775连生体首要与脉石毗邻连生,部分细粒者被脉石包裹-0.03783连生体以毗邻连生为主全样72- ﹡氧化铁矿藏包含磁铁矿、赤铁矿及褐铁矿,二种氧化铁矿藏之间的连晶视为单体。   表8  硫化物的单体解离度﹡粒级/mm单体解离度/%备 注+0.2535连生体首要被脉石包裹或半包裹,其次为毗邻连生+0.1063毗邻连为主,其次被脉石包裹或半包裹+0.07469毗邻连为主,其次被脉石包裹或半包裹+0.04367毗邻连为主,其次被脉石包裹或半包裹+0.03776连生体以毗邻连生为主-0.03780连生体以毗邻连生为主全样68- ﹡金属硫化物首要是黄铁矿,包含一些偶见的磁黄铁矿、毒砂、闪锌矿等,它们之间的连晶视为单体。          粒度分析标明,尾矿产率首要在-0.074mm以下,在-0.037mm最多,铁在-0.037mm散布率最多;首要是磁铁矿和赤铁矿,少数褐铁矿。粒度多在0.04~0.2mm,氧化铁的单体解离度为72%,连生体首要与脉石矿藏呈毗邻连生,部分细粒者(0.03mm以下者)多被脉石包裹或半包裹连生。金属硫化物首要是黄铁矿(FeS2),其他如磁黄铁矿、毒砂、闪锌矿、方铅矿,黄铁矿等含量甚微,镜下偶见。黄铁矿的粒度多在0.03~0.08mm,解离度约68%,连生体首要与脉石矿藏呈毗邻连生,部分细粒者(0.03mm以下者)多被脉石包裹或半包裹连生。脉石矿藏首要是石英,其次为柱状硅酸盐矿藏角闪石、辉石、透闪石、阳起石等,还有少数的方解石和片状硅酸盐矿藏金云母、黑云母、绿泥石、黏土矿藏等。它们是尾砂的首要组成矿藏,粒度从0.01~0.3mm不等。相互间根本呈解离状况,部分集合体可见与氧化铁矿藏、黄铁矿等连生。     工艺矿藏学研讨标明,铁的氧化物和硫化物是可收回的金属矿藏,可加收回运用的非金属矿藏首要是石英、长石类矿藏。从铁的物相分析来看,能够收回的主权是磁性铁和赤、褐铁矿以及碳酸铁(磁化焙烧方案),硅酸铁极难收回,硫化铁中的铁首要在硫精矿中。因而铁的理论收回率为60.31%。因为尾矿中含有脉石矿藏包裹的铁矿藏以及以脉石矿藏为主的连生体,即于出产本钱等原因,不能考虑直接再磨,因而脉石矿藏包裹的铁矿藏以及以脉石矿藏为主的连生体根本难以收回。     二、从尾矿中收回铁     (一)预富集方案的挑选     因为南芬选厂现场尾矿中铁档次较低,因而须选用预富集作业,首要扔掉很多的尾矿,使全铁档次到达30%左右或更高,才有或许使铁的收回具有经济含义。依据工艺矿藏学研讨成果,南芬选厂现场尾矿中铁矿藏首要是赤铁矿及少数磁铁矿和碳酸铁,氧化铁矿藏单体解离度约72%,尾矿再进行磨矿一是出产本钱高,二是在技能上无必要,因而首要断定尾矿不预先磨矿。选用重选(螺旋溜槽)和磁选(弱磁+强磁)两种预富集方案。     依据南芬现场尾矿中铁矿藏单体解离度较高,且铁矿藏密度大于脉石矿藏,重选选用螺旋溜槽预富集,螺旋溜槽实验准则流程见图1。螺旋溜槽规格为Ф400mm。  图1  溜槽实验工艺流程        因为南芬选厂现场尾矿中可收回的铁首要是磁性铁和赤褐铁及碳酸铁,因而首要选用弱磁收回磁性铁,后用强磁收回赤、褐铁矿及碳酸铁,实验准则流程见图2。    图2  磁选预富集铁收回实验准则流程     实验成果标明:     1、南芬铁矿尾矿选用螺旋溜槽预富集,经一粗一精,粗精矿全铁档次可富集至31.28%,经一粗二精,粗精矿全铁档次可富集至41.05%。     2、南芬铁矿尾矿选用磁选预富集,粗精矿须磨矿后才干富集至35%左右,且铁收回率较螺旋溜槽预富集低。从技能、本钱和作用来看,选用重选预富集办法比较抱负。     (二)预富集粗精矿收回铁选矿实验     1、流程方案挑选     依据重选预富集实验成果,南芬选厂现场尾矿经过螺旋溜槽一粗一精(或二精)预富集后,粗精矿全铁档次在30%~40%,到达了一般铁选厂原矿档次,依据收回赤铁矿的经历,断定选用以下三种方案进行铁精矿的收回实验:     (1)脱硫浮选―磁化焙烧―弱磁工艺。工艺流程见图3,实验成果见表9。  图3  南芬现场尾矿方案1全流程实验工艺流程 (需求清楚资料的会员,请来电免费讨取)   表9  南芬现场尾矿方案1全流程实验成果  (%)产品称号产 率品 位收回率TFeSTFeS铁精矿5.2166.340.4535.234.51硫精矿1.1140.2740.564.5686.58弱磁尾矿9.5110.26-9.85-溜槽尾矿84.175.87-50.36-给 矿100.009.810.52100.00-        (2)弱磁―强磁―反浮选工艺。工艺流程见图4,实验成果见表10。    图4  南芬现场尾矿方案2全流程实验工艺流程       表10  南芬现场尾矿方案2全流程实验成果  (%)产品称号产 率品 位收回率TFeSTFeS弱磁精矿0.9863.780.216.31-铁精矿3.9362.290.4024.70-硅精矿0.8127.38-2.24-硫精矿0.1540.1437.570.6110.84强磁尾矿4.9722.30-11.18-溜槽尾矿89.166.11-54.97-给 矿100.009.910.52100.00-        (3)直接反浮选工艺。工艺流程见图5,实验成果见表11。    图5  方案3全流程实验工艺流程   表11  南芬现场尾矿方案3闭路实验成果  (%)产品称号产 率品 位收回率TFeSTFeS铁精矿5.4962.520.2934.54-硫精矿1.1240.1338.854.5283.68硅精矿4.2314.36-6.11-溜槽尾矿89.166.11-54.82-给矿100.009.940.52100.00-        2、方案比较     南芬选厂现场尾矿铁收回方案比较见表12。从表12可知,方案1不管从铁精矿铁收回率、档次,硫精矿硫收回率、档次,仍是终究磨矿粒度目标均优于方案2和方案3。因而,选用方案1收回铁比较抱负,即先选用螺旋溜槽预富集丢掉很多低档次尾矿,铁精矿经脱硫浮选得到硫精矿,浮选尾矿经磁化焙烧,磨至70.76%-0.074mm后进行磁选即可取得高档次铁精矿。流程特点是充分运用铁矿藏和硫矿藏与脉石矿藏的密度差异,先开始富集,得到铁矿藏、硫化物粗精矿,然后运用硫化矿藏与氧化矿藏的可浮性差异得到硫精矿。磁化焙烧将磁铁矿、赤铁矿及碳酸铁改改变为磁性铁,防止角闪石、透闪石等难浮硅酸盐矿藏对铁精矿档次的影响,一同也防止了浮选需求的细磨问题。 表12  南芬选厂现场尾矿铁收回方案比较  (%)方 案铁精矿硫精矿磨矿细度产 率铁档次铁收回率产 率铁档次铁收回率15.2166.3435.231.1140.5686.58-0.074mm70.76%24.9162.5931.010.1537.5710.84-0.043mm81.12%35.4962.5234.541.1238.8583.68-0.043mm88.25%        3、废水废渣处理     螺旋溜槽和磁选废水经沉积后清水可直接回用,浮选废水可直接回来浮选体系,螺旋溜槽和磁选尾矿均进入下一步非金属矿藏资源化归纳运用。     4、铁精矿的质量     铁精矿质量分析见表13。 表13  铁精矿质量分析成果  (%)元素TFeFeOSPAsPbZnSiO2CaOMgOAl2O3含量66.3419.430.450.0050.010.0010.014.340.370.400.23        三、尾矿中非金属矿藏的收回     (一)质料性质     尾矿经得选收回铁后的尾矿作为非金属矿藏收回运用的质料,其首要化学成分、粒度组成和矿藏组成见表14~表16。 表14  选铁后尾矿首要化学成分  (%)成分TFeSiO2Al2O3CaOMgO含量5.6876.122.323.373.59   表15  选铁后尾矿粒度组成粒级/mm+0.25+0.15+0.074+0.043+0.037-0.037产率/%11.2312.1226.6716.009.9224.06   表16  选铁后尾矿首要矿藏组成  (%)矿藏 称号磁铁矿赤铁矿 褐铁矿硫化物石英 长石角闪石 辉石类云母绿泥石 黏土矿藏方解石其他相对 含量1.02.5微48.042.00.41.52.00.5        (二)收回方案     荧光光谱分析标明铁尾矿中不含放射性元素,在重选预富集尾矿中,二氧化硅的含量到达76.12%,石英、长石、角闪石类、辉石类非金属矿藏占90%以上,充分运用这部分非金属矿藏则是铁矿石选矿尾矿归纳运用的重要组成部分。这类非金属矿藏适合于作各种建筑材料、土壤改良剂及无机补强填充材料。     依据重选尾矿的粒度组成,持续选用处理量大、无污染的重选办法别离产出不同粒度规模的产品,经不同的深加工技能处理,取得不同性质和用处的相关产品。归纳运用工艺流程如图6。  图6  非金属矿藏归纳运用工艺流程        (三)各级产品的物化性质     分级产品的产率见表17,化学组成见表18。粒度组成见表19、表20,矿藏组成见表21。 表17  分级产品的散布份额分级产品+0.25mmФ75mm沉砂Ф25mm沉砂Ф25mm溢流产率/%11.2372.1110.705.96   表18  分级产品首要化学组成  (%)分级产品TFeSiO2Al2O3CaOMgO+0.25mm含量4.8670.831.262.353.16Ф75mm沉砂含量5.3879.412.313.193.32Ф25mm沉砂含量7.4870.143.273.034.92Ф25mm溢流含量9.0765.103.783.797.10   表19  Ф75mm旋流器沉砂筛分成果粒级/mm+0.15+0.074+0.043+0.037-0.037含量/%13.5731.1519.6012.0621.62   表20  Ф25mm沉砂、溢流产品激光粒度分析成果产品称号体积累积散布粒径/μm均匀粒径/μm表面积/cm210%50%90%97%Ф25mm沉砂7.4422.3939.4745.3923.222864Ф25mm溢流0.863.7710.9817.765.2128508Ф25mm二次溢流0.511.677.179.072.7960391     表21  分级溢流产品的矿藏组成矿藏称号相对含量/%Ф75mm沉砂Ф25mm沉砂Ф25mm溢流Ф25mm二次溢流氧化铁矿藏1.31.41.51.6硫化物微微微微石英42403736角闪石类、辉石类44.546.55051长石6655绿泥石、黏土矿藏、云母类4444方解石1.71.622其他0.50.50.50.4          四、产品应用技能     (一)建筑用砂     溜槽尾矿的+0.25mm部分经粒度及相关成分分析,到达契合国家建筑用砂3类标准。建筑用砂检测成果见表22。 表22  建筑用砂检测成果  (%)粒径检测成果3级配区标准成分检测成果标准4.75mm010~0云母0.81<2.02.36mm0.6515~0含泥量0.16<5.01.18mm2.1525~0轻物质含量0.32<1.060022.4040~16有机物含量合格合格30057.7585~55硫化物及硫酸盐0.43<0.5150100.00100~90氯化物0.02<0.03粒度模数1.821.6~2.2表观密度2610>2500---堆积密度1400>1350---空地率46.5<47          (二)玻璃     选用Ф75mm旋流器的沉砂,配入硼砂、高等第石英砂等质料,按质料―配料―混料―熔制―成型―退火―加工―产品的工艺流程进行玻璃熔制实验,成果标明,这部分产品可代替部分石英砂用于出产日用普通玻璃,因为质猜中含铁较高,只局限于出产带色普通玻璃。     (三)玻化砖     依据Ф75mm旋流器的沉砂的化学组成及玻化砖的成分要求,配入部分高铝质质料,按质料―配料―混料―熔制―成型―退火―加工―产品的工艺流程出产玻化砖。产品的吸水率0.3%、抗折强度1365N,抗压强度65.3MPa,莫氏硬度为7级,损坏强度1065N,开裂模数49.17MPa。契合相关标准(吸水率≤0.5%、损坏强度≥600N,开裂模数≥35MPa)。成果标明,铁矿尾矿能够部分代替陶瓷质料出产玻化砖(尾矿含铝较低,参加量不能过大),因为含铁较高,局限于出产灰色、棕色、棕红色系列产品。     (四)免烧砖     混凝土免烧砖一般运用的粗细集料别离为卵石(或碎石)和河沙以合理的配比,与水泥一同拌和,运用振荡、加压等工艺手法即可出产具有必定物理功能的混凝土制品。一般来说,混凝土制品中粗细骨料所占份额在80%以上,用经过挑选的铁尾矿Ф75mm沉砂部分,配入必定份额的建筑用砂、采矿废石破碎的碎石、水泥,制造免烧空心砖和实心砖。工业实验产品的检测成果为:免烧空心砖容重3.5kg/块,抗压强度单位最小值9.4MPa,均匀值为11.2MPa,抗冻性检测强度损失率12.7%,质量损失率0.8%,到达行业标准JC943-2004的MU10等级;放射性检测目标均低于技能要求。实验标明,运用铁尾矿代替混凝土粗细集料出产混凝土免烧砖是切实可行的,可充分运用我国现有的较为老练的工艺设备及出产条件,安排规模化出产,为很多归纳运用铁尾矿拓荒一条新的有用算途径。     (五)轻质建材     以铁尾矿Ф75mm沉砂部分为质料,配入必定份额的水泥、石灰、石膏、引发剂、发气剂,按质料―细磨(各质料别离细磨)―配料―拌和―成型―静养―蒸压的工艺进行混凝土加气砌块的实验,检测成果:蒸气加压混凝土砌块抗压强度单块最小值3.4MPa,均匀值为4.0MPa,抗冻性检测质量损失率0.6%,冻后抗压强度3.8MPa,枯燥缩短性0.45mm/m,契合GB11968-2006的技能要求。工业实验成果标明,用铁尾矿出产轻质建材施行产业化是可行的。     (六)填充材料     橡胶补强填充剂是橡胶组成中不行短少的组分,它起着进步橡胶强力。削减缩短、降低本钱等作用。一般在橡胶中的用量为30%~150%,跟着橡胶工业的快速开展,对补强填充剂的需求日益增长,各种新式补强填充剂也不断开发,以习惯橡胶工业开展的需求。用铁尾矿的Ф25mm溢流部分为质料,别离在天然橡胶、MC炭黑和绢云母粉,在丁胶中的补强功能优于除半补强炭黑以外的其他无机补强填充剂;将Ф25mm溢流产品用适宜的表面改性剂改性后,进行配方和胶料功能实验,成果标明其在橡胶中的补强功能显着优于未改性产品。选用Ф25mm的二次溢流产品的胶料物理机械功能比选用一次溢流产品更好。阐明尾矿中细粒级的非金属矿藏可作为橡胶的补强填充材料。并且,粒度越细,作用越好。     (七)土壤改良剂     经过检测,铁尾矿没有放射性,其间含有Fe、Ca、Mg、P、S等植物成长所需的矿藏元素。依据土壤环境质量标准(GB15618-1995),该尾矿契合Ⅱ类土壤分类标准,即可作为一般农田、蔬菜地、茶园、果园、草场等用土,根本上对植物和环境不形成损害和污染。用Ф75mm沉砂和Ф25mm溢流粉、磁选尾矿、植物园土壤按不同份额培养实验,经过6个水平不同配比的土壤培养实验,8个目标的检测,成果标明,有的植物在尾砂中成长状况比单独在植物园土壤中培养好(如莴芛),有的植物需求尾砂两种粒径成分和植物园土壤按必定的份额培养,作用会更好(如雨衣甘蓝)。此成果阐明尾矿还田是或许的,鉴于尾砂的特性,能够将尾砂掺入土壤中,尤其是磁选矿矿的掺入,可进步土壤的磁性,引起土壤中磁团粒结构的改变,导致土壤中铁磁性物质活化,使土壤的吸收功能、缓冲功能、抗逆功能等物理、化学和生物特性得到改进,进步通透性、保水保肥才能和有机质含量,促进作物成长。     综上所述,铁尾矿中的铁矿藏、硫矿藏和很多非金属矿藏均可收回运用,经过有方案的体系开发,得到不同性质和用处的系列产品,归纳运用率可达90%以上。

