您所在的位置: 上海有色 > 有色金属产品库 > 铝合金生产工艺 > 铝合金生产工艺百科

铝合金生产工艺百科

铝合金型材的生产工艺

2018-12-28 14:46:54

铝合金型材的生产工艺及设备铝门窗型材的生产,经过铸锭制备、挤压成型、热处理和表面处理四个工艺过程    (一)铸锭制备    该工艺过程包括配料、熔炼、铸造、均热等主要工序,形成一定化学成分和外形尺寸的铸锭。配制好的原材料,在煤气炉或电炉中熔炼。熔炼后的熔体经过静置炉、流槽、流盘、过滤器直到结晶器内,再经水冷,形成一定形状的铸锭。为保证铸锭表面光洁,采用磁力铸造或热顶铸造法,进行多模(多结晶器)铸造。铸锭均热,是使铸造状态的金相组织均匀化,使主要的强化相溶解。均热是在均热炉内进行。均热提高了铸锭的塑性,有利于提高挤压速度,延长挤压模具的寿命,改善挤压型材的表面质量。    (二)挤压成型    挤压成型是在铸锭加热、挤压、冷却、张力矫直、锯切等工序构成的一条自动生产线上进行。生产线上的设备,包括感应加热炉、挤压机、出炉台、出料运输机、型材提升移送装置、冷床、张力矫直机、贮料台、牵引机、锯床等。铸锭的加热温度一般控制在400℃~520℃,温度过高或过低都将直接影响挤压成型。挤压机一般采用单动油压机,其吨位在1200吨~2500吨之间。挤压机的挤压筒直径大小,随挤压机吨位大小变动,挤压机吨位大,挤压筒直径也大。挤压筒直径一般在150mm~300mm范围内。挤压工具工作温度为360℃~460℃,挤压速度20m/min~80m/min。挤压工具主要包括模具。挤压模具根据结构特点分为平模、分瓣模、舌型模和分流组合模。生产铝合金门窗型材多用平模和分流组合模。出料台接收来自挤压机挤出的型材,并把型材过渡到出料工作台。出料工作台多是横条运输机型,其横条运动速度与挤压速度同步。冷床多为步进梁式,下面安装有相当数量的风机,保证型材均匀冷却,使型材在矫直前温度低于70℃。张力矫直机带有扭转钳口,可以边扭转校正边拉伸矫直。张力矫直机后是贮料台,向锯床工作台提供型材,锯床按定尺锯断型材。    (三)热处理    铝门窗型材采用的铝镁硅系铝合金,是可强化的铝合金。通过不同的淬火和时效制度,使型材得到应有的力学性能。铝门窗型材为RCS供应状态,即热处理为高温成型后快速冷却及人工时效。    (四)表面处理    铝门窗型材的表面处理,大多采用阳极氧化,使型材表面为银白色。表面处理可增强型材外表美观程度,并延长铝门窗型材的使用寿命。阳极氧化的工艺流程:装料→脱脂→水洗→碱浸蚀→温水洗→冷水洗→中和出光→水洗→阳极氧化→冷水洗→温水洗→封孔→干燥→卸料→成品检查→包装铝门窗型材阳极氧化后的氧化膜厚度不低于10μm。铝门窗型材的表面处理,也可进行着色处理。需其他颜色的铝型材,可经自然氧化着色法、电解着色法和浸渍着色法获得。

铝合金模板生产工艺探讨

2018-12-28 11:21:22

1 模具设计要考虑的问题   模具的设计必须满足刚度、强度的计算要求,以达到减少模具在受压时的弹性变形量。在确定工作带时,工作带的长短、空刀形式、模颈及焊合室形式等,都要考虑参数选择最佳值。模具的导流孔、分流孔等系数的选择,在允许范围内尽量选较大值,达到减小压力的目的。铝模板一般采用6061等硬合金生产,使生产技术难度增大,挤压生产时经常会出现出料拖烂、压不动、出料太慢等情况,因此模具的设计在生产过程中起到很大的关键作用。   2 模具设计   导流孔、分流孔设计   设计模具时导流孔、分流孔位置要均匀分布,这样型材各部才能吸收同量的金属。导流孔、分流孔大小与型材面积成正比例关系,在不影响模具强度、型材表面质量情况下,尽量把导流孔、分流孔做到最大,当挤压时金属流入焊合室,导流孔、分流孔越大,桥位面积受力就越小,金属流从桥位移开使阻力减少而出料速度就会增大,但不影响模具强度。所以入料孔小、桥位大的模具不一定就会比入料孔大的模具强度好。   桥位设计   桥位是模具组织的重要部份,它是模具的支撑桥梁,设计模具桥位时必须要考虑它对模具有足够的支撑力。为了满足模具的支撑强度,一般桥位角度设计在18~25℃之间,角度太大会增加金属流与桥位的摩擦力,使金属流的流动减慢,角度越小金属越容易于焊合,出料速度随之增快。同时设计桥位角度交接处时尽量圆滑过度,避免或减少造成焊合死角。   焊合室设计   焊合室不宜过深,焊合室过深会增加焊合室内金属体积,焊合室内体积增加时焊合流程也加长,挤压压力随之会升高。   工作带设计   模具工作带抛光要仔细,保证平面度,垂直度,不能出现龟背或凹凸不平,合理计算工作带长度,均匀金属流量。   3 挤压工艺   工艺流程:         铝棒加热(440-460℃)   模具加热(420-460℃,3-6h)  →挤压(出口温度530-570℃)→喷雾风冷淬火→取   盛锭筒加热(410-420℃)   板自检→(200℃以下)→拉伸矫直(70℃以下,拉伸率≤1.5%)→定尺锯切 →装筐(检查)→时效→硬度检验→去包装(或氧化、喷涂)。 12后一页

铝合金轮毂生产工艺及其优点

2018-12-19 17:39:35

低压铸造  低压铸造是将铸型放在一个密闭的炉子上面,型腔的下面用一个管(叫升液管)和炉膛里的金属液相通。如果在炉膛中金属液面上加入带压力的空气,金属液会从升液管中流入型腔。待金属液凝固以后,将炉膛中的压缩空气释放,未凝固的金属从升液管中流回到炉中。控制流入炉膛空气的压力、速度,就可以控制金属流入型腔中的速度和压力,并能让金属在压力下结晶凝固。这种工艺特点是铸件在压力下结晶,组织致密,机械性能好,金属利用率高。  低压铸造工艺目前在中国大陆已经相当成熟,适合少人化生产管理,已经被所有整车厂认可是当前中国大陆铝合金轮毂制造业的主流工艺,产品主要销往OEM和海外零售市场。  采用低压铸造工艺制造的铝合金轮毂,由于轮辐是最后冷却凝固的,所以部分特殊造型轮毂的轮辐易出现缩松等质量问题,而轮辋部分由于最早结晶则强度较好。  挤压铸造法  挤压铸造也称为液态模锻,是一种集铸造和锻造特点于一体的新工艺,该工艺是将一定量的金属液体直接浇入敞开的金属型内,通过冲头以一定的压力作用于液体金属上,使之充填、成形和结晶凝固,并在结晶过程中产生一定量的塑性变形。挤压铸造充型平稳,没有湍流和不包卷气体,金属直接在压力下结晶凝固,所以铸件不会产生气孔、缩孔和缩松等铸造缺陷,且组织致密、晶粒细化,机械性能比低压铸造件高。产品既有接近锻件的优良机械性能,又有精铸件一次精密成形的高效率、高精度,且投资大大低于低压铸造法。缺点是液态模锻的产品与传统锻造产品一样,需要铣削加工来完成轮辐的造型。  日本已有相当部分的汽车铝轮毂采用挤压铸造工艺生产,丰田汽车公司拥有十几台全自动挤压铸造设备,每台设备不到2min即可生产一件铝轮毂,从浇注金属液到取出铸件整个过程都由计算机来控制,自动化程度非常高。国内也在广东建造了一个现代化的挤压铸造汽车铝合金轮毂厂,已生产多种规格和型号的汽车铝轮毂,经鉴定产品质量达到了国外同类产品先进水平。目前世界各国都把挤压铸造作为汽车铝轮毂生产的方向之一。  铸造旋压  铸旋分“低压铸造+旋压”和“重力铸造+旋压”两种工艺。目前韩系车企对铝轮毂的成型工艺有全面采用“低压铸造+旋压”的趋势,其它车系也有部分产品对此工艺有需求,该工艺是铸旋工艺中的主流工艺,做OEM产品的企业大部分都是采用的这种工艺;同时还有少部分做海外零售市场的企业采用“重力铸造+旋压”的工艺,从理论上讲这种工艺是行的通的,它真正把重力铸造和旋压两种工艺的长处结合到了一起,产品品质得到了提升,但是由于毛坯是重力铸造工艺生产的,因此这种工艺的经济性非常不好,生产成本很高。总之,铸旋的产品,由于轮辐部分是铸造出来的,它具有与铸造工艺生产出来的产品具有相同的优缺点;而轮辋部分是旋压出来的,因此气密性较好。铸旋产品理论上可以减重,但实际应用上效果不明显。  常规锻造  锻造是铝轮毂应用较早的成形工艺之一。锻造铝轮毂具有强度高、抗蚀性好、尺寸精确、加工量小等优点,一般情况其重量仅相当于同尺寸钢轮的1/2或更低一些。锻造铝轮毂的晶粒流向与受力的方向一致,其强度、韧性与疲劳强度均显着优于铸造铝轮毂。同时,性能具有很好地再现性,几乎每个轮毂具有同样的力学性能。锻造铝轮毂的典型伸长率为12%~17%,因而能很好的吸收道路的震动和应力。通常铸造轮毂具有相当强的承受压缩力的能力,但承受冲击、剪切与拉伸载荷的能力则远不如锻造铝轮毂。锻造轮毂具有更高的强度重量比。另外,锻造铝轮毂表面无气孔,因而具有很好的表面处理能力,不但能保证涂层均匀一致,结合牢靠,而且色彩也好。锻造铝轮毂的最大缺点是生产工序多,生产成本比铸造的高得多。