高钙含钒钢渣回收钒的方案

2019-02-19 12:00:26

含钒生铁在转炉炼钢过程中,将钒一同吹入渣中,得到含CaO巨大45%~60%的炉渣,称为高钙含钒渣。从这种渣中收回钒有两个计划: 第一个计划是回来高炉再炼,进一步在高炉内富集,到达生铁中含钒在2%左右,此含钒生铁经吹炼后能够制得30%~40% V2O5的高钒渣,可供直接炼制生铁或作为进一步提取V2O5的质料。 第二个计划是焙烧,高钙钒渣含V2O5 4.68%,钒渣/纯碱=100/18,造粒后在回转窑(外径1m,长10m,处理量2.5t/d)内1100℃下化焙烧2h;焙烧后熟料水淬,湿球磨,然后在机械拌和槽或气体拌和槽浸取,通入石灰窑气,60℃碳酸化浸取2h,液固比5/1,结尾pH=8.5。沉钒前液含V5g/L,加硫酸至游离酸H2SO4达2~3g/L,沸点下经1.5~2h后,清液中含V降至0.2g/L完毕,得红饼。钒浸取率76.3%,沉钒率达95%,从钢渣至红饼钒的实践收回率为64%。红饼中含V2O5 83.5%。此工艺技术可行,但碱耗量较高。钢渣中的V2O5含量低于5%时,效益会明显下降。 以上两个计划均未付诸实施。

冶金辅助材料矿产--铁钒土

2019-01-04 09:45:23

一、用途 铁钒土即含铁高的耐火粘土和铝土矿。 铁钒土主要用作炼钢熔剂,利于造渣和清除炉壁上的结瘤。也可用作水泥的配料。 二、矿物成分 铁钒土的组成矿物及其化学成分,与耐火粘土、铝土矿的基本相同,唯Fe2O3较高,凡因Fe2O3含量超过允许要求的上述矿产可作铁钒土地用。矿物组成及化学成分详见耐火粘土、铝土矿。 三、一般工业要求品 级化学成分(%)Al2O3Fe2O3Ⅰ级Ⅱ级Ⅲ级≥50≥45≥35≤10≤15≤19可采厚度:≥0.7米,夹石剔除厚度:≥0.5米 四、矿床实例 河北唐山铁钒土矿(与耐火粘土伴生)品级化学成分(%)开采厚度(米)Al2O3+TiO2Fe2O3Ⅰ级Ⅱ级Ⅲ级≥48—56≥45≥45≤10≤15≤190.7(表内)0.5-0.7(表外)五、附录 冶金工业部1982年5月1日YB2417—81号颁布的质量标准如下,供炼钢用铁钒土产品。 产品按化学成分分为下列品级品级化学成分(%)Al2O3+TiO2SiO2Ⅰ级品Ⅱ级品Ⅲ级品≥50≥48≥45≤20≤25≤30产品块度:5—30毫米。 30毫米者均不得超过5%。

江西某铁尾矿综合回收铁试验研究

2019-01-24 09:37:09

江西省某地蕴藏着丰富的铁矿资源,目前的铁矿就有300多万吨,近100多万吨为开采原矿,另外还有十多公里长的此类铁矿矿带,且适于露天开采。由于长期以来只采用筛分洗矿工艺回收块矿,因此大量铁资源流失到尾矿,对该尾矿进行综合利用,不仅具有很高的开发价值,而且符合我国目前资源状况以及政府提倡的循环经济产业政策。       一、矿石性质       (一)矿物主要组成及特征       矿石中矿物组成相对简单,主要的金属矿物有褐铁矿、赤铁矿、磁铁矿、软锰矿、黄铁矿、闪锌矿、方铅矿、铜蓝、孔雀石等;脉石矿物有蛋白石(玉髓)、石英、长石、黏土矿物、绿泥石、方解石、水云母(绢云母)、透闪石等。       1、氧化铁矿物       铁主要赋存于褐铁矿及赤铁矿中,以褐铁矿占绝对优势。粒度细小,多在0.04mm以下,试样中广泛分布,除了单体颗粒外,还常呈黏附态附着于其它矿物表面。       2、硫化物       试样中的硫化物主要是黄铁矿,多呈氧化残余包裹于赤铁矿、褐铁矿中,单体少见,粒度多在0.04mm以下。       3、硬锰矿、软锰矿       多与褐铁矿、赤铁矿混杂,镜下不易辨识,粒度多在0.01~0.05mm。       4、石英、蛋白石       石英相对较少,主要是蛋白石,呈隐晶质细颗粒,多被褐铁矿污染。       5、角闪石等硅酸盐矿物       含量很少,呈针柱状或粒状,部分颗粒表面有褐铁矿黏附。       6、高岭石等黏土矿物       粒度极细微,多在0.02mm以下,呈尘埃状分散分布,或与褐铁矿混杂,呈絮泥状颗粒。       (二)化学组成   表1  原矿多元素分析结果元  素 质量分数Cu 0.37Pb 1.76Zn 1.27As 0.07S 0.054TFe 37.16元  素 质量分数SiO2 9.0Al2O3 5.86CaO 0.23MgO 0.259Co 0.10P 0.069       原矿多元素分析结果表明,矿石主要的化学成分是铁、SiO2和Al2O3,有价成分主要为铁、铅、锌、铜和钴。       二、还原磁化焙烧试验研究       (一)褐铁矿转化为磁铁矿的主要原理       在高温条件下,采用煤作为还原剂,将褐铁矿转化为磁铁矿。化学反应为:   Fe2O3·nH2O—Fe2O3+nH2O   (1) 3Fe2O3+CO—2Fe3O4++CO2   (2)       其转化过程主要为:       1、褐铁矿在高温条件下失去结晶水,转化三氧化二铁;       2、三氧化二铁在还原气氛中还原成四氧化三铁。还原反应过程是一个多相反应过程。固相同气相(还原气体)发生反应。磁化焙烧反应作用分为三个阶段进行:       (1)扩散、吸附。由于气体的对流或分子扩散作用,还原气体分子被矿石表面吸附。       (2)化学反应。被吸附的还原气体和矿石的氧原子相互作用进行化学反应。       (3)化学产物的脱附。反应生成的气体产物脱离矿石表面,沿着相反的方向扩散到气相中去。       在焙烧过程中,新生成的还原物先形成一个外壳,包围着未被还原的部分,反应逐步向内进行,反应速度由还原物和还原产物的界面所控制。       使Fe2O3转化为Fe3O4的过程是按下列方式进行的。用还原剂脱掉αFe2O3矿粒外层的氧,则使氧化铁结晶格子局 部变形,致使αFe2O3转化为含有一定数量的细孔的γFe2O3,并形成尖晶石型立方晶格的γFe2O3外层。在矿粒表面上继续脱氧将造成铁离子过剩,过剩的铁离子则充填在缺位结点上。外层的所有点充满就变成磁铁矿,这些磁铁矿有着与γFe2O3相同的晶格。这样由外层向内层扩散,这个过程一直向矿粒中心的赤铁矿进行,到赤铁矿全部消失为止。       (二)磁化焙烧温度试验       将原矿与煤粉混匀后放入磁环焙烧炉中,升温至设置温度,恒温2h,改变磁化焙烧温度,900℃,950℃,1000℃,1050℃,产品自然冷却后磨矿85%-74μm,然后用磁选管进行磁选作业,磁场强度为87.55kA/m,试验结果见图1,本次试验采用无烟煤。煤粉比例为矿样重量的20%。依据试验结果知,950~1000℃为最佳温度。  图1  磁化焙烧温度试验结果 1-铁品位;2-铁回收率;下同       (三)煤的种类及用量试验       将无烟煤与褐煤进行对比试验,磁化焙烧温度为950℃,焙烧2h,煤粉的比例分别为8%、15%、20%,结果表明,在相同条件下,褐煤效果明显优于无烟煤;对同一种煤,随着煤粉用量的降低,铁精矿全铁含量降低;另外采用无烟煤,磁化焙烧矿的全铁含量和原矿没有差别,而采用褐煤时,磁化焙烧矿的全铁含量比原矿提高了近10%,磁化焙烧后矿样的重量也减少了20%。综合考虑成本,选用褐煤,煤粉用量为原矿的15%~20%为宜。试验结果见图2。  图2  煤的用量试验结果       (四)磁化焙烧时间条件试验       确定焙烧温度在950℃,煤的比例分别为20%,改变磁化焙烧时间,分别为1h,1.5h,2h,3h。产品自然冷却后磨矿85%-74μm,然后用磁选管进行磁选作业,磁场强度为87.55kA/m,试验结果见图3。  图3  磁化焙烧时间条件试验结果       (五)磁场强度试验       确定磁化焙烧温度为950℃,煤的用量依然为20%,恒温磁化焙烧2h的产品进行磁场强度条件试验。产品自然冷却后磨至85%-74μm,给到磁选作业,改变磁场分别为71.63kA/m、87.55kA/m、103.46kA/m。试验结果见图4,综合技术经济指标考虑,磁选作业的磁场强度以87.55kA/m为最佳。  图4  磁场强度试验结果       (六)磨矿细度条件试验       焙烧产品直接分选时铁矿物与脉石矿物分离效果差,在分选前需要磨矿。其他条件不变,分别对不磨(-74μm为68%)及磨矿细度分别为-74μm80%、85%、90%、98%的磁化焙烧产品进行了磁选试验,试验表明,随着磨矿产品中-74μm粒级的增加,铁精矿产率有所下降,全铁含量随之提高,当-74μm含量大于85%后,变化速度趋缓。所以以-74μm占85%为佳。试验结果见图5。  图5  磨矿细度条件试验结果       (七)流程试验       根据上述试验结果,确定最佳条件见表2,根据最佳条件试验进行了流程试验,数质量流程图见图6。   表2  焙烧—磁选工艺条件作  业工艺条件还原焙烧煤粉比例/% 焙烧温度/℃ 焙烧时间/h15~20 950~1000 2磁选磨矿细度/%-74μm 磁场强度/(kA/m-1)85 87.55  图6  磁化焙烧-磁选数质量流程       三、结论       (一)以褐铁矿为主要矿物的铁矿石属难选矿物,对这种矿石磁化焙烧—磁选是技术指标最佳的选矿方法,可以兼顾品位和回收率。       (二)此褐铁矿通过磁化焙烧—磁选工艺流程的分选,可获得产率51.46%、全铁含量64.83%、全铁回收率78.88%的铁精矿。各项指标均达到要求。而且磁化焙烧—磁选工艺具有工艺合理、可靠、适应性强、易于在生产中实施的特点。       (三)从经济方面考虑,磁化焙烧成本高,只有当地有廉价的煤炭资源时才可以考虑。一般情况下则的采用联合流程,如:弱磁选—强磁选—正浮选、分级—重选—浮选等,这些流程虽然比较复杂,但是运营成本都远低于磁化焙烧。

钨钴铝钒回收方法

2019-02-25 15:59:39

一、高温处理收回钨钴法 超硬质合金是由钨、钴和炭粉混合成型烧结加工制成的。日本新金属公司开发的超硬质合金高温处理法能够收回钨钴再生粉末,年产可达80吨。高温处理法制作再生粉末流程: 超硬质合金碎屑洗净后 ,在 1800~2300℃高温下的惰性气体中进行热处理,超硬质合金中的钴呈易于粉末化的海绵状况。在热处理温度下 ,超硬质合金中钴在 1800 ℃以下不呈海绵状况 ,而在 2300℃以上合金中的碳化钨将分化并生成第三相 ,成果欠好。 热处理后的块状碎屑 ,用颚式破碎机或滚筒破碎机进行粗碎到 - 850μm ,这以后再微破坏成再生粉末。本法得到的再生粉末 ,因通过粗大粒子化进程 ,烧结时有易于粒子生长的倾向。其间的钴含量、碳含量处理后简直没有改变,仅杂质铁、硅量添加,对制作硬质合金没有影响。再生粉末粒度据破坏条件,或许微破坏到 1μm 以下。 本法用比较简单的工序 ,不危害超硬质合金的原组成,任何种类的超硬质合金均可再生成必定粒度的粉末,不需特殊设备 ,为经济的收回办法。较以往加化学试剂精粹后收回运用的办法,有很大优越性。 二、废饮料铝罐涂料剥离法 废铝罐收回处理中 ,熔解收回率低 ,质量差的问题 ,关键是铝罐的外面和里边运用的涂料引起的。首先是熔解收回率低,因涂料的高分子化合物在熔解时发热 ,促进铝氧化,使金属收回量削减;其次质量差 ,是因涂料中运用的颜料氧化钛(白色剂用),成为杂质元素混在铝熔液中,生成粗大介在物 ,使制品加工不良是发生缺点的原因之一。 为将引起这些要素的涂料除掉 ,运用加热焙烧的办法 ,但存在设备大型化和颜料原因的钛尚不能除掉等问题。日本选用溶剂化学办法(膨润剥离法)消除铝罐上的涂料 ,用新开发的涂料剥离设备 ,该设备剥离涂料 ,废铝罐熔解收回率,比不剥离涂料熔解时得到进步,且又避免涂料含钛成分的混入 ,铝熔液成分与市售铝罐主体材料(3004材)的分析值简直相同。该剥离设备、除掉涂料进一步进步铝的收回率,改进收回铝材的质量 ,因此被广泛选用。处理废铝罐剥离涂料,每小时处理量约为 200kg∕ h。除用于饮料铝罐涂料剥离外 ,也可用于铝制窗框、铝箔、铝制薄片的层制品等的涂料剥离除掉。 膨润剥离的原理:铝罐用涂料 ,一般外部用两种,清洁涂料和白色涂料;内部用一种清洁涂 料。涂料构成是高分子的物质 ,因为溶剂使其膨润,用以剥离涂料。即吸收了溶剂而膨润的高分子涂料的胀大力,超越涂料自身在铝罐材料上的附着力 ,涂料剥离成为或许。 膨润剥离的工序: (一)前处理。为有利于除掉涂料 ,将收回的废铝罐切成 1∕10 罐体的碎片,装入笼中。 (二)剥离工序。将笼浸入剥离液内。进行反转,剥离液使涂料膨润进行化学反应 ,反转中铝片彼此冲突促进剥离。 (三)漂洗工序。与剥离工序相同 ,一半投入剥离液中反转 ,使剥离的涂料和铝片分脱离。(四)蒸汽枯燥工序。将笼置蒸汽中反转 ,铝片表面附着的剥离液蒸腾 ,气化的剥离液用水冷管凝集收回,再循环运用。(五)枯燥工序。比(四)工序的蒸汽温度再升高,反转铝片残留的剥离液再进一步蒸腾枯燥。 (六)紧缩处理工序。膨润剥离后的铝片 ,从笼中取出,用压力机紧缩后送熔解工序,熔炼收回铝材。 运用的涂料剥离液 ,为、和起促进剥离作用的卤化乙酸混合液,这种混合液对铝罐涂料的膨润作用大,剥离功能高。 三、重油灰提钒法 石油中含有微量钒。日本在 50 时代后期 ,电力公司的首要燃料由煤炭转向石油,专烧重油的火力发电所渐多,然后发生很多废弃物重油灰。新式化学工业公司研讨处理重油灰提钒工艺成功,改变了悉数依靠进口钒的局势 ,于 1973年建造新工场,会集全国的重油灰,提钒收回运用有价金属。 重油灰是重油锅炉焚烧时发生的用收尘器收回的烟尘 ,亦叫集尘煤。还有水管式锅炉底的附着物,在守时修理时取出的焚烧壳也叫锅炉渣。 烟尘的首要成分是未焚烧的炭 ,含有价金属钒、镍的档次很低。收回时须经前处理 ,将其水洗除掉可溶成分,再在800~1000 ℃焙烧,焙烧后分量减到 1∕ 10 ,钒档次相应进步。焚烧壳要混合碱焙烧,再用水提取钒 ,提出的残渣镍成分升高,作为提镍质料。钒经盐类结晶分出 ,焙烧得V2O5 ,或再精制成各种用处的钒化合物出售(V、V2O5、NH4VO3、VOCl3)。