铝合金板片的生产工艺

2019-01-10 09:44:13

一种工艺用来生产有着高屈服强度和合适延展性的铝合金板材,特别是用于制造汽车的面板。这个工艺包括将没有经过热处理的铝合金铸造成一个铸坯,然后所述的铸坯经过一系列的轧制得到较终规格的板材,更好的选择是随后的热处理退后产生再结晶。轧制步骤包括热轧和中温轧制铸坯以得到中间厚度的中间制品,然后冷却中间制品,接着在室温到340摄氏度的范围内中温轧制以及冷轧中间制品得到较终的规格的板材。这一系列的轧制过程是连续进行的没有中间品的圈绕和对中间板材的完全退火。该发明还涉及合金制品的薄板。    本发明涉及生产一种生产铝板材的工艺流程。特别是,本发明涉及通过轧制法从不经热处理合金中生产处适合成形的板材。例如,在制造汽车面板方面的5000系列铝合金。    5000系列铝合金(即镁作为主要的合金元素)通常用于汽车的面板(护板、门板、罩等等),对于这样的应用,为合金板片提供高屈服点和高延展性时所想要达到的。合适规格和屈服强度的铝合金片可由连续浇铸之后的轧制得到。在传统的连铸过程中,从铸造中得到的金属经过热轧和温制,然后盘绕(在温度大约300摄氏度)接着被送往另一轧机,在不超过160摄氏度的温度进行较后的冷轧。    为了精炼,在这里所要提到的一点是通常所指的“热轧”是在温度高于合金的再结晶温度时实施的。以便合金在轧辊型缝之间或在滚动以后的线圈中自己退火再结晶。所述的“冷轧”通常意味着具有大量加工硬化率的工作轧辊以便在轧制期间或之后的合金既没有重结晶也不会发生回复。“中温轧制”在二者之间执行,以便没有重结晶作用但是屈服强度由于恢复过程而大幅度减少。对于铝合金,热轧温度超过350摄氏度,冷轧温度小于150摄氏度,中温轧制在150和350摄氏度之间实施。    不幸地是,上述的常规方法的中间卷绕是笨重和昂贵的,储运需要获得一产品,其具有一个合适的微晶结构,以生产预期的屈服强度。    在美国专利号5,514,228中,在1996年5月7日公开一个同轴的连铸过程,其中板片没有经过中间圈绕而轧成较后所需的规格。不过,在较终的轧制之前还需要进一步的固溶处理,以便在较后的卷绕之前板片进行连续地完全被退火。然而,5000系列合金经固溶处理后不会被强化。    本发明的一个目的是以方便和经济的方式生产不经热处理的铝合金板片以便适用于汽车版面的制造。    本发明的另一个目的是,提供一种工艺以连续的步骤而不经过中间的二级轧制生产5000系列的铝合金板片,以得到高屈服点的铝合金产品。    本发明的一方面,提供生产铝合金板片的一种工艺,其中包括:铸造不经热处理的铝合金以形成一个扁钢锭,然后扁钢锭经过一系列的轧制步骤,以生产较后规格的产品。轧制步骤包括:热轧和中温轧制板坯,形成中级规格中间板片,冷却间板片;然后在室温到340摄氏度的温度范围内对中间板片进行中温轧制和冷轧;一系列连续的轧制步没有中间片的卷绕或完全退火。    上述流程在所谓的H2回火中一种合金。进一步的退火再结晶生产处适合于汽车所用的板片。    本发明的另一方面,提供一种铝合金板片由不经热处理的铝合金制成,这一个过程包括:铸造不经热处理的铝合金,以形成扁钢锭;所述扁钢锭经过一系列的轧制,以生产较后规格的制品;轧制步骤包括:热轧和中温轧制板坯,形成中级规格的中间片,冷却中间片,然后在室温到340摄氏度的温度范围内对中间板片进行中温轧制和冷轧;一系列连续的轧制步没有中间片的卷绕或完全退火。    如上所述,本发明需要热轧和中温轧制然后不经中级圈绕或完全退后进行中温轧制和冷轧。当连续轧制扁钢锭的时候,热板坯向空气和轧辊失去热,以便热轧在中温轧制中结束(即在结晶温度以下)。    这就是通过热轧和中温轧制的方法。在热轧期间,金属完全再结晶以释放在铸造期间产生的任何应变能。这期间的温度取决于同时发生的冷加工的发生量,以及合金的组成。在中温轧制期间,应变能量由于逐渐的轧制而建立,这就是金属所谓的“恢复”。如同重结晶作用一样,出去温度影响外恢复程度取决于冷加工的量和合金的组成。重结晶和恢复之间的重要的区别是,即重结晶作用导致内部张力迅速的减少并在热轧期间发生,然而恢复是中温轧制和冷轧的整个周期中发生,而且内部张力是平稳的减少的,但是大部分压力在“暖和的”轧制期间被释放。    本发明的过程对任何不经热处理的铝合金有益,这些铝合金较终的处理方式是完全退火状态。不过,加强晶粒度在汽车应用方面的5000系列合金中是较重要的。过程可用于所有的5000系列合金在完全退火状态中被运送,但是对AA5754合金尤其有用,此合金含有有限量的Mg,为了避免应力腐蚀裂纹,对此合金来说,加强晶粒度是特别重要的。Mg含量更高的例如AA5182合金,对应力腐蚀裂纹敏感,但它们有更高的强度。对于这样的合金的当然是有益的,但是不那么明显。    本发明的工艺,至少在它的优选的形式中,提供一种制作汽车车身结构的5000系列的铝片,其在一台连铸机上经过连续的轧制得到良好的机械性能。    本发明的一个优点是,虽然自身退火不会生产优选的微观结构和性质,但是在较低温度的轧制以后的重结晶以及接着的退火,确实生产预期的细粒尺寸、高强度和有利的晶体织构。    1.生产铝合金板片的一种工艺,包括:铸造不经热处理的铝合金以形成一个扁钢锭,然后扁钢锭经过一系列的轧制步骤,以生产较后规格的产品。轧制步骤包括:热轧和中温轧制板坯,形成中级规格中间板片,冷却间板片;然后在室温到340摄氏度的温度范围内对中间板片进行中温轧制和冷轧;一系列连续的轧制步没有中间片的卷绕或完全退火。

6082铝合金挤压铝型材生产工艺研究

2018-12-27 15:51:50

1.前言        6082铝合金属于Al-Mg-Si系热处理可强化的铝合金,具有中等强度和良好的焊接性能和耐腐蚀性,主要被用于交通运输和结构工程上,如桥梁、起重机、屋顶构架、交通车和运输船等。        本文对6082铝合金应用于挤压型材生产进行了试验研究,以确定合适的熔铸和挤压工艺制度。        2.熔铸工艺        2.1 化学成分        中6082铝合金化学成分见表1        2.2 成分控制        6082铝合金成分具有两个主要特点:第一,含有适量的Mn和Cr;第二,Mg、Si含量相对较高。其中,Mn、Cr等合金元素可阻碍挤压时和挤压后发生再结晶或再结晶晶粒长大,细化晶粒。        但(Mn + Cr)总量过高可能形成分别含Mn、Cr的粗大第二相,削弱Mg2Si相的沉淀强化效果,抵消其阻碍再结晶和细化晶粒的作用。同时,Mn、Cr元素会增大6082铝合金的淬火敏感性。且易在α(Al)相中产生严重的晶内偏析,造成挤压制品粗晶组织,降低型材氧化着色效果。对于Mg、Si成分,6082铝合金在Mg2Si强化的同时,通过增加适量过剩Si来促进强化。        因此,重点对Mn的含量进行试验确定:以Mn含量为0.6%-0.65%及0.9%-0.95%进行对比。发现Mn含量偏上限时,制品尾部粗晶组织较多,且力学性能偏低,所以对比确定Mn含量的优化范围为0.6%-0.65%。Cr的含量宜控制在0.15%以下,(Mn+Cr)总量控制在0.70%-0.80%范围内。Mg2Si含量宜控制在1.5%-1.6%,过剩Si含量控制在0.3%左右。        6082铝合金的实际成分控制范围见表2        2.3 工艺控制        由于6082铝合金最大的特点是含难熔金属Mn,Mn的适量存在易引起晶内偏析及固液区塑性降低,导致抗裂能力不足,故熔铸工艺主要需注意三点:第一,熔炼应注意控制温度在740-760℃间并搅拌均匀,保证金属完全熔化、温度准确、成分均匀。        第二,铸造应考虑金属Mn增大了合金的粘度,使其流动性下降,影响了合金铸造性能。铸造速度要适当降低,控制在80-100mm/min范围内。        第三,加大冷却强度,加快冷却速度,以利于消除晶内偏析现象。控制一次冷却强度,加大二次冷却强度以减少铸造时产生的应力集中,避免产生铸锭裂纹缺陷。冷却水压应控制在0.1-0.3MPa范围内。        3.均匀化退火        6082铝合金变形抗力大,力学性能指标偏高。通过均匀化处理工艺改善合金组织,达到三个主要效果:充分固溶解Mg2Si相;消除晶内偏析;β(Al9Fe2Si2)相向α(Al12Fe3Si2)相转变,并细化含铁相粒子。        由于合金中Mn的存在可降低转变温度、缩短转变时间,且为保持合金挤压性能和挤压效应,采用中温均化工艺,即均匀化温度555-565℃;保温时间6h;冷却速度≥200℃/h。        4.挤压工艺        4.1 铸锭加热方式        铸锭加热采用工频感应加热,这种加热方式的特点是加热时间短,在3min内即可达到500℃左右;温度控制准确,误差不超过±3℃。如果用电阻炉缓慢加热,将会导致Mg2Si相析出,影响强化效果。        4.2 挤压        综合考虑6082铝合金的主要特点,结合实践生产制订挤压工艺如下:        (1)6082合金变形抗力大,所以铸锭加热温度应偏上限(480-500℃);        (2)模具温度取460℃为宜,挤压筒温度为440-500℃;        (3)挤压速度控制在7-11m/min的范围内;        (4)要使合金主要强化相Mg2Si完全固溶,须保证淬火温度在500℃以上,因此型材挤压出口温度应控制在500-530℃范围内;        (5)6082合金淬火敏感性高,要求淬火冷却强度大、冷却速度快,制品出前梁后必须立即进行在线淬火。对于壁厚2.5mm以下的型材可考虑用强风冷却淬火;壁厚2.5mm以上的型材必须用水雾淬火处理,须使温度迅速降到50℃以下。        (6)6082铝合金型材拉伸矫直,应将拉伸率控制在1.0%-2.0%范围内。    挤压工艺参数见表3        5.时效制度        时效是型材达到规定力学性能的最后一个环节,合理的时效制度既要保证产品的性能,又要考虑生产效率及生产成本。结合试验研究,6082型材最佳时效制度定为:时效温度170-180℃,保温时间8h,时效前型材的停放时间不超过8h。        6.结论        根据6082铝合金型材的特点和性能要求,上述工艺是比较合理的。在熔铸工艺中,6082铝合金成分控制重点在于Mn和Cr含量范围。Mn含量优化控制范围为0.6%~0.65%,Cr的含量宜控制在0.15% 以下,(Mn + Cr)总量控制在0.70%-0.80% 范围内。Mg2Si含量宜控制在1.5%-1.6%,过剩Si含量控制在0.3%左右。        在挤压工艺中,挤压出口温度和淬火效果控制则是保证产品性能的关键,应保证淬火温度在500℃以上,型材挤压出口温度应控制在500-530℃,淬火力求强度大、速度快。

钨铁生产工艺

2019-01-18 13:27:13

结块法 结块法采用可在轨道上移动、炉体上段可拆的敞口电炉,用碳作还原剂。精钨矿、沥青焦(或石油焦)和造渣剂(铝矾土)组成的混合炉料分批陆续加入炉中,炉内炼得的金属一般呈粘稠状,随着厚度增高,下部逐渐凝固。炉子积满后停炉,把炉体拉出,拆除上段炉体使结块冷凝。然后取出凝块,进行破碎和精整;挑出边缘、带渣和不合格的部分回炉重熔。产品含钨80%左右,含碳不大于1%。 取铁法 取铁法适用于冶炼熔点较低的含钨70%的钨铁。采用硅和碳作还原剂;分还原(又称炉渣贫化)、精炼、取铁三个阶段操作。还原阶段炉中存有上一炉取铁后留下的含WO3大于10%的炉渣,再陆续加进多批钨精矿炉料,然后加入含硅75%的硅铁和少量沥青焦(或石油焦)进行还原冶炼,待炉渣含WO3降到0.3%以下时放渣。随后转入精炼阶段,在此期内分批加入钨精矿、沥青焦混合料,用较高电压操作,在较高温度下脱除硅、锰等杂质。取样检验,确定成分合格后,开始取铁。过去用钢勺人工挖取铁块投入水池,60年代初吉林铁合金厂改用机械取铁装置,改善了劳动条件。取铁期内仍根据炉况,适当地加进钨精矿、沥青焦料。冶炼电耗约3000千瓦•时/吨,钨回收率约99%。 铝热法 近年来,为了利用废硬质合金粉末钨钴分离提钴后的再生碳化钨,研制出了铝热法钨铁工艺,用再生碳化钨与铁为原料,以铝作还原剂,利用碳化钨中自身的碳和铝燃烧的热能,使原料中的钨和铁转化为钨铁,可节约大量的电能,并降低成本。同时由于原料碳化钨中的杂质远远低于钨精矿的杂质,产品质量均高于以钨精矿为原料的钨铁。钨的回收率也高于以钨精矿为原料的工艺。   钨价昂贵,在生产过程中必须重视提高回收率,不合格产品、渣铁要收集回炉,电炉应有高效率炉气除尘设施,回收含钨粉尘。