80#合金管

2019-03-19 10:00:29

80#合金管化学成分80#合金管牌号80#合金管化学成分(质量分数)(%)CSiMnCrNiCu≤80#0.72~0.800.17~0.370.50~0.800.250.300.25 80#力学性能80#合金管牌号拉力强度MPa屈服点MPa断后伸长率(%)断面收缩率(%)80#1080930630

h80铜合金

2017-06-06 17:50:04

h80铜合金种类 易切削耐腐蚀环保铜合金牌号 H80 铜含量 标准(%) 杂质含量 标准(%)  粒度 标准(目) 软化温度 标准(℃)  导电率 标准(%IACS) 硬度 标准(HRB)   特性:H80普通黄铜和H85性能类似,强度较高,塑性也较好,耐蚀性较高,用作薄壁管,皱纹管造纸网及房屋建筑用品。力学性能:抗拉强度 αb(MPa):大等于265伸长率 δ10(10%):大等于50注:板材的拉伸力学性能试样尺寸:厚度大等于0.5热处理规范:热加工温度820-87摄氏度;退火温度600-700摄氏度;消除内应力的低温退火温度260摄氏度H80化学成分:锌:余量   铅:小等于0.03  铁:小等于0.10  锑:小等于0.005  磷:小等于0.01  铋:小等于0.005  铜:79.0-81.0杂志总和%:小等于0.3

80#无缝钢管

2019-03-19 10:00:29

80#无缝钢管化学成分80#无缝钢管牌号80#无缝钢管化学成分(质量分数)(%)CSiMnCrNiCu≤80#0.72~0.800.17~0.370.50~0.800.250.300.25 80#无缝钢管力学性能80#无缝钢管牌号拉力强度MPa屈服点MPa断后伸长率(%)断面收缩率(%)80#1080930630

承德超贫钒钛磁铁矿尾矿钒钛磷综合回收研究

2019-01-24 09:35:03

该项目是河北省国土资源厅立项的科技项目,由河北省地矿中心实验室完成,于2008年1月通过了河北省国土资源厅组织的验收。 承德超贫钒钛磁铁矿是国内著名的大庙式钒钛磁铁矿的一个亚矿种,也是近年来河北省成功开发利用的新矿种。超贫钒钛磁铁矿除富含铁元素外,还伴生有钒(V)、钛(Ti)、磷(P)等矿产。但在矿山开发利用中,绝大多数矿山企业还未综合回收利用钒、钛、磷等伴生矿产,仅少数矿山企业综合回收利用钛、磷等资源,综合回收利用率较低,大量宝贵的不可再生的钒、钛、磷等资源难以回收。为推进资源综合回收,2007年承德市国土资源局规划设计院与河北省地矿中心实验室合作,开展并完成了《河北省承德市超贫钒钛磁铁矿(尾矿)钒、钛、磷等元素综合回收利用研究》项目。 研究工作在借鉴以往“大庙式”钒钛磁铁矿伴生元素综合回收工艺的基础上,首先采用光学显微镜鉴定、扫描电镜分析、光谱分析、化学分析、物相分析和电子探针分析等方法,对矿石物质组成、矿石性质及矿石加工技术综合分析研究;选择了8个具代表性矿区,针对矿石性质,利用矿物磁化系数、比重及可浮性等物化性能的差异,采用磁选、浮选和重选等方法,对磁铁矿、磷灰石和钛铁矿的可选性进行了选矿试验对比,总结推荐出单一选铁及综合选磷、选钛流程,即“粗磨磁选、粗精矿再磨磁选-摇床-强磁选钛工艺流程”或“原矿-磁选-浮选-钛回收流程”。矿石中磁铁矿,可用弱磁法回收;钒无单独矿物,而以类质同象形式赋存于钒钛磁铁矿中,通过冶炼回收;钛铁矿中单晶可用强磁法或重磁浮联合流程回收;磷灰石可浮性良好,可用浮选法从铁选尾矿中直接回收。流程为提高超贫钒钛磁铁矿资源中钛、磷等元素综合利用水平提供了选矿工艺参考和借鉴;同时,依据现行的铁矿、磷矿地质勘查规范,在类比分析基础上提出对原矿中钛、磷等伴生组分的综合利用最低工业指标建议。 通过研究、可选性工业实验以及矿山生产实际表明,从尾矿中选钛、选磷技术上可行、经济上合理,钛、磷平均入选品位均在2%左右,磷精矿品位可达33%以上,钛精矿品位达46%以上。 另外,项目还研究了尾矿对地质环境的影响和尾矿的利用问题,提出利用建议。 该项目是河北省国土资源厅立项的科技项目,由河北省地矿中心实验室完成,于2008年1月通过了河北省国土资源厅组织的验收。 承德超贫钒钛磁铁矿是国内著名的大庙式钒钛磁铁矿的一个亚矿种,也是近年来河北省成功开发利用的新矿种。超贫钒钛磁铁矿除富含铁元素外,还伴生有钒(V)、钛(Ti)、磷(P)等矿产。但在矿山开发利用中,绝大多数矿山企业还未综合回收利用钒、钛、磷等伴生矿产,仅少数矿山企业综合回收利用钛、磷等资源,综合回收利用率较低,大量宝贵的不可再生的钒、钛、磷等资源难以回收。为推进资源综合回收,2007年承德市国土资源局规划设计院与河北省地矿中心实验室合作,开展并完成了《河北省承德市超贫钒钛磁铁矿(尾矿)钒、钛、磷等元素综合回收利用研究》项目。 研究工作在借鉴以往“大庙式”钒钛磁铁矿伴生元素综合回收工艺的基础上,首先采用光学显微镜鉴定、扫描电镜分析、光谱分析、化学分析、物相分析和电子探针分析等方法,对矿石物质组成、矿石性质及矿石加工技术综合分析研究;选择了8个具代表性矿区,针对矿石性质,利用矿物磁化系数、比重及可浮性等物化性能的差异,采用磁选、浮选和重选等方法,对磁铁矿、磷灰石和钛铁矿的可选性进行了选矿试验对比,总结推荐出单一选铁及综合选磷、选钛流程,即“粗磨磁选、粗精矿再磨磁选-摇床-强磁选钛工艺流程”或“原矿-磁选-浮选-钛回收流程”。矿石中磁铁矿,可用弱磁法回收;钒无单独矿物,而以类质同象形式赋存于钒钛磁铁矿中,通过冶炼回收;钛铁矿中单晶可用强磁法或重磁浮联合流程回收;磷灰石可浮性良好,可用浮选法从铁选尾矿中直接回收。流程为提高超贫钒钛磁铁矿资源中钛、磷等元素综合利用水平提供了选矿工艺参考和借鉴;同时,依据现行的铁矿、磷矿地质勘查规范,在类比分析基础上提出对原矿中钛、磷等伴生组分的综合利用最低工业指标建议。 通过研究、可选性工业实验以及矿山生产实际表明,从尾矿中选钛、选磷技术上可行、经济上合理,钛、磷平均入选品位均在2%左右,磷精矿品位可达33%以上,钛精矿品位达46%以上。 另外,项目还研究了尾矿对地质环境的影响和尾矿的利用问题,提出利用建议。

五氧化二钒回收工艺

2019-02-25 14:01:58

五氧化二钒是氧化物,酸性大于碱性,溶于强碱生成钒酸盐,溶于强酸构成钒氧离子VO或VO3+。橙黄或砖赤色固体。无臭、无味、有毒性。微溶于水,生成淡黄色酸性溶液。热分化或三氯氧钒与水效果都可制得五氧化二钒。 2NH4VO3 V2O5+2NH3+H2O 2VOCl3+3HO2 V2O5+6HCl 五氧化二钒是钒氧化物中使用最广泛的产品,在钒资源勘探、出产和国际贸易中,一般都以五氧化二钒作为核算单位。 五氧化二钒是出产金属钒、钒铁合金、和其它钒基合金的中间产品,也是制作钒催化剂的质料,还可用于、邻二等有机组成的催化剂,还用于制作彩色玻璃和陶瓷。 五氧化二钒的收回工艺: (1)从钒渣中收回:钒渣是含钒较高的提钒质料,收回技能比较老练。现在通用的流程是钠化焙烧工艺,选用的设备不同,大型厂商一般都选用回转窑,而有些厂商则选用焙烧炉。工艺进程是将钒渣与钠盐(一般为碳酸钠或芒硝)混合,在必定的温度下焙烧,使钒转为可溶性的钠盐,焙砂再通过浸出,使钒酸盐进入溶液,溶液通过滤,滤出废渣,再通过沉积、精美等进程得到五氧化二钒。国外有的厂商直接使用含钒高的钒钛磁铁矿出产五氧化二钒,首先将矿石制成精矿,然后与熔剂混合,进入回转窑中焙烧,焙砂用水浸出,含钒溶液用铵盐处理,最终沉积。 (2)从石煤中收回:从石煤中提钒的工艺主要是钠化焙烧工艺,钠化氧化焙烧—水浸出—水解沉钒—碱溶铵盐沉钒—热解脱—精钒的工艺流程。该工艺是我国从石煤中提钒遍及选用的工艺,特点是工艺简略,而且充分使用了石煤的热能。缺陷是收回率较低,一般在60%以下。美国选用以上工艺,但选用稀硫酸浸出、溶剂萃取技能,收回率可达70%。 (3)从石油废催化剂中收回:美国、日本等国从上个世纪70年代就开端从石油含钒废催化剂中收回钒,技能现已老练,加工工艺许多,有许多工艺现已申报专利。国际上通用的技能是钠化焙烧法:配料→焙烧→磨碎→浸出过滤→沉钒→煅烧→五氧化二钒产品↓ 溶液→萃取收回钼→钼酸铵产品 ↓ 渣→进一步收回镍→金属镍。 各国收回工艺中的经济技能参数虽然不同,但根本上参照以上工艺,我国从石油工业废催化剂中收回钒的厂商选用的工艺也根本与其相同。 (4)从硫酸工业废催化剂中收回:从硫酸工业的废催化剂中收回五氧化二钒早已引起世界各国的注重,前苏联在此起步较早,技能比较老练,日本、美国也有许多专利报导。我国硫酸工业废钒催化剂中收回钒的作业展开较早,在上个世纪80年代,南化公司、成都工学院、北京矿业学院、镇江冶炼厂、平顶山987化工厂等都作过很多试验,其间平顶山987化工厂现已投入出产。现在选用的技能有火法—湿法联合工艺和全湿法工艺,后者使用比较广泛。工艺如下:废催化剂→破坏→浸出→过滤→加水解→沉钒→精粹→煅烧→产品。湿法流程工艺简略,出资少,总收回率在90%以上。缺陷是发生的废液量较大,不能作到平衡。现在我国从硫酸工业废钒催化剂中收回五氧化二钒的厂商都选用以上工艺,火法湿法联合工艺没有选用。   定论:从含钒物料中提炼钒的工艺有火法、湿法和火法、湿法联合流程,最老练的技能是:钠化焙烧、浸出、沉钒工艺,也是提钒技能的经典。从硫酸工业废钒催化剂中收回五氧化二钒一般都选用酸性直接浸出工艺。

提高铁回收率的实验研究

2019-02-21 12:00:34

某选矿厂八系列是典型的接连磨矿-弱磁-反浮选工艺流程处理磁铁矿石的出产系列,但由于其矿石性质比较复杂,并存在磁铁矿与氧化矿的混矿现象,使该系列自投产以来铁的收回率一向比较低。在现在资源日趋严重的情况下,充分利用资源,进步铁的收回率,就显得特别重要。为此,针对选矿广详细出产方针情况,展开了进步铁收回率的实验研讨。     该系列经过多年的出产运转,磨矿工艺和弱磁选工艺流程及其设备装备比较合理,所以,该实验研讨矿样选为弱磁选精矿和弱磁选尾矿,其要点实验内容为弱磁选尾矿的分选。研讨意图是经过实验研讨,查明其铁收回率低的原因,并寻觅进步磁矿系列铁收回率的办法和途径。     一、实验矿样     (一)取样     实验矿样取自选矿厂八系列,矿样为弱磁精选精矿和弱磁粗选尾矿。接连取样一个星期,每天取样6次。一起,对系列处理原矿也进行取样考察,并进行分析化验。所取实验矿样的均匀方针这:原矿铁档次TFe32.47%、TFeO 11.13%原矿均匀氧化度2.92%;弱磁精矿铁档次TFe61.20%、理论产率37.41%、铁收回率70.51%;弱磁粗选尾矿铁档次15.30%、理论产率62.59%铁丢失率29.49%。实验所取矿样从取样时刻、取样点、所取矿样分量及方针,都具有必定代表性。     (二)矿样性质分析     1、矿样的物质组成及其分析     实验矿样的多元素分析及物相分析成果别见表1和表2。 表1  实验矿样的多元素分析成果名   称TFeTFeORxOyFPSiO2弱磁精矿61.3024.100.801.150.122.47弱磁尾矿15.203.706.258.701.1622.26名   称K2ONa2OCaOMgOAl2O3烧减弱磁精矿0.150.142.720.960.220.95弱磁尾矿1.121.1519.803.631.918.93 表2  实验矿样的铁物相分析成果矿样 称号成分 (%)铁物相磁铁矿中的铁赤铁矿中的铁硅酸盐中的铁硫化矿中的铁弱磁 精矿含量55.903.400.301.90占有率90.895.530.493.09弱磁 尾矿含量0.6011.701.901.10占有率3.9276.4712.427.19     分析成果标明,原矿经弱磁选别后,磁铁矿的收回率较高,阐明现场磁选流程对磁铁矿的选别作用很好。但氧化矿的收回率很低,大部分丢失在尾矿中。然后阐明,要进步磁矿系列的收回率,首要是收回丢失在尾矿中的氧化矿。     2、矿样的单体解离度及粒度分析     实验矿样的单体解离度分析成果见表3,粒度分析成果见表4。                           表3  实验矿样中铁矿藏单体解离度测定成果实验矿样铁矿藏 单体(%)富连生体(%)贫连生体(%)铁与硅酸盐矿藏铁与萤石铁与其它矿藏铁与硅酸盐矿藏铁与萤石铁与其它矿藏弱磁精矿90.274.830.970.482.490.800.16弱磁尾矿64.3913.902.736.326.832.363.47 表4  实验矿样的粒度分析成果粒度(mm)+0.076-0.076+0.045-0.045+0.034-0.034+0.025-0.025+0.017-0.017+0.008-0.008弱磁给矿7.6014.4012.6016.8012.8010.0024.80弱磁精矿5.0819.7111.5920.1212.4012.2018.90弱磁尾矿7.8017.9312.8115.8712.8114.0818.70     实验矿样的组成和单体解离分析成果阐明,弱磁尾矿中铁矿藏的单体解离度低,从弱磁尾矿中收回铁矿藏,不管采纳什么办法,要得到较高铁档次的铁精矿,其铁的收回率都不会太高。     粒度分析成果标明,弱磁尾矿中细粒级矿藏含量高,其中铁的占有率也高。所以,要从弱磁尾矿中收回铁矿藏,首先要考虑微细粒级铁矿藏的有用收回。     二、选别实验及其成果     (一)实验工艺流程     依据矿石性质,本研讨选用的实验计划为:对选矿厂弱磁选的弱磁尾矿,进行直接反浮-正浮选实验研讨,讨论进步系列收回率的途径;并对选厂弱磁选的弱磁精矿进行现场的一粗二精反浮选工艺实验。 弱磁尾矿的浮选工艺流程为反浮-正浮选工艺流程。反浮选为一道作业,选用Na2CO3-水玻璃-白腊皂药剂组合;正浮选为一次粗选两次精选,选用明矾-钠-白腊皂药剂组合。实验流程及设备见图1。    (二)实验成果及分析     1、弱磁精矿反浮选实验成果     在原矿档次为32.71%及弱磁精矿档次为61.83%、产率37.41%的情况下,弱磁精矿经过一粗两精反浮选后,可获得反浮精矿档次为64.48%、产率为34.66%的分选成果。     2、弱磁尾矿正浮粗选条件实验     实验用水为清水,依据以往的研讨,并经探究实验,断定粗选的明矾用量为5kg/t,钠用量为1.77kg/t.在此条件下,进行捕收剂不同用量的条件实验。实验成果见图2、图3和图4。由实验成果断定,捕收剂用量为0.80kg/t。    3、弱磁尾矿正浮精选条件实验     经过探究实验,正浮精选实验的药剂用量断定为:一精抑制剂为1.Okg/t、捕收剂为0.lkg/t。用清水进行实验,其成果为:铁精矿作业产率10.94%、铁档次50.60%、作业收回率36.50%的选别方针。     4、弱磁尾矿反浮-正浮回水实验     在清水实验的基础上,考虑到该实验计划的现场可行性,用现场回水进行了开路实验。实验标明,回水实验的药剂用量与清水比较有必定变北。详细的药剂用量见表5。开路实验成果为:正浮精矿档次53.10%、作业产率11.04%、作业收回率38.71%的选别方针。选别成果较清水要好。 表5  反浮-正浮选回水实验药剂用量(kg/t)选别作业药剂及用量反浮选碳酸钠1.5水玻璃2.0白腊0.4正浮粗选明矾5.0钠1.75白腊皂1.2正浮-精/钠1.00白腊皂0.40正浮二精//白腊皂0.30     5、弱磁尾矿反浮—正浮回水闭路实验     回水闭路实验的药剂用量,在条件实验的基础上略有调整。弱磁尾矿经反浮—正浮选工艺流程闭路实验后,可获得:正浮铁精矿档次55.06%、作业产率11.20%、作业收回率40.73%的选别成果,实验成果到达预期方针。     弱磁精矿经反浮选、弱磁尾矿经反浮—正浮选工艺实验后,可获终究归纳铁精矿,其产率41.69%、铁档次62.96%、铁的收回率80.13%、杂质氟0.53%的选别方针。比现选厂的实践收回率方针进步10个百分点以上。     三、产品成果分析     对弱磁尾矿反浮—正浮选工艺实验的正浮铁精矿产口和尾矿产品,进行了物相分析和粒度组成分析,成果标明:1、正浮铁精矿中,首要矿藏为赤铁矿,其占有率为91.90%;脉石矿藏首要为角闪石和钠辉石,占脉石矿残酷的48.95%。弱磁尾矿经反浮—正浮选后,非磁性铁矿藏铁的收回率为45.04%,含铁硅酸盐矿藏铁的抛出率为88.37%,阐明该工艺及其药剂组合的挑选,对收回弱磁尾矿中铁对错常有用的。2、依据单体解离度的测定成果来看,从弱磁尾矿中收回铁矿藏,要得到较高口位的铁精矿,就要丢失很大的收率,不然,铁精矿档次就不会太高。3、弱磁尾矿经反浮—正滔后,反浮选抛出的—20μm的量为69.02%,该粒级铁的丢失率为50.84%。收回细粒级铁矿藏仍是进步铁矿藏收回率的重要研本分从。     四、结语     由实验成果可知,弱磁尾矿直接反浮—正浮选工艺流程,不管从收回细粒级铁矿藏来说,仍是从收回非磁性铁矿藏来说,都优于已进行的弱磁尾矿经强磁选后再反浮—正滔选工艺流程的成果。在不改动现选矿厂磁矿系列出产工艺的情况下,经过添加浮选作业,即可完成进步铁收回率的方针,工艺流程相对简略。该研讨成果,为选矿厂往后进步磁矿系列收回率,供给了一个重要的参阅计划。