钢铁生产工艺

2018-12-11 14:37:54

现代钢铁生产流程是将铁矿石在高炉中冶炼成生铁,将铁水注入转炉或电炉冶炼成钢,再将钢水铸成连铸坯或钢锭,经轧制等塑性变形方法加工成各种用途的钢材。  一个钢铁联合企业一般包括原料处理、炼铁、炼钢、轧钢、能源供应、交通运输等生产环节,是一个复杂而庞大的生产体系。我国的钢铁企业一般都是这样的全流程联合企业。 1、冶炼原料  原料是高炉冶炼的物质基础,精料是高炉操作稳定顺行,获得高产、优质、低耗及长寿的基本保证。  高炉冶炼用的原料主要有铁矿石(天然富矿和人造富矿)、燃料(焦炭与喷吹燃料)、熔剂(石灰石和白云石等)。冶炼一吨生铁大概需要品位为63%的铁矿石1.60~1.65吨,0.3~0.6吨焦炭,0.2~0.4吨熔剂。2、炼铁工艺  高炉炼铁是以焦炭为能源基础的传统炼铁方法。它与转炉炼钢相配合,是目前生产钢铁的主要方法。高炉炼铁的这种主导地位预计在相当长时期之内不会改变。高炉炼铁的本质是铁的还原过程,即焦炭做燃料和还原剂,在高温下将铁矿石或含铁原料的铁,从氧化物或矿物状态(如Fe2O3、Fe3O4、Fe2SiO4、Fe3O4·TiO2等)还原为液态生铁。  冶炼过程中,炉料(矿石、熔剂、焦炭)按照确定的比例通过装料设备分批地从炉顶装入炉内。从下部风口鼓入的高温热风与焦炭发生反应,产生的高温还原性煤气上升,并使炉料加热、还原、熔化、造渣,产生一系列的物理化学变化,最后生成液态渣、铁聚集于炉缸,周期地从高炉排出。上升过程中,煤气流温度不断降低,成分逐渐变化,最后形成高炉煤气从炉顶排出。3、炼钢   钢与生铁都是以铁元素为主,并含有少量碳、硅、锰、磷、硫等元素的铁碳合金,二者差别就是C元素的含量。  炼钢的主要任务包括以下几项:   1)脱碳;2)脱磷;3)脱硫;4)脱氧;5)脱氮、氢等;6)去除非金属夹杂物;7)合金化;8)升温;9)凝固成型。   炼钢工艺主要包括  1) 铁水预处理;2)转炉或电弧炉炼钢;3)炉外精炼(二次精炼);4)连铸。  炼钢过程是个氧化过程,其去除杂质的主要手段是向熔池吹入氧气并加入造渣剂形成熔渣出来。脱碳反应是炼钢过程的主要手段,硅、锰、磷、硫等元素也通过氧化反应去除。炼钢的原料有生铁、废钢、熔剂(石灰石等)、脱氧剂(硅铁、锰铁、铝等)、合金料等。4、连铸  连续铸钢是通过连铸机将钢液连续地铸成钢坯的工序。与模铸相比,连铸具有以下优越性:  1)简化工序、节能;2)铸坯切头率降低、金属收得率比模铸高7~12%;3)高效凝固;4)优化成型。   连铸工艺的流程为:钢液通过中间包注入结晶器内,迅速冷却成具有一定厚度的凝固壳而内部仍为液态的铸坯。铸坯下部与伸入结晶器底部的引锭杆衔接,浇注开始后,拉坯机通过引锭杆把结晶器内的铸坯以一定速度拉出。铸坯通过连铸二次冷却区时,进一步是受到喷水冷却直到完全凝固。完全凝固后的铸坯通过拉矫机矫直后,切割成规定长度,由输送辊道运出。5、轧钢  轧制过程是轧件与轧辊之间的摩擦力将轧件拉进不同旋转方向的轧辊之间使之产生塑性变形的过程。一般的轧钢工序可分为:  加热炉 粗轧 中轧 精轧 精整

冰铜生产工艺

2017-06-06 17:50:13

冰铜生产工艺技术,是衡量一个企业是否具有先进性,是否具备 市场 竞争力,是否能不断领先于竞争者的重要指标依据。随着我国冰铜 市场 的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外冰铜生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高 市场 竞争力十分关键。采用湿法冶金工艺从铅火法冶炼系统中产出的铅冰铜中回收铜,属 有色金属 湿法冶金领域。将铅冰铜块料磨至粒度小于40目以下;研磨后的铅冰铜用废电积液或稀酸溶液调浆后送入高压釜,液固比10∶1,并通入氧气,在氧分压0.2~1.0MPa,总压0.5~1.5MPa,浸出温度100~150℃,硫酸浓度50~150g/L,浸出时间2~6h的浸出条件下氧化浸出铜,而铅则以硫酸铅的形式留在渣中;浸出过程完成后,矿浆排出高压釜,进行液固分离,实现 金属 的初步分离;含铜的浸出液采用电沉积方法回收溶液中的铜,获得符合国标的阴极铜产品;浸出渣返回火法炼铅系统回收利用铅、银、单质硫有价元素。更多有关冰铜生产工艺的内容请查阅上海 有色 网

铝合金挤压材涂层生产工艺-电泳涂漆

2019-01-02 15:29:20

铝合金挤压涂层生产有电泳涂漆、浸渍 涂漆、静电喷涂等方法,主要为电泳涂漆和静电粉末喷涂。    电泳涂漆也可以视为个一种有机聚合特封孔,它是将阳极氧化的铝材放在水溶性丙为烯酸漆的电沪槽中,铝材作为阳极,在直流电压90~150V下电泳,使得氧化膜表面沉积一层不溶性漆膜,再在170~200℃高温下烘烤固化。电泳涂漆生产工艺操作要点如下:    (1)电源波动因数必须不大于6%,电压波动使得漆膜产生针孔、桔皮或失光。    (2)阳极氧化温度过低,在固化时漆膜容易发生裂纹。         (3)导电梁在电泳之前必须冲洗干净,而且避免滴水污染电泳槽。    (4)电泳后的两个水洗槽以及热水槽应配置循环过滤系统。    (5)电泳后两个水洗槽的固体分数分别控制在小于1.5%和小于0.5%,以免出现花斑、流挂、失光等缺陷。    (6)漆回收应采用阳极电泳专用RO膜(反渗透膜)。    (7)固化炉温度控制在±5℃之内,温差大会产生色差。    (8)电解着色铝材电泳层固化时如果退色,可考虑适当降低固化工。    (9)固化炉定期清理,车间注意防尘。

钼生产工艺

2018-12-10 09:44:08

3月21日消息:由于大部分钼矿石品位相对较低,因此需要采用高效率的采矿工艺,一般包括: 采 矿  大规模的露天开采;  地下矿块崩落开采,用这种方法可使大块巨石破碎,重量减小。  世界上许多钼矿的产能都很高,矿石的日运输能力最高可达50000吨。 选 矿  矿石经过一系列的破碎和研磨(球磨或棒磨)后粒径可减小至1微米(1/1000mm),这样就把辉钼矿从基质岩石中分离出来。用一些药剂(包括一些燃料和柴油)进行调浆,这些药剂附着在钼粒子表面,用作疏水剂。  浮选分离在通风槽中进行,钼粒子和悬浮在空气中的泡沫接触,精矿浮在泡沫表面进入流槽中。接着经再磨和再选环节除去其它杂质,钼精矿品位得以提高。最终的精矿含辉钼矿70 %~90%,如果需要的话,用酸浸法除去铜和铅等杂质。 焙 烧  钼精矿经过焙烧可转化为工业氧化钼,其化学反应式为:  2MoS2 + 7O2==>2MoO3+4SO2  MoS2+6MoO3==>7MoO2+2SO2  2MoO2+ O3==>2MoO3  钼精矿是在大型多膛炉或叫焙烧炉中进行焙烧,焙烧温度为600~700°C。钼精矿由搅拌耙搅动,使物料从炉床的中央向四周移动,从这里再落入下一层,然后再返回到炉床的中央,这样均匀的气流10小时内在12层或更多的炉层中不停地循环,最终产品-工业氧化钼一般含钼不小于57%,含硫小于0 .1%。  一些副产钼的铜矿中含有少量的铼(<0.10%),铼是一种金属元素,在催化剂领域铼用于生产无铅汽油,在高级超合金领域用于制造喷气式发动机的涡轮叶片。铼是在焙烧钼精矿过程中回收的一种重要的稀有金属资源。  (miki)

硅粉生产工艺

2017-06-06 17:50:01

硅粉生产工艺是投资者想知道的信息,因为了解它可以帮助操作。硅粉生产工艺是由纯净石英粉经先进的超细研磨工艺加工而成  是用途极为广泛的无机非金属材料。具有介电性能优异、热膨胀系数低、导热系数高、悬浮性能好等优点。因其具有优良的物理性能、极高的化学稳定性、独特的光学性质及合理、可控的粒度分布,从而被广泛应用于光学玻璃、电子封装、电气绝缘、高档陶瓷、油漆涂料、精密铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等生产领域。  硅微粉还是生产多晶硅的重要原料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在氢气中还原沉积成多晶硅。而多晶硅则是光伏产业太阳能电池的主要原材料。近年来,全球能源的持续紧张,使大力发展太阳能成为了世界各国能源战略的重点,随着光伏产业的风起云涌,太阳能电池原材料多晶硅价格暴涨,又促使硅微粉的市场需求迅猛增长,硅微粉呈现出供不应求的局面,更使硅资源拥有者尽享惊人的暴利。  据调查,目前国内生产硅微粉的能力约25万吨,主要是普通硅微粉,而高纯超细硅微粉大量依靠进口。初步预测2005年我国对超细硅微粉的需求量将达6万吨以上。其中,橡胶行业是最大的用户,涂料行业是重要有巨大潜力的应用领域,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉原料全部依靠进口,仅普通球形硅微粉的价格2-3万元/吨,而高纯超细硅微粉的价格则高达几十万元/吨以上。  硅微粉是由纯净石英粉经先进的超细研磨工艺加工而成,是用途极为广泛的无机非金属材料。具有介电性能优异、热膨胀系数低、导热系数高、悬浮性能好等优点。因其具有优良的物理性能、极高的化学稳定性、独特的光学性质及合理、可控的粒度分布,从而被广泛应用于光学玻璃、电子封装、电气绝缘、高档陶瓷、油漆涂料、精密铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等生产领域。 硅微粉还是生产多晶硅的重要原料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在氢气中还原沉积成多晶硅。而多晶硅则是光伏产业太阳能电池的主要原材料。近年来,全球能源的持续紧张,使大力发展太阳能成为了世界各国能源战略的重点,随着光伏产业的风起云涌,太阳能电池原材料多晶硅价格暴涨,又促使硅微粉的市场需求迅猛增长,硅微粉呈现出供不应求的局面,更使硅资源拥有者尽享惊人的暴利。 据调查,目前国内生产硅微粉的能力约50万吨,主要是普通硅微粉,而高纯超细硅微粉大量依靠进口。初步预测2008年我国对超细硅微粉的需求量将达10万吨以上。其中,橡胶行业是最大的用户,涂料行业是重要有巨大潜力的应用领域,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉原料全部依靠进口,仅普通球形硅微粉的价格2-3万元/吨,而高纯超细硅微粉的价格则高达几十万元/吨以上。  超细硅微粉具有粒度小、比表面积大、化学纯度高、分散性能好等特点。以其优越的稳定性、补强性、增稠性和触变性而在橡胶、涂料、医药、造纸、日化等诸多领域得到广泛应用,并为其相关工业领域的发展提供了新材料的基础和技术保证,享有&quot;工业味精&quot;&quot;材料科学的原点&quot;之美誉。自问世以来,已成为当今时间材料科学中最能适应时代要求和发展最快的品种之一,发达国家已经把高性能、高附加植的精细无机材料作为本世纪新材料的重点加以发展。  近年来,计算机市场、网络信息技术市场发展迅猛,CPU集程度愈来愈大,运算速度越来越快,家庭电脑和上网用户越来越多,对计算机技术和网络技术的要求也越来越高,作为技术依托的微电子工业也获得了飞速的发展,PⅢ 、PⅣ 处理器,宽带大容量传输网络,都离不开大规模、超大规模集成电路的硬件支持。  随着微电子工业的迅猛发展,大规模、超大规模集成电路对封装材料的要求也越来越高,不仅要求对其超细,而且要求其有高纯度、低放射性元素含量,特别是对于颗粒形状提出了球形化要求。高纯超细熔融球形石英粉(简称球形硅微粉)由于其有高介电、高耐热、高耐湿、高填充量、低膨胀、低应力、低杂质、低摩擦系数等优越性能,在大规模、超大规模集成电路的基板和封装料中,成了不可缺少的优质材料。  为什么要球形化?首先,球的表面流动性好,与树脂搅拌成膜均匀,树脂添加量小,并且流动性最好,粉的填充量可达到最高,重量比可达90.5%,因此,球形化意味着硅微粉填充率的增加,硅微粉的填充率越高,其热膨胀系数就越小,导热系数也越低,就越接近单晶硅的热膨胀系数,由此生产的电子元器件的使用性能也越好。其次,球形化制成的塑封料应力集中最小,强度最高,当角形粉的塑封料应力集中为1时,球形粉的应力仅为0.6,因此,球形粉塑封料封装集成电路芯片时,成品率高,并且运输、安装、使用过程中不易产生机械损伤。其三,球形粉摩擦系数小,对模具的磨损小,使模具的使用寿命长,与角形粉的相比,可以提高模具的使用寿命达一倍,塑封料的封装模具价格很高,有的还需要进口,这一点对封装厂降低成本,提高经济效益也很重要。  球形硅微粉,主要用于大规模和超大规模集成电路的封装上,根据集程度(每块集成电路标准元件的数量)确定是否球形硅微粉,当集程度为1M到4M时,已经部分使用球形粉,8M到16M集程度时,已经全部使用球形粉。250M集程度时,集成电路的线宽为0.25&mu;m,当1G集程度时,集成电路的线宽已经小到0.18&mu;m,目前计算机PⅣ 处理器的CPU芯片,就达到了这样的水平。这时所用的球形粉为更高档的,主要使用多晶硅的下脚料制成正硅酸乙脂与四氯化硅水解得到SiO2,也制成球形其颗粒度为 -(10~20)&mu;m可调。这种用化学法合成的球形硅微粉比用天然的石英原料制成的球形粉要贵10倍,其原因是这种粉基本没有放射性&alpha;射线污染,可做到0.02PPb以下的铀含量。当集程度大时,由于超大规模集成电路间的导线间距非常小,封装料放射性大时集成电路工作时会产生源误差,会使超大规模集成电路工作时可靠性受到影响,因而必须对放射性提出严格要求。而天然石英原料达到(0.2~0.4) PPb就为好的原料。现在国内使用的球形粉主要是天然原料制成的球形粉,并且也是进口粉。  一般集成电路都是用光刻的方法将电路集中刻制在单晶硅片上,然后接好连接引线和管角,再用环氧塑封料封装而成。塑封料的热膨胀率与单晶硅的越接近,集成电路的工作热稳定性就越好。单晶硅的熔点为1415℃,膨胀系数为3.5PPM,熔融石英粉的为(0.3~0.5)PPM,环氧树脂的为(30~50)PPM,当熔融球形石英粉以高比例加入环氧树脂中制成塑封料时,其热膨胀系数可调到8PPM左右,加得越多就越接近单晶硅片的,也就越好。而结晶粉俗称生粉的热膨胀系数为60PPM,结晶石英的熔点为1996℃,不能取代熔融石英粉(即熔融硅微粉),所以中高档集成电路中不用球形粉时,也要用熔融的角形硅微粉。这也是高档球形粉想用结晶粉整形为近球形不能成功的原因所在。80年代日本也走过这条路,效果不行,走不通;10年前,包括现在我国还有人走这条路,从以上理论证明此种方法是不行的。即高档塑封料粉不能用结晶粉取代。  是用熔融石英(即高纯石英玻璃),还是用结晶石英,哪一种为原料生产高纯球形石英粉为好?根据试验,专家认为:这个题已经十分清楚,用天然石英SiO2,高温熔融喷射制球,可以制得完全熔融的球形石英粉。用天然结晶石英制成粉,然后分散后用等离子火焰制成的球就是熔融的球,用火焰烧粉制得的球,表面光华,体积也有收缩,更好用,日本提供的这种粉,用X射线光谱分析谱线完全是平的,也是全熔融球形石英粉,而国内电熔融的石英,如连云港的熔融石英光谱分析不定型含量为95%,谱线仍能看出有尖峰,仍有5%未熔融。由此可见,生产球形石英粉,只要纯度能达到要求,以天然结晶石英为原料最好,其生产成本最低,工艺路线更简捷  一) 硅微粉在橡胶制品中的应用  活性硅微粉(经偶联剂处理)填充于天然橡胶、顺丁橡胶等胶料中,粉体易于分散,混炼工艺性能好,压延和压出性良,并能提高硫化胶的硫化速度,对橡胶还有增进粘性的功效,尤其是超细级硅微粉,取代部分白炭黑填于胶料中,对于提高制品的物性指标和降低生产成本均有很好作用。-2um达60-70%的硅微粉用于出口级药用氯化丁基橡胶瓶塞和用于电工绝缘胶鞋中效果甚佳。  硅微粉在仿皮革制作中作为填充料,其制品的强度、伸长率、柔性等各项技术指标均优于轻质碳酸钙、活性碳酸钙、活性叶蜡石等无机材料作填充剂制作的产品。  硅微粉代替精制陶土、轻质碳酸征等粉体材料应用于蓄电池胶壳,填充我量可达65%左右,且工艺性能良好。所获胶壳制品,具有外表平整光滑,硬度大,耐酸蚀,耐电压,热变形和抗冲击等物理机械性能均达到或超过JB3076-82技术指标。  (二) 硅微粉在塑料制品中的应用  活性硅微粉是聚丙烯、聚氯乙烯、聚乙烯等制品理想的增强剂,不仅有较大的填充量,而且抗张强度好。制成母粒,用于聚氯乙烯地板砖中,可提高产品耐磨性。  硅微粉应用于烯烃树脂薄膜其粉体分散均匀,成膜性好,力学性能强,较用PCC做填充料生产的塑膜,阻隔红外线透过率降低10%以上,对农用