五氧化二钒的回收工艺

2019-02-22 15:05:31

五氧化二钒的收回工艺 (1)从钒渣中收回:钒渣是含钒较高的提钒质料,收回技能比较老练。现在通用的流程是钠化焙烧工艺,选用的设备不同,大型厂商一般都选用回转窑,而有些厂商则选用焙烧炉。工艺进程是将钒渣与钠盐(一般为碳酸钠或芒硝)混合,在必定的温度下焙烧,使钒转为可溶性的钠盐,焙砂再通过浸出,使钒酸盐进入溶液,溶液通过滤,滤出废渣,再通过沉积、精美等进程得到五氧化二钒。国外有的厂商直接使用含钒高的钒钛磁铁矿出产五氧化二钒,首先将矿石制成精矿,然后与熔剂混合,进入回转窑中焙烧,焙砂用水浸出,含钒溶液用铵盐处理,最终沉积。 (2)从石煤中收回:从石煤中提钒的工艺主要是钠化焙烧工艺,钠化氧化焙烧—水浸出—水解沉钒—碱溶铵盐沉钒—热解脱—精钒的工艺流程。该工艺是我国从石煤中提钒遍及选用的工艺,特点是工艺简略,而且充分使用了石煤的热能。缺陷是收回率较低,一般在60%以下。美国选用以上工艺,但选用稀硫酸浸出、溶剂萃取技能,收回率可达70%。 (3)从石油废催化剂中收回:美国、日本等国从上个世纪70年代就开端从石油含钒废催化剂中收回钒,技能现已老练,加工工艺许多,有许多工艺现已申报专利。国际上通用的技能是钠化焙烧法:配料→焙烧→磨碎→浸出过滤→沉钒→煅烧→五氧化二钒产品 ↓ 溶液→萃取收回钼→钼酸铵产品 ↓ 渣→进一步收回镍→金属镍。各国收回工艺中的经济技能参数虽然不同,但根本上参照以上工艺,我国从石油工业废催化剂中收回钒的厂商选用的工艺也根本与其相同。 (4)从硫酸工业废催化剂中收回:从硫酸工业的废催化剂中收回五氧化二钒早已引起世界各国的注重,前苏联在此起步较早,技能比较老练,日本、美国也有许多专利报导。我国硫酸工业废钒催化剂中收回钒的作业展开较早,在上个世纪80年代,南化公司、成都工学院、北京矿业学院、镇江冶炼厂、平顶山987化工厂等都作过很多试验,其间平顶山987化工厂现已投入出产。 现在选用的技能有火法—湿法联合工艺和全湿法工艺,后者使用比较广泛。 工艺如下: 废催化剂→破坏→浸出→过滤→加水解→沉钒→精粹→煅烧→产品。 湿法流程工艺简略,出资少,总收回率在90%以上。缺陷是发生的废液量较大,不能作到平衡。现在我国从硫酸工业废钒催化剂中收回五氧化二钒的厂商都选用以上工艺,火法湿法联合工艺没有选用。 定论: 从含钒物料中提炼钒的工艺有火法、湿法和火法、湿法联合流程,最老练的技能是:钠化焙烧、浸出、沉钒工艺,也是提钒技能的经典。从硫酸工业废钒催化剂中收回五氧化二钒一般都选用酸性直接浸出工艺。五氧化二钒是**氧化物,酸性大于碱性,溶于强碱生成钒酸盐,溶于强酸构成钒氧离子VO或VO3+。橙黄或砖赤色固体。无臭、无味、有毒性。微溶于水,生成淡黄色酸性溶液。热分化或三氯氧钒与水效果都可制得五氧化二钒。 2NH4VO3V2O5+2NH3+H2O 2VOCl3+3HO2 V2O5+6HCl五氧化二钒是钒氧化物中使用最广泛的产品,在钒资源勘探、出产和国际贸易中,一般都以五氧化二钒作为核算单位。五氧化二钒是出产金属钒、钒铁合金、和其它钒基合金的中间产品,也是制作钒催化剂的质料,还可用于、邻二等有机组成的催化剂,还用于制作彩色玻璃和陶瓷。

褐铁矿铁钒土硫酸加压浸出中钴的技术

2019-01-30 10:26:27

最近几年,从铁钒土矿石中提取镍和钴的湿法技术相比于能源密集型和空气污染严重的火法技术因生产成本低、环保而日益受到重视。在铁和铝同时溶解并沉淀情况下,镍和钴的回收率均超过90%。采用加压浸出法进行试验,试验设备为可注酸钛高压釜和样品回收装置。试验条件:酸占矿石质量的30%,温度范围230~270℃。褐铁矿铁矾土矿样及浸出过程中的固体产品特性用透射电子显微镜研究。结果表明:镍主要与针铁矿物相有关,而钴仅以富镍的锰结构存在;浸出过程中,针铁矿溶解释放镍,而铁以致密赤铁矿形式在溶液中原地再沉淀;钴溶解快速并保留在水相中,随后锰溶解,但溶解速率比钴溶解速率低。浸出结束时,得到贫钴的锰颗粒。试验范围内,浸出过程中温度升高对钴的溶解速率影响不大,但矿浆搅拌速率的升高会导致溶解速率升高。固体物质的TEM照片和各自的矿物学分析结果表明:膜扩散是可能的速率控制步骤,收缩核心模型可用于解释钴 的溶解动力学。

铜尾矿综合回收铜、铁实例(安庆铜矿)

2019-01-21 18:04:37

安庆铜矿矿石类型分为闪长岩型铜矿、矽卡岩型铜矿、磁铁矿型铜矿及矽卡岩型铁矿等四类,矿石的组成矿物皆为内生矿物。主要金属矿物为黄铜矿、磁铁矿、磁黄铁矿、黄铁矿,经浮选、磁选回收铜、铁、硫后,仍有少量未单体解离的黄铜矿进入总尾矿;磁黄铁矿含铁和硫,磁性仅次于磁铁矿,在磁粗粗矿浮选脱硫时,因其磁性较强,不可避免地夹带一些细粒磁铁矿进入尾矿。选矿厂的总尾矿经分级后,+20µm粒级的送到井下充填储砂仓;-20µm粒级的给入尾矿库。尾砂的化学分析见表1。    表1  尾砂化学分析结果         (%)产品CuSFe粗尾砂(+20µm)0.1432.369.76细尾矿(-20µm)0.071.6713.45总尾砂0.1192.1311.00         为了从尾矿中综合回收铜、铁资源,安庆铜矿充分利用闲置设备,因地制宜地建起了尾矿综合回收选铜厂和选铁厂。铜矿物主要富集于粗尾砂中,所以主要回收粗尾砂中的铜。选厂尾砂因携带一定量的残余药剂,所以造成在储砂仓的顶部自然富集含Cu、S的泡沫。选铜厂是在储砂仓顶部自制一台工业型强力充气浮选机,浮选粗精矿再磨后,经一粗二精三扫的精选系统进行精选,最终可获得铜品位16.94%的合格铜精矿。因此,投资30万元在充填搅拌站院内,就近建成25t/d的选矿厂。        表1的数据还表明,铁主要集中于细尾砂中,实验室的研究表明,细尾矿中的铁主要是细粒磁铁矿和磁黄铁矿。选铁厂是针对细尾砂中的细粒磙铁矿和磁黄铁矿,利用主系统技改换下的CTB718型弱磁选机3台,投资10万元,在细尾砂进入浓密机前的位置,充分利用地形高差,建立了尾矿铁厂,采用一粗一精的磁选流程进行回收铁。为了进一步回收选厂外溢的铁资源,又将矿区内各种含铁污水、污泥,以及尾矿选铜厂的精选尾矿通通汇集到综合选铁厂来。最终可获得铁品位63.00%的铁精矿。        选铜厂和选铁厂的生产流程见图1。两厂年创产值491.95万元,估算每年利税421.45万元,取得较好的企业经济效益和社会效益。图1  尾矿综合回收选铜厂和选铁厂的生产流程

从石油燃灰中回收钒工艺实例

2019-02-19 10:03:20

从20世纪80年代起,以石油加工后的残渣为燃料的电站鼓起。而这些石油燃料中都含有一定量的钒,含量约为百万分之一,有的高达千分之1.4(中美洲)。在发电厂,钒富集于锅炉灰及飞灰中。锅炉灰是沉积在炉膛中的烟尘,而飞灰则是收尘器捕集的细尘。燃油发电站发生的锅炉灰较少,而飞灰较多。 一、从锅炉灰中收回钒 锅炉灰含钒4.4%~19.2%,含镍0.2%~0.5%。先细磨至-100目,每次用8mol/L NaOH,112℃浸取4h,经三次错流浸取,钒浸取率可别离到达43%、16%、8%。所得浸取液不需净化,可进一步沉钒得高纯V2O5产品。浸取渣中剩下33%的钒再用8mol/L HCl浸取,炉灰中的Ni、Fe、Mg也被浸出,此后用萃取法别离。先用25%TBP的火油萃铁,萃余液用调pH=6,再用25%LIX64N的火油溶液萃取Ni、V。反萃用0.3mol/L HCl,先反萃镍,后用6mol/L的HCl反萃钒,如此可收回80%的钒。 二、从飞灰中收回钒、镍 台湾台南成功大学(Cheng kung Univ)的两位学者称,台湾地区每年烧1500万m³重油,约年产4.3万t飞灰。其间30%产自电除尘,称为EP灰;另70%产自旋风别离器,称为CY灰。主要成分都是Fe、C、V、Ni的氧化物。在电收尘器中要喷入液以中和酸性,因此在EP灰中还有30%~40%的(NH4)2SO4。从这些飞灰中收回V、Ni和(NH4)2SO4,这样既收回资源,又治理环境。 选用0.25mol/L NH3+1mol/L(NH4)2SO4对EP灰进行浸取,可优先浸取Ni,浸取率60%,然后再用NaOH浸取钒,钒浸取率80%。据此已树立一个2级浸取流程。火油飞灰的成分见表1。 表1  燃油飞灰成分   (%)飞灰CNH4+SO42-VNiFeNaMgEP256.77.2729.10.411.020.550.412.55CY163.224.81.910.801.961.500.07 三、从燃油飞灰中收回钒、镍 埃及亚历山大大学的学者提出用加压酸浸替代钠化焙烧从燃油飞灰中收回V、Ni,由于钠化焙烧尽管技能可行,但经济功率低。他们测验在200℃,氧分压为1.5MPa,H2SO4浓度为60g/L,液固比=1/1(质量),浸取15min,V、Ni浸取率都在95%以上。铁在200℃以上水解沉积,可到达除铁的意图。浸取液用电解法别离镍,溶液再中和用铵盐沉钒,最终煅烧得V2O5。据分析,此一办法较传统的钠化氧化焙烧法有以下长处: (一)硫酸耗量约为烟灰的10%,较50%的碱耗量经济; (二)焙烧法能耗高,估量为5000kJ/t烟灰; (三)加压酸浸可使Ni、V与Fe别离,并使Ni、V充沛收回。 本项研讨所用烟灰成分如下:成分VNiT-FeCaOSiO2MgOAl2O3H2O(100℃)%20224.673.13.571.11.710

镍尾矿综合回收铁选矿工艺

2019-02-20 15:16:12

尾矿是经浮选收回镍矿藏后发生的尾矿,化学分析该尾矿中总铁档次为10.07%磁性铁档次为2.95%,磁性铁占总铁的29.29%,首要可收回意图的尾矿藏为磁铁矿,具有归纳收回利用价值。对该镍尾矿中的矿藏进行归纳收回的选矿实验。 一、矿石性质镍尾矿试样化学多元素分析及铁物相分析成果别离见表1表2。镍尾矿磁铁矿占20.55%,磁黄铁矿占6.85%,磁黄铁矿占6.85%雌黄铁矿对此铁矿产品质量有必定的影响。二、准则流程    因为磁黄矿具有较强的磁性,与磁铁矿之间存在较强的磁力聚会效果,因而次徐昂进程中会随同磁铁矿同步进入铁精矿中,用磁选的办法很难别离磁铁矿和磁黄铁矿,但磁黄铁矿经活化后具有必定的可浮性,因而浮选是铁精矿降硫的有效途径。因为该尾矿首要收回意图矿藏为磁选矿,选用先磁后浮的工艺流程较为合理,及磁选后的铁精矿经浮选脱硫后,得到合格的磁铁精矿产品。 三、磁选条件实验1、粗选磁感应强壮磁感应强度巨细是影响磁选选别目标的首要因素。磁感应强,可能会形成部分磁性矿藏未被选出而丢失,磁感应强渡过大又会形成脉石矿藏夹杂在磁性产品中,然后影响精矿档次。因为实验样品为镍尾矿,粒度较细,因而断定在不磨矿的情况下对尾矿进行一段磁选收回铁。磁选机上升水流为360L/h,实验成果如图1所示由图1可知,当磁感应强度添加至120MmT时,所得铁粗精矿铁档次及收回率目标比较抱负,因而断定粗选磁感应强度为120ml。2、磨矿细度为了进一步进步铁精矿的档次,在精选磁感应强度为60mT的条件下,对磁选铁粗精矿进行磨矿细度实验,实验成果如图2所显现。 由图2可知,跟着磨矿细度的添加,铁精矿档次呈添加的趋势,当磨矿细度为-38um占80%以上时,铁档次及铁收回率根本坚持不变,归纳考虑,断定磨矿细度为-38um占80%。3、精选磁感应强度在磨矿细度-38um占80%的基础上进行精选磁感应强度实验,实验成果见图3。由图3可知,跟着磁感应强度的添加,铁精矿档次略有下降,当磁感应强度大于60mT时,铁收回率改变不大,因而断定精选磁感应强度为60Mt。 4、磁选全流程工艺磁选全流程工艺如下图所显现,实验成果见表3由表3可得知,该镍尾矿经过磁选工艺可得总铁档次62.10%、总铁收回率27.97%的铁精矿,铁精矿含硫7.85%,达不到铁精矿等第对硫含量目标的要求,阐明尾矿中具有磁性的磁黄铁矿在磁选中具有富集效果,需求进行降硫处理。 四、铁精矿浮选降硫 1、活化剂品种断定对磁黄铁矿的活化剂草酸、钠、硫酸铜及硫酸进行单加及组合品种比照,浮选成果表明,硫酸与草酸相对于其他药剂,所得铁精矿降硫效果比较好,因为硫酸报价比较低,因而断定选用硫酸作为铁精矿降硫的活化剂。 2、铁精矿浮选降硫工艺选用硫酸作为活化剂,丁基黄药为捕收剂对铁精矿降硫及归纳收回硫进行实验,实验流程如图5所显现{药剂用量均匀对磁选原矿(镍尾矿),单位为g/t。下同},实验成果见表4,因为实验成果可见,实验可获得合格的铁精矿和硫精矿。3、硫酸的用量硫酸作为选矿药剂,具有既影响实验目标又影响着选矿设备的两层效果。按实验流程进行一次粗选和一次扫选的硫酸用量实验,实验成果见表5。由表5可见,硫酸用量以450+220g/t为宜。 4、丁基黄药的用量断定硫酸用量450+220+110g/t,对铁精矿进行丁基黄药一次粗选、两次扫选的药剂用量,实验成果见表6。由表6可知,跟着丁基黄药用量的添加,铁精矿硫含量逐步下降,当丁基黄药粗选用量为70g/t时,可得含硫为0.17%的铁精矿,实验成果比较抱负。五、磁-浮全流程闭路实验 归纳上述条件实验,进行了全流程闭路实验。实验流程如图6所显现,实验成果见表7,由表7咱们可得知,磁-浮全流程闭路实验可获得铁档次65.20%的合格铁精矿及含硫22.50%的硫精矿。

从含钒钢渣中提钒

2019-01-03 15:20:48

含钒钢渣是含钒铁水直接在转炉里按一般碱性单渣法炼钢而得到的钢渣。该种渣成分复杂,又经常波动。含钒钢渣的特点是氧化钙含量高,钒含量较低。研究结果表明,硅酸三钙(Ca3SiO5),其形状受空间限制,自行性差,一般呈不规则粒状填充于其他矿物格架之间,并包裹其他矿物。硅酸三钙相中V2O5的含量较低,约1.47%,但由于该相在渣中占得比例大,仍有17.88%的V2O5夹杂其中。镁--方铁石系方镁石、方锰石构成的固溶体系列,其分子为(Mg0.58,Fe0.36,Mn0.06)1.00O,该矿物中含钒很少。 钙钛氧化物是一种新矿物,分子式为(Ca3.02,Mn0.013.03(Ti1.36,V0.37,Fe0.23,Mg0.01,Si0.09)2.12O7,可简写成Ca3(Ti,V)2O7。该矿物是一种黑色厚薄不等的长板状矿物,并与其他矿物连生,钒置换钛进入晶格中。该矿物中V2O5含量为9.78%,其钒量占渣中总钒量的78%,是提钒的主要对象。含钒钢渣返回高炉处理是我国首创的一种提钒工艺。它是把含钒钢渣再烧结后返回小高炉,练出含钒2~3%的铁水,再兑入氧气底吹转炉内吹炼,得到V2O5含量高于35~40%的高钒渣。此渣在电炉内直接还原,制取含钒大于35%的钒铁合金。含钒钢渣的特点是氧化钙含量高。用传统的钠盐焙烧--水浸提钒工艺,钒浸出率很低。目前研究出的钠盐焙烧--碳酸化浸出工艺较好的解决了氧化钙的危害。 在含钒钢渣中,钒主要赋存在钒钙钛氧化物中,焙烧时钒钙钛氧化物与碳酸钠反应:2Ca3V2O7+Na2CO3+O2=3CaO+2NaVO3+Ca3(VO4)2+CO2硅钒酸钙与碳酸钠也发生类似反应:2[Ca2SiO4·Ca(VO4)2]+Na2CO3+O2 =2Ca2SiO4+2NaVO3+Ca3(VO4)2+5CaO+CO3烧结后水溶性钒约20%,碳酸化浸出的钒约60%。  焙烧主要技术条件:渣碱比100:18,钢渣的磨细度-200目大于60%,制粒后的粒度直径5~10mm,焙烧温度1100℃,物料停留时间3.7小时。技术指标是:生产能力1.58T·m-2·d-1,烟尘率0.5%,熟料转浸率85%。

铝合金1A80化学成分

2018-12-29 16:56:52

●特性及适用范围:   为工业纯铝,具有高的可塑性、耐蚀性、导电性和导热性,但强度低,热处理不能强化可切削性不好;可气焊、氢原子焊和接触焊,不易钎焊;易承受各种压力加工和引伸、弯曲。   ●化学成份:   铝Al :99.50  硅Si :≤0.25  铜Cu :≤0.05  镁Mg:≤0.05  锌Zn:≤0.07  锰Mn:≤0.05  钛Ti :≤0.05  铁Fe: 0.000~ 0.400   注:单个:≤0.03   ●力学性能:   抗拉强度 σb (MPa):≤137  伸长率 δ10 (%):≤3   现货规格     板材现货规格:0.3mm-350mm(厚度)  棒材现货规格:3.0mm-500mm(直径)  线材现货规格:0.1mm-20mm(线径)

用D301树脂从含钒萃余液中回收钒的试验

2019-02-20 14:07:07

现在,提钒的首要原料是石煤和钒渣。石煤含钒量低,其浸出液需求经过除杂、浓缩后进一步沉积钒。离子交流法可用于稀溶液中物质的别离和富集。已有人研讨了用弱碱性阴离子交流树脂从石煤酸浸液中提取钒,调查了树脂类型、吸附触摸时刻,pH等要素对钒吸附率的影响;也有人研讨了不同类型树脂对钒(V)的离子交流功能,证明离子交流法能够很好地富集石煤浸出液中的钒。     从钒渣中浸出钒时,浸出液中钒浓度较高,一般不需求浓缩,可直接用萃取一反萃取法从净化后的浸出液中收回钒。但浸出液经溶剂萃取后,萃余液中仍含有少数钒。为了充沛收回这部分钒,选用D301大孔弱碱性阴离子交流树脂吸附,解吸液中钒浓度较高,可回来溶剂萃取工序。     一、实验部分     (一)实验原料及仪器     实验所用溶液为溶剂萃取后的含少数钒的萃余液,即钒渣经化焙烧一浸出一净化一萃取后得到的萃余水相,其间钒质量浓度1~2g/L。钒溶液取自承德新新钒钛股份有限公司,在实验室净化除杂和单级萃取后得到萃余液。     树脂:D301大孔弱碱性阴离子交流树脂,杭州争气树脂厂供给。运用前,用酸碱溶液处理,转型为HSO4-型。D301树脂是在大孔结构的乙烯-二共聚体上首要带有叔胺基[-N(CH3)2]的阴离子交流树脂,其碱性较弱,能在酸性近中性介质中有效地交流无机酸,并能吸附分子尺度较大的杂质以及在非水溶液中运用,具有再生效率高、交流容量大、抗污染能力强、机械强度好等长处。     离子交流柱:φ2cm×100cm。     (二)溶液中钒的分析办法     选用硫酸亚铁铵容量法测定溶液中钒的质量浓度。     (三)实验办法     1、静态吸附     取5mL湿树脂置于100ml三角瓶中,每次参加含钒萃余液50mL,在室温(26℃)下置于摇床上振动必定时刻之后,取样测定吸附量,核算吸附率。 吸附率= ×100%,     式中:分别为吸附前后钒的质量浓度,g/L。     2、柱吸附(动态吸附)     选用克己的离子交流柱,柱内填充必定量湿树脂。含钒萃余液以必定流速经过离子交流柱。隔一段时刻取流出液分析钒质量浓度,记载经过离子交流柱的溶液体积。吸附完成后,用去离子水洗刷交流柱内的树脂,然后用必定量、必定浓度的解吸剂解吸交流柱内的树脂。吸附宽和吸过程中溶液均自上而下流经离子交流柱。     二、实验成果及评论     (一)静态吸附     静态实验中,所用吸附原液有2种,分别为钒质量浓度1.99 g/L,pH=2.1和钒质量浓度1.67g/L,pH=5.1。实验共进行14次,每次30min,前8次用第1种溶液,第9次后用第2种溶液。14次实验成果如图1所示。图1   D301树脂中钒的累计浓度与实验次数的联系     从图1看出:第1次30 min离子交流处理后,溶液中钒质量浓度从1.99 g/L降为。0.191g/L,钒吸附率达90.4%;随实验次数增多,树脂中钒质量浓度升高,逐步挨近吸附原液,单次实验钒吸附率下降;第14次实验中,树脂中钒累积质量浓度在112.4mg/mL时趋于稳定。可知,树脂吸附钒的饱满容量为112.4mg/mL湿树脂。     (二)吸附时刻的影响     吸附原液:钒质量浓度1.67g/L,pH=5.1。选用静态吸附法,每隔10min取样一次,直到60min.分析离子交流后溶液中钒质量浓度,核算钒吸附率,求得最佳吸附时刻。实验成果见表1。 表1  吸附时刻对钒吸附率的影响序号触摸时刻/min交流后液钒质量浓度/(g·L-1)钒吸附率/%1100.35079.042200.14391.443300.07895.334400.02498.565600.02498.56     从表2看出:随吸附时刻延伸,钒吸附率逐步升高;经过40min吸附,钒吸附率根本保持稳定,进一步延伸吸附时刻,吸附率改变不明显。可知,树脂对钒的吸附现已饱满。所以,D301树脂吸附钒的最佳时刻为40min。     (三)柱吸附实验     在离子交流柱中加人HSO4-型D301树脂260mL,吸附原液钒质量浓度1.59 g/L,pH=7.0。设定溶液流速500mL/h,室温下进行柱吸附实验。实验设定经过离子交流柱的流出液钒质量浓度大于5mg/L为穿透点,流出液体积以床体积的倍数计。吸附原液量和钒质量浓度的改变联系如图2所示。图2  吸附原液处理量和钒质量浓度的改变联系     从图2看出:实验条件下,D301树脂吸附钒的穿透体积为48倍床体积,吸附原液处理量在48倍床体积之内时,处理后的溶液钒质量浓度小于5mg/L,吸附率大于99%;D301树脂吸附钒的饱满体积为88倍床体积,处理量超越88倍床体积后,树脂无法再吸附。     D301树脂穿透容量为76.32mg/mL湿树脂,饱满容量为108.7mg/mL湿树脂,与静态实验测得的饱满容量112.4mg/mL湿树脂根本共同。     (四)解吸实验     柱吸附实验之后,用解吸剂对柱中的负载树脂进行解吸。解吸剂为1mol/L NaOH溶液,操控流速260mL/h,解吸在室温(26℃)下进行。离子交流柱中载钒树脂的解吸状况如图3所示。能够看出:用1mol/L NaOH溶液可有效地将钒从树脂上解吸下来,解吸剂体积为2倍床体积时,解吸液中钒质量浓度最高(达56.2g/L),此刻解吸率为76%;解吸剂体积为3.6倍床体积时,钒解吸率达99%;解吸剂用量为4倍床体积时,可将悉数的钒解吸下来而解吸不呈现拖尾现象。图3  负载钒的离子交流树脂的解吸曲线     三、定论     (一)用D301大孔弱碱性阴离子交流树脂可从含钒萃余液中富集钒。含钒溶液钒质量浓度1.67g/L、pH=5.1,室温下,静态吸附,树脂对钒的饱满吸附容量为112.4 mg/mL湿树脂。     (二)D301树脂处理含钒萃余液的体积在48倍床体积时,吸附后的尾液钒质量浓度不超越5mg/L。     (三)用1mol/L NaOH溶液可有效地将钒从树脂上解吸下来,且解吸液钒质量浓度高,可回来萃取钒。

钒知识

2019-03-08 09:05:26

钒是高熔点稀有金属,密度5.96,熔点1890℃,沸点3380℃,有耐性,在中加热变脆,含氧和氮的钒也有脆性。钒是电的不良导体,其电导率仅为铜的十分之一。室温下,钒不与氧效果,在加热条件下被氧化成VO、V2O3、VO2、V2O5,高温下与大都非金属元素(如氮、碳、硫)发作反响。钒还能与铝、钴、铜、铁、锰、钼、镍、钯、锡、硅构成合金。钒的氧化态为-1、+1、+2、+3、+4、+5,一般+2和+3价钒的氢氧化物呈碱性,+4和+5价钒的氢氧化物呈,+5价钒在不同酸度的水溶液中构成不同组成的钒酸盐。在常温下,钒有较好的抗蚀性,本领、稀硫酸、碱溶液和海水腐蚀,但能被硝酸、或浓硫酸腐蚀。 钒在地壳中常与其他元素伴生,富集成工业矿床的很少。首要涣散于钒钛磁铁矿、铀矿、磷矿、铝钒土及煤炭中。钒的矿藏首要有绿硫钒矿(V2S+nS)、钒云母〔K2(Mg,Fe)(Al,V)4Si12O32•4H2O〕、钒铅矿〔PbCl2•3Pb3VO4〕2〕、钒钾铀矿(K2O•2V2O3•V2O5•3H2O)等。 钒矿的分化办法有:①酸法,用硫酸或处理后得到(VO2)2SO4或VO2Cl。②碱法,用或碳酸钠与矿石熔融后得到NaVO3或Na3VO4。③氯化物焙烧法,用食盐和矿石一同焙烧得到NaVO3。 金属钒的制取:含钒的矿藏经处理后得到五氧化二钒,再将五氧化二钒用碳、硅、铝复原得到金属钒;或用、镁复原的办法制取金属钒。 钒是冶金工业的重要质料。在钢铁中,钒首要是以钒铁的方式参加,首要起脱氧和脱氮的效果,一起可进步钢的强度、耐性、淬透性和回火稳定性。现在,90%的钒用作钢铁增加成分出产高强度低合金钢、高速钢、工具钢、轴承钢、耐热钢、不锈钢和铸铁等。钒还用于钛合金、钴和镍基高温合金的增加剂。 V2O5广泛用作有机和无机氧化反响的催化剂,用于出产硫酸、精粹石油。钒在电子工业中可用作电子管的阴极、栅极、X射线靶、真空管加热灯丝。硅化钒和镓化钒是杰出的金属间化合物超导材料。在玻璃工业,钒可用于制作吸收紫外线的玻璃,以及用于制作护目玻璃和防护屏等。