锌锭生产工艺

2017-06-06 17:49:55

锌锭生产工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。&ldquo;大重量锌锭生产工艺研究&rdquo;成功地解决了大重量锌锭浇铸过程中物表面质量难以控制的技术难题,化学成分稳定,锌主品位达到99.99%以上,物理尺寸为(mm):长1238--1276,宽489--514,高289--324。工业试验证明所研制的模具可行,锌锭表面洁净、光滑,无裂纹、缩孔,无飞边、毛刺,锌锭厚度对边差不大于20mm。目前,该项技术已申报专利。随着我国锌锭市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外锌锭生产工艺的核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高市场竞争力十分关键。随着锌锭市场的成熟发展,国内的锌锭生产工艺也逐渐得到完善.与欧美相比,我们国家的锌锭生产工艺已经不处于下风,期待在未来会出现更多的新锌锭生产工艺.!&nbsp;

铝锭生产工艺

2017-06-06 17:49:55

铝锭生产工艺是一种投资者较为关注的一个信息,那我们来看下其信息。技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国合金铝锭市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外合金铝锭生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高市场竞争力十分关键。通过参考大量专利文献对合金铝锭的工艺技术进展做了系统介绍,通过详细的调查和权威技术资料及相关情报的收集,为客户提供了合金铝锭产品核心技术应用现状、技术研发、工艺设备配套、高端技术应用等多方面的信息,对于企业了解各类合金铝锭产品生产技术及其发展状况十分有益。商业应用前景部分从合金铝锭产品的应用领域、下游产品、国内外生产现状、国内潜在生产厂家、国外生产厂家及规模、国内外产量走势、市场状况及预测、供需状况分析及预测、国内需求厂家及联系方式等诸多方面对合金铝锭产品市场状况及发展方向做了详细论述,可作为合金铝锭产品深加工技术发展趋势导向的重要决策参考。1 双色铝型材的生产方式&nbsp;&nbsp;&nbsp; 所谓双色铝型材是指同一功能的铝型材的表面,在不同的面上处理成两种颜色。双色铝刑材的生产方式主要有两种,即组合式和贴膜式所谓组合式,就是同一功能的铝型材是由两个以上的断面组合而成,首先是铝型材单独生产,然后再进行插入装配,最后经锯切等处理方式加工成双色铝型材所谓贴膜式,是为了在同一功能的铝型材上加工成两种颜色,在喷漆时,必须采用贴膜遮盖一部分,喷涂另一部分,以便获得两种颜色。本文重点介绍喷漆贴膜铝型材的生产过程。&nbsp;&nbsp;&nbsp; 2 双色铝型材的特点&nbsp;&nbsp;&nbsp; (1)可以根据不同的环境、不同的要求建筑特点和不同的审美观,选择不同的颜色。&nbsp;&nbsp;&nbsp; (2)产品质量要求高,生产过程中各道工序要严格把关。&nbsp;&nbsp;&nbsp; (3)双色铝型材,产品档次高,美观大方,深受消费者的青睐。&nbsp;&nbsp;&nbsp; (4)双色铝型材,生产方便灵活,可以自由组合。&nbsp;&nbsp;&nbsp; 3.1 生产工艺流程&nbsp;&nbsp;&nbsp; 双色铝型材的生产千艺流程为:脱脂-铬化-烘干-上排-喷漆-固化-下排-检验-装框-贴膜-上排-喷漆-撕膜-固化-下排-检验-包装&nbsp;&nbsp;&nbsp; 3 2 生产过程中要注意的几个问题&nbsp;&nbsp;&nbsp; (1)选样粘度适中的贴膜。在双色铝型材生产中,贴膜的合理选择是关键。贴膜的粘度过低则贴不住。贴膜容易脱落,给喷涂带来相当大的难度。贴膜的粘度过大,说明贴膜上的胶比较多,当贴膜撕掉后,容易将贴膜上的胶粘在型材上,影响型材的表面质量,另一方面,在选择贴膜时,尽可能选用胶的成分与涂漆成分一致或相接近,这样可减轻对漆膜色泽的影响。&nbsp;&nbsp;&nbsp; (2)选择宽度、厚度适中的贴膜;由于铝型材断面形状复杂,外表向宽、窄悬殊较大,容易将飞边吹起,降低贴膜的遮盖能力,影响喷涂质量。贴膜过窄,则遮盖不住,显然不能喷涂。另一方面,在选择贴膜厚度时,只要能遮盖,具有弹性即可,不一定选择太厚的贴膜,因太厚的贴膜将增加铝型材生产成本,而且也没有必要。&nbsp;&nbsp;&nbsp; (3)贴膜后及时喷涂。型材贴膜以后,应及时进行喷涂,停放时间越短越好。如果停放时间太长,由于贴膜上的胶干燥,失去粘度,特则是经风一吹,贴膜脱落,导致喷涂同难。因此,为了确保贴膜及喷涂质量,一般贴膜以后的停放时间不要超过16h.&nbsp;&nbsp;&nbsp; (4)确定颜色、分界面及分界线。铝型材在喷涂之前,一定要根据型材的使用功能以及客户的要求(合同要求),分清每个面所要喷徐的颜色,分界面是哪个面,分界线是哪条线,在什么位置:一般来说,内侧是浅色,外侧是深色在弄清了分界面、分界线及颜色的要求之后才能贴膜,要注意千万不能将膜的位置贴错。&nbsp;&nbsp;&nbsp; (5)贴膜质量:贴膜是双色铝型材加工中的一道关键工序,贴膜质量的好坏,直接影响到铝型材的表面质量,主要包括以下几个方画:一是贴膜时尽可能不要使贴膜形成过大的张力,也就足说不能使贴膜发生变形,否则贴好后的贴膜容易收缩,使铝型材两端出现无贴膜现象;另一方面,铝型材两端贴膜断开时,要用刀片切开,而不能拉断,否则,拉断的贴膜仍然要收缩;二是贴膜宽度要与贴面宽度相吻合,一般情况下,贴膜宽度稍大于铝型材的贴面宽度,若是贴膜过宽,超出铝型材边缘过多,当喷涂时,容易被压缩空气吹起,若|来源|考试|大|是贴膜过窄,不能完全遮盖,显然是不行的;四是贴面分界线在沟槽边缘时,一定要将;贴膜的飞边压入沟槽内,否则,喷涂时气流容易将贴膜吹起,影响铝型材喷涂质量;五是贴膜时,一定将贴膜贴平,防止皱折、卷缩等现象;六是对于断面形状复杂的型材,如果一次贴膜困难时,可以分两次或多次贴膜,保证贴膜的覆盖质量;七是对一些壁厚较薄或悬臂较大等特殊断面的铝型材,贴膜时不能压得太紧,一定要注意不能使铝型材产生变形;八是第一次喷涂后,铝型材的停放时间不能过长,否则会使型材表而落上灰尘,导致贴膜困难,从而影响贴膜质量:&nbsp;&nbsp;&nbsp; (6)严格执行贴膜工艺。铝型材贴膜必须经过第一次喷涂后再贴,不允许型材铬化后直接贴膜,这是因为贴膜上有胶,如果直接将贴膜贴在铬化层上,胶就会粘在铬化层上,或者撕贴膜时,就会将铬化层,撕掉,这样就会大大降低漆膜的附着力,最终影响铝型材的喷涂质量,导致漆膜脱落,其后果不堪设想。&nbsp;&nbsp;&nbsp; (7)撕膜时间。铝型材经贴膜、喷涂以后,要撕去贴膜,但不能喷涂后马上就撕去贴膜,要控制好撕膜。&mdash;般来说,喷涂后经过流平,漆膜基本凝固,这一过程不能少于10min.然后才能撕去贴膜撕膜。否则,漆膜未开,撕膜的过程中容易将贴膜落在铝型材上,影响漆膜质量。另一方面,撕膜的时候动作要快,以免影响撕膜质量。&nbsp;&nbsp;&nbsp; (8)喷涂顺序 双色铝型材,需要涂上两种颜色,有两种颜色必然存在深色与浅色,喷涂必然有先有后,喷涂前必须要考虑哪种颜色先喷,哪种颜色后喷,要根据具体情况而定,若是先喷浅色、后喷深色,则先喷涂的浅色就要经过两次固化,即两次烘烤,容易将浅色烘烤变色,若是先喷深色、后喷浅色,则后喷浅色对前喷深色的覆盖性受到一定影响,要想覆盖深色就要增加漆膜厚度,但是漆膜厚到一 定的程度后,又容易产生脱膜现象。因此。在实际生产中,采用先浅后深的工艺较为可行。&nbsp;&nbsp;&nbsp; (9)避免多次返工。在双色铝型材生产过程中,由于各种因素影响,返工是|来源|考试|大|不可避免的,但是每返工 一次就要增加一次固化。对漆膜来说。多次喷涂,漆膜厚度不断增加,再经多次固化,降低了漆膜附着力,容易造成漆膜脱落。因此,在双色铝型材的生产中尽可能避免多次返工。&nbsp;&nbsp;&nbsp; (10)膜厚的合理控制、双色铝型材生产是要经过两次以上的喷涂,如果我们还像单喷那样操作,就会导致有的面漆膜较厚,有的面漆膜较薄,从而引起膜厚严重不均匀。因此在喷涂时就要进行合理控制,第一次喷徐时,只需对着面重点喷涂,而另一面可以不涂或少涂。第二次喷涂叫,闪样尽可能对需要的面重点喷,其他面不喷或少喷,同时还要根据第一次喷涂情况以及选用的涂漆颜色。合理地控制第二次喷涂厚度,但必须保证第二次喷涂对前一次喷涂的浚盖效果。如果你想更多的了解关于铝锭生产工艺的信息,你可以登陆上海有色网进行查询和关注。