丰宁铁磷矿综合回收磷、钛铁、硫钴矿选矿

2019-01-18 11:39:34

我国磷资源日趋枯竭,越来越制约我国磷肥及磷化工的生产和发展,开发利用北方低品位磷资源意义重大,势在必行。 北方大部分磷矿属磁铁矿(含钛磁铁矿)—磷灰(块)岩型矿石,特点为中高品位磁铁矿、低品位磷矿与低品位钛铁矿共生,含有少量硫钴矿。磷、钛铁矿易选,但选矿成本高,多数选矿厂只磁选回收磁铁矿,而将磁选尾矿丢弃,资源浪费现象严重。       从上世纪80年代起,我院对北方低品位磷矿开展了选矿试验研究,取得了很好的成果。 河北省丰宁县招兵沟铁磷矿矿石类型较为简单,主要为钛磁铁磷灰石矿石,矿石结构为细粒~中粒变晶结构和细粒~中粒花岗变晶结构,矿石稳定性较好。主要矿物为磁铁矿、钛铁矿、磷灰石,其中含有少量硫钴矿。磷品位较低。 2003年,我院对招兵沟铁磷矿进行了磷、钛铁、硫钴资源综合选矿试验研究,研制出适合该矿矿石性质的AW-10新型高效磷矿捕收剂;确定了常温无碱浮选回收磷矿物、重-磁选联合工艺回收钛铁矿物、浮选工艺回收硫钴矿物的选矿工艺路线。 磷矿物实验室闭路流程试验选矿指标为:磨矿细度-200目含量47%,浮选温度为20℃,原矿品位P2O5 3.34 % ,精矿产率9.75%、品位 P2O5 33.18 %、回收率96.77 %。钛铁矿物重选选矿试验标为:原矿品位TiO2 4.50%~6.64%、TFe10.13%~12.51%, 精矿产率4.59%~8.39%、品位TiO2 42.53%~42.98 %、TFe39.46%~39.87 %,TiO2回收率43.38%~54.33%。重选钛精矿经中强磁场磁选,最终钛铁精矿品位 TiO245.50 %。硫钴实验室流程试验选矿指标为:原矿品位Co 0.0114%、S有效1.07%, 精矿产率1.52%,精矿品位 Co 0.4117 % 、S有效 44. 76 %, Co回收率53.49%、S有效回收率 63.31%。 2005年至2008年,我院将此成果成功地用于20万t/a和300t/a选矿厂的工业生产,取得了很好的选矿技术指标,实现了低品位磷、钛铁、硫钴矿物综合回收利用产业化。 20 万t/a浮选车间生产流程考查选矿指标为:磨矿细度-200目47%,浮选温度为25℃,原矿品位P2O5 3.84% ,磷精矿产率9.68%、品位P2O537.88% 、回收率95.49 %。300t/a选矿厂浮选车间生产流程考查选矿指标为:磨矿细度-200目31.90%,浮选温度为14℃,原矿品位P2O5 3.02% , 磷精矿产率5.71%、品位P2O538.19%、回收率72.21%。钛工业生产调试流程考查指标为:入选原矿品位TiO27.02%、磨矿细度-200目,含量39.65%,高品位精矿产率2.94%、品位TiO243.41%、回收率18.18%;低品位精矿产率9.97%、品位TiO223.61%、回收率33.53%。硫、钴工业生产流程考查指标为:原矿品位Co 0.0073%、S有效0.20%,精矿品位Co 0.3691%、S有效 39.31%,尾矿品位Co 0.0051%、S有效0.053%;精矿产率按Co计算0.60%、按S有效计算0.37%;Co回收率30.34%、S有效 回收率72.72%。 综合回收磷、钛铁、硫钴矿物,还可以使磁铁矿入选品位由TFe12%以上降到TFe9%~10%,扩大资源储量;选矿厂每年减少尾矿排放量10%以上,相当于固体尾矿80多万t/a,从而降低了矿区尾矿污染,减少了尾矿坝的安全隐患。 招兵沟磷矿浮选采用的zn128捕收剂,无毒、无污染,具有很好的生物降解性能,有利于环境保护。该成果解决了浮选矿浆需要加入大量碳酸钠调整矿浆pH值的问题;降低了浮选温度,实现了常温浮选,领先国际水平。 对招兵沟铁磷矿中低品位磷、钛铁、硫钴的综合选矿加工利用研究,不仅使企业具有经济效益,而且减少了环境污染,解决了就业问题,还具有良好的环境和社会效益,起到了行业示范作用。该项研究对我国北方铁磷矿综合利用和可持续发展具有深远意义。

钒钛磁铁矿尾矿的回收钛铁技术

2019-01-24 09:35:03

一、技术名称:钒钛磁铁矿尾矿回收钛铁技术 二、技术适用范围:钒钛磁铁矿选铁尾矿 三、技术简介 (一)基本原理 1、利用钒钛磁铁矿选铁后的尾矿作为原料,经磁场强度为1300安的一段强磁抛尾后得含TiO2 17%~19%粗钛精矿。 2、将粗钛矿进行一段闭路磨矿后经弱磁扫铁,再给入磁场强度为750安的二段强磁,获得含TiO2 22%~24%钛精矿。 3、二段强磁尾矿经反浮选除硫作业后,进入全粒级浮钛作业,主要药剂为R-2及硫酸,经过一粗四精的选别作业后,可获得含钛47.00%以上的钛精矿,钛精矿经烘干即为成品钛精矿。 该工艺具有流程短、设备配置简单、投资省、成本低等特点。 (二)工艺流程 该项技术的工艺流程图详见下图。工艺流程图 (三)关键技术 1、磁选技术。采用目前国内先进的强磁机SLONφ1750进行强磁抛尾,一段磁场强度为1300安,二段强磁磁场强度为750安,既保证了钛铁矿的回收率,同时又提高了入浮品位; 2、分级技术。采用具有世界先进水平的Derrick高频细筛作为分级设备,避免过磨现象的发生,保证进入浮选的最佳粒度组成,降低浮选药剂消耗; 3、浮选技术。采用新型浮选药剂R-2,既保证钛精矿的品位和回收率,又大幅度的降低了选矿成本。 四、技术应用情况及典型项目 攀西地区蕴藏着极其丰富的钒钛磁铁矿资源,已经探明的储量约为100亿t,主要分布于攀枝花、白马、红格、太和四大矿区。其中TiO2的储量为8.7亿t,占世界已探明钛资源储量的35.17%,占国内已探明钛资源储量的90.54%以上。因此,钛的综合利用一直是攀西资源综合利的重中之重,历来受到各方面的重视。 太和铁矿取得了选钛工艺流程优化、全粒级浮选技术回收钛铁矿等大量科技成果,使太和铁矿的选钛回收技术处于先进水平。特别是全粒级浮选钛铁矿技术的重大突破,形成了具有自主知识产权的钛铁矿回收成套技术,并且迅速转化为生产力,实现了产业化,提高了钛资源综合利用率,对整个攀西地区乃至全国钛资源综合利用有着重要的意义和作用。 该技术的典型项目的投资与收益情况见下表。 典型项目的投资与收益情况总投资4403万元其中:设备投资3353万元运行费用4879.90万元/年设备寿命20年综合利用效益2143.53万元/年投资回收年限2.05年 五、应用效果及推广前景 采用全粒级选别新工艺从钒钛磁铁矿选铁尾矿中回收钛铁矿具有工艺新颖、技术可靠、金属回收率高、设备运转稳定、操作简便、人为因素影响小、对矿浆粒度、浓度有较强的适应性等优点,最大限度回收了有用矿物,减少了资源浪费。每年可减少废物排放10万t,减小尾矿占地面积和对环境的污染,延长了尾矿库服务年限。在同行业乃至全国有广泛的推广应用前景。

选铁尾矿回收低品位磷、钛、钴技术

2019-01-24 09:35:03

中国北方河北丰宁三赢公司的丰宁招兵沟低品位磷矿属变质型矿床,磁铁矿(含钛磁铁矿)-磷灰石型矿石。其特点为中品位磁铁矿、低品位磷矿与低品位钛铁矿、超低品位硫钴等共生。为使招兵沟铁磷矿中的磷、钛、硫钴等资源得到合理的综合回收利用,开展了从磁选尾矿中选矿回收磷、钛、硫钴的实验室选矿试验研究,确定了合理的综合回收选矿工艺流程。 根据实验室选矿试验研究成果,改扩建了原矿处理能力为30万t/a老选厂,新建了原矿处理能力为300万t/a的新选厂,综合回收招兵沟铁磷矿中的磁铁、磷、钛铁、硫钴矿物。确定了常温无碱浮选回收磷矿物、合理的重-磁选联合工艺回收钛铁矿物、浮选工艺回收硫钴矿物的选矿工艺路线。 一、矿石性质 河北省丰宁县招兵沟铁磷矿矿石类型较为简单,主要矿石矿物为磁铁矿、钛铁矿、磷灰石等。脉石矿物主要有辉石、角闪石、黑云母、斜长石等。 矿石结构主要为中粒半自形粒状结构、花岗变晶结构,其次有片柱状变晶结构、陨铁结构、平行连晶结构、固溶体结构。矿石构造主要为块状构造、片麻状、条带状、网状构造。矿石自然类型一般为斑杂状钛磁铁矿石、斑杂状磁铁矿矿石、块状钛磁铁矿矿石、块状磁铁矿矿石、片麻状磁铁磷灰石矿石和片麻状钛磁铁磷灰石矿石。 矿石工业类型可分为钛磁铁磷灰石矿石、磁铁矿矿石、钛磁铁矿矿石和磁铁磷灰石矿石。 矿石中含TFe 10%~20%、含P2O5品位平均为3%±,含TiO2 5%±;铁与钛及磷的含量一般成正比关系。磷、钛、硫钴品位较低。 该矿一直以选铁为主,对选铁尾矿中的其他有用组分未能综合回收,可回收利用的低品位磷、钛、钴等作为尾矿抛弃。由于该矿矿石结晶较好,适宜采用阶段磨矿阶段选矿的综合回收工艺,其选铁尾矿中的主要元素含量见表1。 表1  选铁尾矿多项分析结果二、磷的综合回收 磷矿浮选采用的AW-10捕收剂,该药剂不仅无毒、无污染,而且还有很好的生物降解性能,有利于环境保护。该成果解决了浮选矿浆需要加入大量的碳酸钠调整矿浆pH值的问题;降低了浮选温度,实现了常温浮选,对节约能源、降低选矿成本做出了很大贡献。依据试验确定的工艺流程,设计建成了处理能力30万t/a原矿的磷浮选车间,并于2005年9月投产,生产出了高品质的磷精矿。工业调试改造后确定了磁选尾矿经旋流器脱水,一段开路磨矿,磨细度.074mm(-200目)含量50%±5,一次粗选一次扫选二次精选、中矿顺序返回的常温浮选工艺流程(图1)。图1  磷回收生产数质量流程 工业生产采用常温浮选工艺回收磷矿物,浮选矿浆不需要加温、加碱。浮选药剂均为常规、无毒、无污染的产品。浮选药剂制度简单,仅加入了水玻璃调整剂和浮选捕收剂。 流程考查指标为:入选原矿品位P2O5 3.84%,磷精矿品位P2O5 37.88%、Fe2O3 1.50%、MgO 0.96%,磷精矿回收率95.49%。 采用的选磷捕收剂AW-10,是合理开发利用招兵沟磷矿这一易选磷灰石,提高企业经济效益的关键。该捕收剂必须具备原料来源广、价廉、无毒、选择性及捕收能力好等特点,并能克服使用氧化石腊皂类的捕收剂价高,泡沫粘、精矿不易后处理等缺陷。捕收剂主要由两部分组成,第一部分(占80%)采用化工、油脂厂废料作原料,变废料为有用产品,因此也减少了相关行业造成的环境污染。但单独作为捕收剂用量较高,矿浆粘性大。第二部分(占20%)是一种阴离子型活性助剂,具有增溶、分散、乳化、发泡和润湿渗透作用,能显著促进脂肪酸类捕收剂的高度分散溶解,从而增加主体捕收剂被目的矿物吸附的浓度,降低选择性好的捕收剂为达到浮选必须的临界胶束浓度而需要的用量,使得主体捕收剂在较宽的介质中和较低的温度下具有良好的分散溶解性。该助剂还具有发泡性能好、泡沫性脆的特点。因而采用AW-10捕收剂能够实现招兵沟磷矿常温、无碱浮选,并且精矿沉淀浓缩性能好。另外,该活性助剂有很好的生物降解性能,对矿山实际产生尾矿水的分析结果(表2)表明:尾矿水中的COD含量较上一生产工序磁选尾矿水,降低了将近一半。在捕收剂中引入该助剂后,极大减轻了水质污染,有利于环境保护。 表2  尾矿水水质主要分析结果(mg/L)三、钛的综合回收 丰宁铁磷矿中的伴生钛铁矿,结晶程度较好、粒度较粗大。根据其矿石性质、选矿规模、设备投资、选矿成本以及环境保护等因素,确定采用重-磁选工艺综合回收该矿中的钛铁矿。工艺路线为:螺旋溜槽抛尾→摇床粗选→钛铁粗精矿→磨矿[磨矿细度为 工业生产流程考查指标为:入选品位TiO2 7.02%、磨矿细度图2  钛回收生产数质量流程 该选矿工艺流程及设备简单、动力消耗少,综合回收利用有很好的经济效益,符合国家矿产资源利用和发展循环经济的政策。 四、钴的综合回收 丰宁招兵沟磷铁矿中的钴,主要和硫铁矿共生在一起。黄铁矿结晶较好、粒度较粗大、可选性较好,属易选矿石。硫钴选矿的技术路线为浮选,工艺流程为一次粗选三次精选,中矿顺序返回(图3)。采用选硫化矿常规选矿药剂:硫酸、丁基黄药、2#油。图3  钴回收生产数质量流程 该工艺工业生产流程指标为:选铁、磷、钛后的尾矿品位为Co 0.0073%、S有效0.20%,精矿品位Co 0.3691%、S有效39.31%,尾矿品位Co 0.0051%、S有效0.053%;精矿产率按Co计算0.60%、按S有效计算0.37%;Co回收率30.34%、S有效回收率72.72%。五、结论 通过对研究成果在招兵沟铁磷矿选矿厂的实施,综合回收了国家有限的磷、钛铁、钴等资源,减少了全选厂的尾矿排放量10%以上,选矿过程无环境污染,符合我国可持续发展战略对磷矿和磷肥工业立足国内资源的要求;符合国家资源与环境及循环经济政策。 丰宁县招兵沟铁磷矿采用浮选工艺回收磷矿物,采用重—磁选工艺回收钛矿物,浮选回收钴,企业经济效益显著。对资源综合回收利用,有效扩展资源储量,发展循环经济起到了行业科技示范作用。

含钒溶液的水解沉钒

2019-01-21 18:04:28

含钒溶液经净化后,钒多以五价钒酸根存在。随溶液酸度增加,钒酸根会以钒酸的形式析出,俗称红饼。钒的水解主要取决于酸度、温度、钒浓度及杂质的影响。析出的沉淀也会因pH值、钒浓度的变化呈不同的聚合状态。有关的机理在认识上还不统一。大致可勾画如下,由图1及图2关于钒酸水溶液的性质图可以看出:钒浓度/(mol·L-1)溶液pH值主要的钒离子水解产物低,10-4酸性低4~8高,50×10-32~3高,50×10-31~6高,50×10-310~12高,50×10-313~当pH值约1.8时,V2O5的溶解度最小,约230mol/L。V2O5与H2SO4之间的浓度关系如下:[H2SO4]/(g·L-1)2.312.017.121.2V2O5/(g·L-1)0.240.781.142.04 表1列出一组V2O5-H2SO4-H2O系的数据。 表1  V2O5-H2SO4-H2O系统平衡数据30℃75℃V2O5/%H2SO4/%密度/(g·㎝-3)析出相V2O5/%H2SO4/%析出相1.637.31.066①1.4817.43①4.7923.51.219①2.0024.18①7.437.261.370①5.0633.0①4.4145.01②5.4838.02②5.554.361.519②5.2741.01②9.1460.421.661②5.1346.56②5.4466.76③8.0952.31③1.5974.67③9.0857.33③6.2173.26④10.860.20④0.27680.411.727④7.514.98④0.05399.161.817④7.5270.50④9.2640.491.440①②0.1393.44④10.4962.221.734②③6.1034.30①②1.5077.481.714③④8.2949.53②③11.9657.56③④表中析出相:①V2O5·3H2O,V2O5 红褐色、针状; ②V2O5·2 H2O,2SO3·8H2O 粉红色、无定形、棕红色、针状; ③V2O5·H2O,V2O5·2SO3·3H2O 淡黄、针状、红色、柱状; ④V2O5,V2O5·5SO3·4H2O 黄色、针状、黄色、晶状。 对钒水解有重要影响的因素有温度、酸度、钒浓度及杂质含量等。图1  图2  V2O5溶解度与pH的关系(25℃) 1—V2O5/ ,lg =-0.82-pH;2—不析出V2O5 lg =-0.04-pH;3—V2O5/ ,lg =-4.44+pH; 4—不析出V2O5,lg =-3.00+pH;5— / , pH=1.03-0.333 lg ;6— / ,pH=2.62; 7— / ,pH=7.38+lg图2  钒在水溶液中的状态与钒浓度及pH的关系(25℃) 一、温度 钒水解沉淀应在90℃以上进行,最好在沸腾状态。不同温度及酸度下沉淀率与时间的关系见图3。图3  沉淀率与时间的关系:Ⅰ-0.855;Ⅱ-0.954;Ⅲ-1.16;Ⅳ-1.18 二、钒浓度 溶液中含V以5~8g/L为宜。浓度过高,则结晶成核过快,易形成疏松的滤饼,吸附较多杂质及游离水。红饼组成xNa2O·yV2O5·z H2O中的x/y偏大。当溶液中含钒浓度低时,则会有负面影响。 三、杂质的影响 磷与钒形成稳定的络合物H7[P(V2O5)6],还与Fe3+、Al3+形成磷酸盐沉淀,会污染红饼。为此要求净化后液含P小于0.15g/L。当酸度较高时,可使FePO4、AlPO4的溶解度提高,而减少磷对红饼的污染。 硅、铬、铝、铁等离子浓度较高时,水解生成的胶体沉淀物,妨碍V2O5晶体的长大,使水解速度变慢,生成的红饼沉降、过滤困难。适当提高酸度,可以改善此类不良的影响。 氯离子可以加快钒水解沉淀的速度。而硫酸钠含量在20~160g/L,会使钒水解沉淀速度下降,主要表现为延长晶核孕育期。氯化钠或硫酸钠过多都会使红饼中V2O5含量降低。 四、搅拌 钒的水解沉淀是一个伴有热量、质量传递的水解反应过程,因此必须保持适宜的搅拌速度,已达到临界悬浮状态,没有任何死角为宜。工业用的机械搅拌沉钒罐为圆柱形,内径2~5m,容积4~5m3。罐内壁衬耐酸瓷砖或辉绿岩。中心安装不锈钢搅拌器。罐壁附近设不锈钢蒸汽加热管。 水解沉钒是间歇作业,先加入25%的沉钒前液,开始搅拌,再加入所需的硫酸,然后通蒸汽加热到90℃以上接近沸点。继续添加剩余的75%的沉钒前液。最后分析溶液中游离酸及钒的浓度,调整酸度或补加沉钒前液,以使最后溶液中含钒小于0.1g/L为终点。停止加热、搅拌、再静置10~20min后过滤,即得红饼。根据生产规模,过滤设备可采用吸滤盘、压滤机或鼓式真空过滤机。 红饼须先经干燥去除水分,再在1073~1173K温度下熔化,浇铸成片状,作为炼钒铁的原料。 水解沉钒早期用得比较普遍,但所产红饼熔片V2O5的含量仅为80%~90%,纯度较低,且耗酸量大,污水量大,故现已基本为铵盐沉钒所取代。