铝合金挤压材涂层生产工艺-电粉末喷涂

2019-03-08 12:00:43

20世纪60年代,电粉末喷涂在欧洲首要开发成功,共工艺流程大致是:铝材表面预处理而且枯燥之后入喷粉室,在强电场中经过粉末喷,将带负电荷的树脂粉末均匀喷涂到铝材表面,并能够这到必定厚度,最终进入固化炉加热固化。    (1)预处理。表面预处理是喷涂质量的要害,其间化学转化处理愈加重要。预处理可采纳浸槽式,也可用喷淋式。浸槽式可在原氧化出产线上添加槽体完成,具有出资少的长处。喷涂式大都选用立式,具有占地面积小,药品耗费少,人为影响小等长处。    预处理工艺如下:    惯例工艺流程:预脱脂-脱脂-水洗-水洗-表调(酸洗去氧化物)-水洗-水洗-化学转化-水洗-纯水洗-烘干。    新工艺流程:脱脂酸洗-水洗-化学转化-水洗-纯水洗-烘干。    现在选用新工艺流程较多,将脱脂与酸洗合二为一,流程简洁作用也好。化学转化膜主要有3种:铬化膜、磷铬化膜和无铬膜。铬化膜最为常用,无铬膜虽有环保优势,但质量差异较大,现在还处于起步阶段。    预处理时就留意的事项:    1)纯水槽的电导率应小于100μs/cm,如这到小于30μs/cm则更好。    2)膜厚一般要求在20~1200mg/m2,尽可能控制在400~600mh/m2。出产中定时用“分量法”测定,在线检测时,用色彩深浅能够便利辨别。    3)化学转后需求烘干才干进行喷粉,铬化膜烘干温度小于60℃,磷铬化膜小于85℃。为了加速枯燥,能够短时刻热水洗,但热水温度应小于60℃。    4)预处理后赶快进行喷粉,寄存时刻不能超过16h。    5)烘干后的表面不许有起粉现象,出产过程中能够用橡皮擦试,查看化学转化膜是否结实。    (2) 静电粉末喷涂。静电粉末喷涂在化学预处理后进行,其主要工艺参数是:静电电压:40~1000Kv,供粉气压:(0.2~0.4)x105Pa,流化气压:(0.01~0.1)x105Pa,粉末粒度:0.088mm,粉末电阻率:1010~1014Ω.m,工件与喷嘴距离:150~300mm,环境温度:0~40℃,相对湿度小于85%,固化温度:180~200℃,固化时刻:20~30min.    静电粉末喷涂应留意的事项:    1)避免粉末受潮。    2)喷涂前用吹去铝材表面的尘埃。对不易上粉的凹槽,可先用手动喷补喷。    3)换色时应整理洁净喷房,避免串色。    4)固化室温差就小于5℃,热风过滤网应常常清洗,并坚持无尘的出产环境。

铜管的生产工艺

2019-02-27 13:29:13

现在国内出产铜管的办法技能有三种,分别为上引法、连铸连轧法、揉捏法。三种工艺的差异及优缺陷如下:1.上引法:此出产法为电解铜经熔化后直接上引出铜管。 长处:出资本钱少、出产本钱低、成品率较高、报价便宜。 缺陷:管材安排疏松,不耐高压、只适合于出产小规格空调铜管。2.连铸连轧法:此出产法为电解铜熔化后直接铸造出空心铜坯,通过行星轧制出产出铜管。 长处:出产本钱低、出产效率高。 缺陷为:管材因安排疏松,不耐高压,只限于小规格空调铜管的出产。3.揉捏法:此出产法为电解铜熔化后铸造出铜锭,经二次加热后用大型揉捏机揉捏出铜管。 长处:质量最好、安排结构细密、密度大、耐高压、曲折变形量大,能适用于冷热交流频频、温差改变大的工作环境,可出产大规格铜管。 缺陷:成品率低、出产本钱高,报价高。揉捏铜管出产法是现在国内外铜管出产法中产品质量最安稳、最优的铜管出产办法,只要该工艺出产的铜管最适合应用于暖通范畴,是未来铜管业开展的方向。 钢管的出产工艺就给我们介绍到这儿,期望对我们有所协助。&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