钒矿提钒工艺技术

2019-02-25 09:35:32

概 况 钒在地壳中的含量大约是地壳分量的0.02%,散布较广,但涣散。含钒矿藏已发现的就有70多种,其间的绿硫钒矿、钒云母矿和钒铅锌矿等含钒氧化物高达8-20%,钒钛磁铁矿含钒档次低,一般含v2o5为0.2-1.4%,但它的储量最多,国际储量在400亿吨以上,是提取钒的首要质料。 全球的钒铁磁铁矿和钒资源恰当丰厚,已查明国际钒铁磁铁矿的储量为400亿吨以上,且会集在少数几个国家,有前苏联、美国、我国和南非,首要赋存于钒钛磁铁矿、磷块岩矿、含铀砂岩和粉砂岩型矿床中。此外还有许多钒赋存于铝土矿和含碳质的原油、煤、油页岩和沥青沙中。 据美国矿藏局统计资料标明,按现在挖掘规划,已探明的钒资源可继续挖掘150年,且会集散布在南非洲、亚洲、北美洲等区域,(南非占47.0%,前苏联占24.6%,美国占13.1%,我国占9.8%,其他国家总和占小于6%)。 钒具有杰出的可塑性和可锻性,常温下可制成片、拉成丝和加工成箔。但少数的杂质,特别是空隙元素(如碳、氢、氧、氮)会显着影响钒的物理性质。如钒含氢0.01%时引起脆变,可塑性下降;含碳2.7%时其熔点升高到2458。K。钒的熔点高,硬度大,电阻率高,呈弱顺磁性,线胀系数小,钒的弹性模量密度和钢附近,可用作结构材料。 钒是重要的战略物资之一,首要用于冶金工业,作为合金元素增加剂,改进钢材的结构、功能,进步强度和耐性,次之与钛制成具有高温高强度合金,再次之是化学工业,以钒的氧化物形状,用作出产催化剂、触媒等等。 国外钒的提取基本上是从副产品中收回的,如南非、芬兰、前苏联等国家是从钒钛磁铁矿炼铁中收回,美国大部分钒是钾钒铀矿及磷铁矿中收回,加拿大是从焚烧石油焦搜集的尘中收回,少数国家还从石煤中提取钒。总归,国际上钒首要是从钒钛磁铁矿中收回的,现在从钒钛磁铁矿收回的钒,每年约为7万吨左右,约占总产量的%。 钒的产品分为初级产品、二级产品和三级产品。初级产品包含含钒矿藏,精矿、钒渣、作废的粹的废催化剂,作废触媒和其他残渣。二级产品包含v2o5,也可所以一种可用的工业产品,即出产硫酸的触媒和粹用的催化剂。三级产品包含钒铁、钒铝合金、钼钒铝合金、硅锰钒铁合金及钒化合物,其间钒铁是最为重要钒材料,它占钒消费量的85%。各国钒铁标准可分为50-60%和70-85%的二类。 我国钒工业起步于20世纪50年代,1958年康复并扩建锦州铁合金厂提钒车间,以承德大庙含钒铁矿精矿为提钒质料,1960年今后我国的其他提钒厂相继建成投产,70年代攀枝花钢铁公司建成投产,从此我国的钒工业便进入一个新的历史时期,至80年代中已成为国际首要产钒国家之一,能出产各种钒制品,钒的推广运用也取得较快的开展。 从含钒质料提取纯钒化合物的技能,视质料不同而有所差异。钒钛磁铁矿、钒铁精矿、含钒石煤、石油渣、钒铀矿、钒磷铁矿等等,现分述收回技能。 一、 钒钛磁铁矿提钒技能: 钒钛磁铁矿提钒能够概括为火法和湿法两大类。火法流程能够处理含钒档次低的质料,能够经过火法富集,然后处理收回,也称之为简接法;湿法流程具有流程短、收回率高的长处,但要求处理的质料含钒档次相对较高,也称之为直接法。 1.火法工艺流程 将选出的钒铁精矿参与高炉或电炉炼铁,矿石中的钒大部分进入铁水中,将含钒铁水送入转炉吹炼成钢,钒高度富集在表面渣中,即钒渣,钒渣再经破碎、焙烧、浸出、过滤即得到V2O5。这是前苏联、挪威和南非等国所选用的办法。我国也选用相似的办法收回钒。 2、湿法工艺流程 选用含钒铁精矿加芒硝制团、焙烧、水浸,使钒酸钠进入溶液,再加硫酸使之转化为V2O5沉积,过滤后直接得到V2O5,水浸后的球团用于炼铁质料。 南非海威尔德公司是西方国家一起运用以上两流程(即生铁—钒渣流程和焙烧浸出流程)的典型比如。 生铁—钒渣流程 含钒铁精矿 料仓配料 回转窑预复原 含钛炉渣 炼铁 暂存堆积未处理 含钒铁水 板坯 氧气 吹炼 出售 钢水 顶吹炼钢 半钢 钒渣 钢坯 出产V2O5 焙烧浸出流程 含钒铁精矿 H2O 芒硝(碱或Na2SO4)NaCl 配料制团 钠化氧化焙烧1000℃ 水浸 过滤 铵盐 球团 溶液 炼铁 过滤 H2SO4 废液废液 V2O5 含钒铁精矿或钒渣的浸出首要化学反响为 (1)4FeO.V2O3+4Na2CO3+5O2=8NaVO3+2Fe2O3+4CO2 (2)4FeO.V2O3+8NaCl+5O2=2Fe2O3+8NaVO3+4Cl2 (3) 4FeO.V2O3 +8NH4Cl +5O2=2Fe2O3+8NH4VO3+4Cl2 (4)2NaVO3+H2SO4=V2O5 + Na2SO4+H2O (5)2NH4VO3+H2SO4=V2O5 + (NH4)2SO4+H2O 3、生铁—钒渣流程主体设备 ① 首要视炼铁的主体设备,曾经苏联炼铁主体设备是高炉,挪威、南非等国则是电炉。 ② 吹炼:不同国家选用的设备也不相共同 a.底吹转炉提钒:前苏联丘索夫联合公司是将含钒铁水装入底吹转炉吹炼,在炼半钢进程氧化表面构成含钒渣,钒渣经破碎、焙烧、水浸收回V2O5,然后炼成钒铁。从精矿到钒铁、钒的总收回率为60%左右。 b.顶吹转炉双联提钒:前苏联下塔吉尔钢厂则用顶吹转炉将含钒铁水吹成半钢和钒渣。就铁水到钒渣钒的收回率达92%—94%。我国的承钢、马钢和攀钢也用该法出产钒渣,钒的收回率为80%—88%。 c.高炉铁水雾化法提钒,该法实际上是将含钒铁水倾入中间缸,然后进雾化器,经雾化反响之后,使钒由V2O3氧化成V2O5、 V2O4、V2O3的混合物流入半钢缸,半钢面上构成钒渣。该法由我国攀钢首要实验成功并投入出产运用的,并且是我国钒渣出产的首要办法,钒的氧化率达85~90%,收回率为73.6%,半钢收回率为93.9%。该法的首要长处是:炉龄长(最高炉龄已达12000炉)、处理才干大(可达366吨/时)、可半接连化出产、设备简略、操作简略。 d.曹式炉提钒:我国马钢曾用槽式炉吹炼提钒,槽式炉才干为70T/h,实验的首要技能目标,钒的氧化率达88.5~95.2%,钒的收回率为81.3~90.49%,半钢率90.20~94.1%,出产目标不如实验目标。该法的长处是能接连出产、设备简略、出产本钱低,缺陷、钒渣含铁高、钒收回率还欠低。因而现在已停止运用,需求进一步完善,仍不失可供挑选的好办法之一。 4、焙烧浸出流程设备 湿法流程即焙烧浸出流程的中心首要是使钒氧化然后转化构成水可溶性的钒酸盐,选用何种焙烧设备,完成其意图。 a. 南特殊特腊厂,所运用钒钛磁铁矿成分: Fe 50~60%,V2O5 2.5% ,TiO2 8~20%, Al2O31~9%, Cr2O31%,选用回转窑焙烧完成氧化和转化。 b. 前苏联和澳大利亚阿格纽克拉夫有限公司都选用欢腾炉焙烧使97~98%的钒转化可溶性钒而被浸出。 c. 芬生奥坦馬基,运用原矿成分Fe40%,TiO215.5%,VO26%(V2O5:0.71%)原矿制团,在竖炉焙烧和转化,转化率达80~90%。 二、钾钒铀矿和磷铁矿收回钒技能 1、 美国钒的出产供应商处理的质料的以钾钒铀矿石、铀钼钒矿和磷铁矿石为主,钾钒铀矿的化学式为:K2(VO2)2(V2O8)" 3H2O或K2O" 2UO2"V2O5"3H2O。最近澳大利亚西部伊利里的钙结石乐岩中发现大型钾钒铀矿,我国陕西、湖南区域也发现钒铀共生矿。国际上最大的矿冶公司——美国联合碳化物公司从钾钒铀矿石出产钒的工艺流程是焙烧、浸出、沉积、复原和再浸出。该法钒铀浸出率别离为70~80%和90~95%,其流程如下: 钾钒铀矿 6~9%NaCl 钠化氧化焙烧 (多膛炉850℃ φ5m.8层) 1~2%Na2CO3 急冷 浸出 H2SO4 浸出液中和煮沸 PH:3 NaOH或NH3 沉积PH7 钒滤液 滤饼 沉积 Na2CO3 或NaCl 复原熔化 钒化含物 H2O 浸出 钒溶液 含铀沉积物收回铀 酸法和碱法浸出含钒溶液,可用离子交换法、溶剂萃取法、或挑选性沉积法进行别离提纯。该公司年产V2O8454吨,V2O51360吨。 2、 钒铁矿的处理与钾钒铀矿有所不同,钒铁矿运用真空揉捏和焙烧炉,先将矿粉与盐混合,送揉捏机揉捏成条、堵截,焙烧浸出提纯沉积后得V2O5。 3、 钒磷铁矿的处理 钒磷铁矿电炉出产单质磷和磷肥的副产品(含钒磷铁)用来作提钒质料,美国的克尔麦吉(KerrMeGee)化学公司所用的含钒磷铁含钒3.26%~5.2%,磷24.7%~26.6%,铁59.9%~68.5%,铬3.4%~5.7%,镍0.84%~1.0%。 先将含钒磷铁磨至粒度小于0.42mm,配入1.4倍纯碱和0.1倍的食盐在回转窑中770~800℃下焙烧,钒便转变成水溶性的钠盐,焙砂在沸水中浸出,钒、铬、磷均溶入浸出液,过滤后滤液结晶折出磷酸钠晶体,粗磷酸钠可再行纯化直至产品合格。磷酸钠结晶母液含磷>0.98g/L,可参与适量CaCl2,使其以磷酸钙(CaPO4)沉积,然后水解收回钒,随后往母液中参与以沉积。此工艺的钒、铬和磷的收回率别离能够到达85%、65%和94%。 三、含钒褐铁矿收回钒技能 含钒褐铁矿五氧化二钒含量为0.5~2.5%,Fe20~40%,SiO230~65%. 矿石首要由针铁矿、赤铁矿和脉石组成。脉石以石英为主,其次是泥质还有少数的绢云母。钒在褐铁矿中没有呈独立矿藏存在,而是以离子型吸附状况存在于铁和泥质中。处理的准则流程是:破碎球磨 焙烧 浸出 沉积Nu4VO3 或V2O5。 研讨标明褐铁矿V2O5含量不同,钒的转化率受矿石组分的影响,其间首要影响要素是矿石CaO的含量,跟着的CaO的含量增加,影响钒的转化,焙烧温度的进步能进步钒的转化率。不同含钒矿石,最高转化率的温度是有差异的。 四、含钒石油渣提钒技能 一般讲,原油和石油砂都含有钒,虽然有些国家至今仍未把油含钒列为钒资源,但这些原油确是钒的潜在资源,全球的石油中钒的含量改动很大,委内瑞拉、墨西哥、加拿大和美国原油含钒为220~400ppm,是全球石油含钒量较高的少数几个国家。 美国、日本、德国、加拿大和俄罗斯等国家从石油渣,石油灰中提钒,提钒的终究产品首要是V2O5,但也能够直接炼成钒铁。提取的办法许多,首要依据质料成分或性质上的差异,挑选不同的工艺。 1、 从石油会集收回钒技能 委内瑞拉的原油经过裂化处理得到石油焦含0.4%V,石油焦用作蒸气锅炉的燃料,焚烧后烟尘用电收尘器收尘,尘含V2O5达15%,作为收回钒的质料。收回办法是将搜集烟尘直接酸浸,经过滤滤液加次(NaClO4)将钒氧化成五价,滤液由兰色变黄色后,加NH3调PH由0.3至1.7,使钒以铵盐方式沉出,然后枯燥锻烧得V2O5或V2O5熔化铸片。流程图: 石油焦尘埃 酸 浸出 滤液 残渣NaClO4氧化 沉积 调PH 洗刷 滤块 残渣 洗液 抛弃 烘干 锻烧 V2O5 首要化学反响:酸浸工序: V2O5+6HCl 2VOCl2+3H2O+Cl2 或V2O5+2H2SO4 VOSO4+2H2O NaClO4氧化: VOCl2+NaClO4 NaVO3+2NaCl+Cl2VOSO4+NaClO4 NaVO3+NaSO4+Cl2 沉积锻烧 NaVO3+NH4Cl NH4VO3+NaCl2NH4VO3 V2O5+2NH3+H2O 2、 从炼油渣中收回钒技能 美国Amax和CRIVentures公司就是处理炼油渣、归纳收回钒、钼、钴、镍和铝。他们处理的工艺:炼油渣与烧碱混合磨矿进行加压浸出,在高温和加压下氧化,硫转化硫化物,碳氢化合物大部分分化,钒、钼溶入溶液,经过滤别离,从溶液收回钒钼。或石油渣加Na2CO3或NaCl配料后,在硫化物和硫酸盐存鄙人进行电炉熔炼,取得钒渣和镍锍。钒渣首要惯例处理办法制取工业V2O5。美国是20世纪80年代末开端用石油渣,石油灰为质料出产钒的,现在仍然是该质料出产钒的最大出产国。 五、石煤提炼钒技能 在普查磷矿时意外地发现了石煤含有钒,进而发现石煤中还有铀、铜和镍等金属和非金属60多种,就当时的技能水平而言,具有挖掘和商业价值的只要钒。我国的石煤资源非常丰厚,估计石煤中钒的总储存量为钒钛磁铁矿中钒总储存量的七倍。但石煤中含钒档次各矿相差甚大。现在条件下石煤含钒超越0.8%,才有挖掘价值。美国内华达州含钒页岩分为风化页岩(V2O30.93%)和碳质页岩(V2O50.84%)。我国石煤资源会集在南边各省,现有钒的厂20多家,年产量为2500~3000吨,本钱2.5~30万元/吨。 石煤提钒选用加食盐焙烧、浸出、萃取、沉积的出产工艺。含钒碳质页岩是用于烧锅炉或液态化床发电的脱碳焚烧,在焚烧进程中钒富集在烟灰中,富集钒烟灰加NaCl或Na2Co3进行化焙烧,使钒转变为水溶性的NaVO3和Na2V2O5. 4FeOV2O3+4Na2CO3+5O2=4Na2OV2O5+2Fe2O3+4Co2 NaCl+1/2O2= Na2O+Cl2 Na2O+V2O3=2NaVO3 用热水浸出钠化焙烧产品,钒酸钠和偏钒酸钠便溶于热水而与大部分不溶杂质别离,含钒浸出液经提纯和别离,产出钒的纯化合物。 美国内华达对含钒页岩提钒流程: 页岩 ↓ 破碎、枯燥 ↓ 焙烧 ↓ H2O 残渣←弱酸浸出 H2SO4 NH3 ↓ 浸出液除硅 PH值由2.5调至5 ↙ ↘ 硅渣 含钒溶液 PH5调回PH3 ↓ 萃取(三级) 萃取有机相 萃取废液 ↓ 再生萃取 ←二级反萃 ←NaCO3 溶液 有机相 ↓ 含钒溶液 ↓ NH4Cl →钒酸铵沉积 ↓ 过炉、洗刷、枯燥→废液 ↓ 制品 阐明:除硅需将溶液调至PH值5,但萃取别离又需将溶液PH从头调回至PH3,用的萃取剂是混合十三胺(DITDA),偏钒酸胺煅烧脱后能够得到V2O5。 在我国,已建有从含钒石煤中提取钒的工厂,各厂依据其资源特色开发出具有必定特色的提钒工艺流程,他们的准则流程是: 石煤提钒的准则流程 石煤破碎、磨矿 ↓ 加水→配料←NaCl ↓ 成球 ↓ 平窑焙烧 ↓ 水浸 ↙ ↘ ↙H2SO4或HCL 浸出渣 浸出液 ↙ ↘ 粗钒 废水 ↓ NAOH → 碱熔 ↓ NH4CL 水溶 ↙ ↘ 废水↓ 热分化 ↓ 五氧化二钒 石煤提钒的新工艺有:1.石煤加食盐,欢腾焙烧—酸浸—离子交换法。2.石煤无盐焙烧—酸浸—溶剂萃取法。3.酸浸—中间盐提钒 新工艺的所谓新,会集在二个环节上,首要是焙烧所选用的炉型,由平窑焙烧转而运用欢腾炉,回转窑,竖炉等,成果是竖炉的操作条件不简略操控,转化率不稳定,劳动条件差,未能在工业上取得大规划运用。回转窑广泛运用于钒渣的钠化氧化焙烧,但石煤含硅(SiO2)较高(65%--68%),在焙烧进程中简略呈现粘窑、结圈、影向回转窑正常操作和钒的转化率,故不宜作为石煤焙烧设备,作为石煤焙烧设备最好是欢腾炉。 其次的环境是溶液的处理,除已有的化学沉积法外引证了离子交换法和溶剂萃取技能,因为新技能的引证,能够带来技能目标的进步,削减废水的处理,视操作的差异,或许影响加工本钱。 六、废催化剂和触媒的提钒技能: 钒的化合物具有杰出的催化功能,即它自身不参与化学反响,但在它的参与下,可加快反响的进行。用钒化合物与其载体作成的能改动某些化学反响速率,而自身又不参与反响的化学试剂,称之为催化剂。钒催化剂(V2O5•NH4VO3)替代铂用于出产硫酸,使SO2转化为SO3。在石油工业中,钒首要用做裂解催化剂(VS),以及脱硫剂。在橡胶工业中,用乙烯和的交联合成橡胶的催化剂(VCl4)。化学工业上的氧化成马来酐,蔡氧化成酞酐的钒催化剂(NH4VO3)等等。特别是化学工业和石油工业运用过的废钒催化剂数量较大,是很好的钒二次资源,不只能够从中收回许多的钒,并且一起收回镍、钼等价金属。 1. 石油裂解用废催化剂(VS)的收回技能 废硫化钒催化剂经焙烧得到产品,能够选用高温浸法,钒废质料在参与压煮器中,473。K温度下用1—14MOL/L浓度的压煮4小时,钒酸铵便溶于中,经过炉别离后,将钒酸铵滤液的温度降至323。K,便分出钒酸铵结晶,结晶浆液经过滤、水洗、枯燥后,在473--873。K温度下煅烧,便得到V2O3,结晶的母液回来浸出循环运用。 除以上办法外,也能够用碱浸出从这种钒废猜中收回钒,用NaOH或Na2Co3溶液在363--378。K温度下浸出1-6个小时,然后过滤别离,在浸液中通入和二氧化碳,坚持298--308。K温度,按1MOL钒参与1.5—5MOL量,并将溶液PH调至6—9。经处理,坚持308。K,便能够沉积出钒硫铵。滤液送解吸器,用蒸气驱逐液体中的NH3和CO2,然后回来浸出,钒硫铵处理同前。 2. 从原油脱硫用的废催化剂的收回技能: 废催化剂在1073。K温度下进行氧化焙烧,先制得含钒10.88%,钼5.49%,钴2.03%,镍1.94%,铝35.48%的焙烧料,然后按150g焙烧猜中参与300ml含溶液NaOH15%的溶液,在333。K温度下拌和浸出3小时,浸出料液在323。K温度下过滤,浸出液由323。K降至278。K,便分出含钒结晶体,母液回来运用,结晶体经水洗、枯燥、煅烧后得到V2O3。 除此之外,焙烧料也可用酸浸流程,催化剂除钒外,其他有价元素Mo、Ni、Co等都转入流液,除杂后钒用萃取别离法收回。 美国AMR是一家从石油裂变废催化剂提钒大公司,其处理的废催化剂的量占全美的50%,年处理废催化剂16000吨,能够归纳收回1500吨V2O3,1000多吨Mo,400—600吨Ni,110—180吨Co,还有部分Al2O3. 3、从《制酸废触媒(V2O5,NH4VO3)》收回钒技能 硫酸工业上用矾触媒进程中,因为SO2气体中的AS2O5和触媒中V2O5构成络合物,在触媒的正常操作温度480摄氏度下该络合物随气体蒸发掉。蒸发量占V2O5总量的40—50%,除此以外还有K2SO4和SiO2。新废触媒成分如下: 成分称号 V2O5 K2SO4 SiO2 新触媒成分 9---------10% 20-------------22% 20% 废触媒成分 5---------6% 10------------12% 80% 因而废触媒中的三中首要成分都是名贵资源。废触媒的处理,工业上能够选用①直接酸浸工艺②化焙烧水浸工艺: 直接酸浸工艺:为了下降溶液杂质和游离酸,削减酸碱耗费。用两段逆流浸出,一段为弱酸浸,二段为高酸浸。高酸浸出液参与到新加废触媒进行弱酸浸出。二段浸出成果钒浸出率可达88.5-91.1%,浸出渣含V2O5能够降到0.59%,当进步二段浸出酸浓度到80—100G/T,渣含V2O5可降到0.3%。溶液的净化选用N235或P204萃取,碱反萃取,用NH4Cl沉,煅烧得到V2O5。 考虑到直接酸浸液除钒外,还含有许多Fe离子为溶液处理带来费事。经过预焙烧使钒氧化成高价钒,一起使其转型,削减了提钒的困难。因为废触媒自身含有10%硫酸钾组分,因而氧化焙烧水浸流程可分为不加钠盐和加钠盐两种。前者焙烧温度900摄氏度到达最佳转化率(~80%)。再高或再低温度的焙烧,钒的转化率都不抱负,后者增加5%的Na2CO3在800摄氏度下焙烧2小时,钒的转化率可达92%,是比较抱负的。 焙砂进行两段浸出,即先水浸后酸浸或碱浸,它的特色是先将钾盐、钠盐和近80%钒水浸进入低酸溶液。这种溶液杂质少,易处理,可收回运用钾盐。酸浸或碱浸意图在于不容于水的钒盐尽或许多地溶解,以进步钒的收回率。 溶液中的钒用N235萃取别离,碱返萃,NH4CL沉积,煅烧得V2O5。 总归,流程的挑选,要视供应商的现状,以为钠化氧化焙烧水浸提钒工艺较好。物料过滤功能好,浸出液中钒呈高价,杂质少,下步钒别离、净化进程简略,也能够直接用NH4CL沉积,省去萃取进程,下降产品加工本钱。 七.钒铁出产技能: 钒和铁组成铁合金,首要在炼钢中用作合金增加剂,高钒钒铁还用作有色合金的增加剂。常用的钒铁含钒40%、60%和80%三种,国内外首要选用电炉铝热法和硅热法冶炼钒铁的工艺,先分述如下: 1. 铝热法: 电炉铝热法冶炼钒铁的质料,可所以V2O5或贱价氧化钒混合物(V2O4、V2O3等)或钒铁渣。用铝作复原剂,在碱性炉衬条件下进行。 首要反响:V2O5+ AL(豆或粒状)=V+AL2O3 V2O4(V2O5)+AL= V+AL2O3 铝热法冶炼钒铁反响为放热反响,反响速度快,因而冶炼进程V2O5喷溅丢失严峻,为削减丢失,进步钒的收回率,特意将V2O5加工成片状,一起将铝粒改为铝豆,恰当减缓反响,下降放热量。 以贱价氧化钒为质料时,则冶炼进程反响速度缓慢,反响热量合适,削减进程的喷溅。然后进步钒的收回率,一起吨铁钒节省了铝复原剂40—60公斤,钒铁含钒60—80%,钒的收回率达90—95%。 2. 硅热法: 该法的本质是:片状V2O5用75%的硅铁和少数铝作复原剂,在碱性电弧炉中,经复原,精粹两个阶段炼得合格产品。复原期是把复原剂和V2O5进行硅热复原。当渣中V2O5小于0.35%时,即可作为废渣处理(或作建筑材料用),作为冶炼作业讲,即能够转入精粹期,此刻再参与部分V2O5和CaO,用以脱除合金液中过剩的硅、铝等。当合金成分到达要求即可出渣和出含金,精粹期渣含V2O5达8—12%,此渣可回来冶炼复原期收回。合金液可铸成圆锭后破碎成制品。此法出产的钒铁含钒40—60%,钒收率可达98%。 除此之外,还开发了高钒铁、硅钒铁、硅锰钒铁、碳化钒、碳氮化钒、氮化钒铁以及金属钒等产品,在此不再赘述。 八、几点观点: 1.依据所用的含钒质料有:含钒铁水,钒铁精矿,钒渣、钒铀铁矿,钒磷铁矿,含钒石煤,含钒褐铁矿,含钒石油渣,以及化学石油以及橡胶工业用过的废催化剂等。 2.提取钒的流程遍及都存有:焙烧、浸出与净化、溶液中钒的提取和提取尾液处理四大过程组成,前两过程最为重要: ①焙烧:含钒质料和Na2CO3 NaClNa2SO4等钠盐混合在回转窑、竖炉、平窑、多膛炉或欢腾炉,在800—1000。C下进行氧化和转化,使钒转变为XNa2O•YV2O5以便溶于水。 单个情况下,含钒质料可加石灰或石灰乳(Ca(0H)2),在上述提取各种炉内进行焙烧,它的意图与钠化焙烧正好相反,使钠转化为不溶于水,但溶于碳酸盐溶液,构成钒酸钙,到达与其他杂质别离的意图。 ②浸出:焙烧熟料浸出有:水浸、酸浸、碱浸和碳酸化浸出等四种办法,水浸时,钒酸钠进入溶液,酸浸则不同,能够有三种办法:A、含钒物料直接酸浸;B、含钒物料经焙烧后酸浸;C、含钒熟料经水浸之后再进行酸浸,酸浸还能够适用于处理其他物料,为钾钒铀矿、磷钒铁矿、含钒灰烬、废钒催化剂等。常用碱浸出剂有NaOH、Na2CO3或两者混合等,碱浸时还有必要使钒成高价态才行。氧化剂有氧气、空气、富氧空气,、、次、等。 溶液净化:含钒浸出液悬浮物可经过弄清除掉Fe、Mn、Si、Al可用中和沉积除掉,可用钙盐、镁盐沉积除掉P、AS,对高碱度溶液可用电渗析脱钠、收回碱。 ③溶液中钒提取:有沉积法、溶剂萃取和离子交换法 沉积:A、铵盐沉积:生成(NH4)2V6O16沉积,生成Na2(NH4)4V10O28.11H2O沉积,生成NH4VO3沉积。 B、水解沉积:加H2SO4,分出赤色钒酸钙沉积,Na2H2-X.V12O31。 C、钙盐或铁盐沉积: 碱性溶液用CaCl2或其他CaO、Na(OH)2沉积出钒酸钙,或用高铁盐沉积出钒酸铁(XFe2O3•YV2O5•2H2O)。 溶剂萃取:钒和铀别离法:用二乙基已基磷酸 磷酸三丁酯及N235 离子交换:合适处理碱性溶液 ④尾液处理:五价钒和六价铬离子游离酸、盐都是有毒的,有必要处理好才干扫除,工业上有三种处理办法: A、 复原中和扫除法 B、 气体中二氧化硫复原法 C、 离子交换法 3、已探明的钒储量,按现在挖掘规划够150年运用,年产钒量已处在供需平衡状况,钒的供需改动随合金钢产量改动而改动

由含钒铀矿提钒工艺实例

2019-02-19 12:00:26

美国科罗拉多的钒铀矿是美国钒的首要来历。前期以出产钒为主,铀是副产品。1943年后调整为以出产铀为主。矿石中的钒除钒钾铀矿(K2O·2UO3·V2O5·3H2O)外,还有钒云母[3(AIV)2O3·K2O·18SiO2·2H2O]及含钙钒酸盐。含U3O8约0.24%~1.23%,V2O5约0.07%~1.16%。矿石可不经焙烧,直接用碱液(Na2CO3、NaHCO3)浸取,可是浸取率低,原因在于钒云母中的钒不溶于碱溶液。为此需在氧化气氛下850℃加碱焙烧,然后再在高压釜中120℃,0.21MPa压力下浸取4~6h。钒、铀的浸取率别离可到达70%~80%、90%~95%。 美国阿特拉斯矿藏公司,选用新工艺处理米维达铀矿,工艺流程如图1所示。图1  阿特拉斯矿藏公司莫亚比铀厂工艺流程 矿石破碎至19mm,依据质料的不同,分酸浸、碱浸两条路线处理。 一、碱浸 参加Na2CO3 50~60g/L,溶液进湿球磨、水力旋流器分级,然后进稠密机。溢流回来,加碱,调理至Na2CO3 50~60g/L,再用于球磨。底流分两组,每组串联7个高压釜浸取,120℃、0.35MPa、6h。排出料浆与进料进行热交换,头两个高压釜用直接蒸汽加热。浸取后的矿浆用鼓式过滤机过滤,残渣送尾矿池。滤液进入4个串联的拌和槽,通蒸汽加热,增加NaOH,生成Na2U2O7沉积,经浓缩过滤,得铀产品。滤液通CO2气后,作为浸取液,送往提钒车间。 二、酸浸 将矿石与水在湿球磨及分级机中细磨,液固比5/1,进浮选槽回收得铜精矿。浮选后进入一段浸取槽。浸取后进入水力旋流器分级。溢流经弄清、过滤得清液。底流进2级浸取槽,用蒸汽加热,参加H2SO4,逗留21h。排料经耙式分级机,溢流用作一级浸取用液;底流过滤、洗刷后,残渣送尾矿池。1、2级的清液兼并送萃取工序。 三、萃取 萃取液加酸,调pH值至1.0~1.2。送4级混合弄清槽用叔胺先萃取铀。萃取有机相为: 成分     1号柴油     叔胺     异癸醇 %         92.5        5        2.5 萃取后有机相用碳酸钠碱液反萃得铀产品。萃取铀后的萃余水相,参加金属铁粉,使溶液的电动势降至150mV以下,使铁离子悉数还原为二价,部分钒也被还原为四价,以便进步钒的萃取率。加调停pH=2,在5个混合弄清槽中逆流萃取。有机相为 成分     1号柴油     二-2-乙基-乙基磷酸     异癸醇 %          91                 6                  3 萃钒后的萃余液排入尾矿池。含钒有机相用15%H2O4反萃。反萃液送沉积槽,通蒸汽加热,参加NH4Cl、NH4OH沉钒得钒酸铵。最终将钒酸铵枯燥、熔化成薄片出售。