钼粉生产工艺简介

2019-02-12 10:08:00

用氢、碳及含碳气体以及硅、铝等都可以将三氧化钼复原为钼。仅仅其他办法难取得纯度高的金属钼。氢复原所生成钼法纯度高,适于出产钼材或钼基合金。     氢复原高纯三氧化钼的化学反响式为:                          MoO3+H2450~650℃MoO2+H2O↑     △H°298=-85kJ→   MoO3+H2→Mo+2H2O↑     △H°298=105kJ   反响条件下MoO3与MoO2还或许反响,生成中间氧化物(如Mo4O11等)。     氢复原三氧化钼的标准工艺分作三阶段:     (1)三氧化钼被复原成二氧化钼:   MoO3+H2←→MoO2+H2O       这是一个放热反响。在400~600℃时平衡条件为PH2O/PH2=5.0×107~1.7×106。盛有MoO3粉的镍舟在四管马弗炉内缓慢前移,炉温从400℃上升,在550℃前反响完毕,加温至650℃。排出MoO2粉。若550℃时反响未完毕,易熔中间氧化物会在550~600℃熔化,使炉料烧结,复原不充沛。     (2)二氧化钼被复原成钼粉:这是个吸热反响,盛MoO2的镍舟在13管炉内缓慢前移,炉温延炉管从650℃上升到950℃,反响MoO2+2H2←→Mo + 2H2O平衡中,PH2O/PH2 很小; 645℃为0.234,800℃为0.398,927℃为0.55。所以所通入要充沛枯燥、露点-40~50℃作复原剂。     (3)弥补复原:为下降第二段产出钼粉中含氧量。还要在1000~1100℃下对它弥补复原。此种温度,对榜首、二段所用镍铬管和加热器在空气中化学稳定性下降。第三段是在充溢,设密闭炉壳的管状炉中进行。至此,钼粉中氧含量仅0.25%~0.3%。     这三段工艺在出产施行中,又简化成:(1)没有第三段弥补氧化。(2)将榜首段、第二段在同1台十三管炉内进行。(3)将榜首段与仲钼酸铵分化合在一道工序完结,向仲钼酸铵分化转炉通入,此两反响温度挨近,经此工艺后,不是产出MoO3,而是直接产出MoO2。不管怎么改变,都离不了上述化学反响的几个阶段。     经过复原产出的钼粉,可经过粉冶成型,或电弧炉熔株、电子束熔炼等办法成型。

钛材生产工艺

2019-01-25 13:37:03

目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为:钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。  上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。    钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。  故钛和钛合金的加工工艺必须考虑它们的这些特点。  钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。  针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。  钛材生产的原则流程  钛材除了纯钛外,目前世界上已经生产出近30种牌号的钛合金。使用最广泛的钛合金是Ti-6Al-4V,Ti-5Al—2.5Sn等

硅铁生产工艺

2017-06-06 17:50:00

硅铁生产工艺的步骤:它是在熔融硅铁中通入氯气和氧气,尽可能地除去熔融硅铁中的杂质。本发明提供所通入的氯气和氧气的比例为:Cl&darr;〔2〕∶O&darr;〔2〕=100∶3-200,每吨熔融硅铁通入氯气和氧气总量为10-65公斤,通气时间60-180分钟。本工艺生产出的微碳硅铁可用于冶炼高级无取向硅钢。是向台包内的熔融硅铁通入氯气和氧气,其特征在于通入的氯气和氧气的比例。硅铁冶炼硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的。钢铁英才网传统炼制硅铁时,是将硅从含有SIO2的硅石中还原出来。冶炼硅铁大多使用冶金焦作还原剂,钢屑是硅铁的调节剂。   生产一吨硅铁原料及电能消耗为:   硅石:1780-1850kg   焦炭:890-930kg   钢屑:220-230kg   电极糊: 45-55kg   电耗: 8400-9000kwh/t硅铁构成铁和硅组成的铁合金。   硅铁按硅及其杂质含量,分为十六个牌号,其化学成分如下表:(根据GB2277-87)牌号化学成分%&nbsp;SiAlCaMn<td val

铜矿生产工艺介绍

2019-02-22 15:05:31

在天然界中天然铜的含量很少,一般都以金属共生矿的形状存在。铜矿石中常伴生有多种重金属和稀有金属,如金、银、砷、锑、铋、硒、铅、钴、镍、钼等。依据化合物的性质,铜矿藏可分为天然铜、硫化矿和氧化矿三种类型,首要以硫化矿和氧化矿,特别是硫化矿散布最广,现在电解铜90%来自硫化矿。金、银等贵金属常和铜共生。铜矿石经采矿和选矿富集取得铜精矿,含铜13-30%。可直接供冶炼厂炼铜。 铜矿石分类 一、天然铜 首要成分:Cu(Fe、Ag、Au、);产地:⑴国际:美国密执安州的苏必利尔湖南岸(1857年这儿发现重达420吨的天然铜块)、俄罗斯的图林斯克和意大利的蒙特卡蒂尼等地;⑵我国:湖北、云南、甘肃、长江中下游等地铜矿床氧化带中。二、硫化矿 1.黄铜矿 首要成分:CuFeS2(Ag、Au、Tl、Se、Te);产地:⑴我国:长江中下游区域、川滇区域、山西南部中条山区域、甘肃的河西走廊以及西藏高原等。其间以江西 德兴、西藏玉龙等铜矿最著名;⑵国际:西班牙的里奥廷托,美国亚利桑那州的克拉马祖、犹他州的宾厄姆、蒙大那州的比尤特,墨西哥的卡纳内阿,智利的丘基卡马塔等。2.斑铜矿 首要成分Cu5FeS4(Pt 、Pd);产地:⑴我国:云南东川等铜矿床;⑵国际:美国蒙大那州的比尤特,墨西哥卡纳内阿和智利丘基卡马塔等。3.辉铜矿 首要成分:Cu2S;产地:⑴我国:云南东川铜矿;⑵国际:美国布里斯托、康涅狄格州、比尤特、蒙大拿、亚利桑那州、宾厄姆峡谷、犹他州、鸭城、田纳西州、英国康瓦耳、楚梅布、意大利托斯卡纳和西班牙的力拓矿区、美国的内华达州的Ely矿区、Arizone州的Morenci、Miami和Clifton矿区以及蒙大拿州的比尤特矿区等地。三、氧化矿 1.蓝铜矿 首要成分:Cu3(OH)2(CO3)2;产地:⑴我国:广东阳春、湖北大冶和赣西北;⑵国际:赞比亚、澳大利亚、、俄罗斯、扎伊尔、美国等区域。2.赤铜矿 首要成分:Cu2O;产地:⑴国际:法国、智利、玻利维亚、南澳大利亚、美国等地有国际首要矿区;⑵我国:云南东川铜矿和江西、甘肃等地铜矿区。3.孔雀石 首要成分:Cu2(OH)2CO3;产地:⑴国际:赞比亚、澳大利亚、、俄罗斯、扎伊尔、美国等区域;⑵我国:广东阳春、湖北大冶和赣西北铜矿的选矿、冶炼 铜矿的选矿工艺 铜矿的选矿工艺首要是破碎--球磨--分级--浮选--精选等,对含镍钴钼金等稀贵多金属矿,可将粗选铜精矿再别离浮选镍精矿、钴精矿、钼精矿、金精矿。 浸染状铜矿石的浮选 一般选用比较简单的流程,经一段磨矿,细度-200网目约占50%~70%,1次粗选,2~3次精选,1~2次扫选。如铜矿藏浸染粒度比较细,可考虑选用阶段磨选流程。处理斑铜矿的选矿厂,大多选用粗精矿再磨—精选的阶段磨选流程,其实质是混合—优先浮选流程。先经一段粗磨、粗选、扫选,再将粗精矿再磨再精选得到高档次铜精矿和硫精矿。粗磨细度-200网目约占45%~50%,再磨细度-200网目约占90%~95%。 细密铜矿石因为黄铜矿和黄铁矿细密共生,黄铁矿往往被次生铜矿藏活化,黄铁矿含量较高,难于按捺,分选困难。分选过程中要求一起得到铜精矿和硫精矿。一般选铜后的尾矿就是硫精矿。假如矿石中脉石含量超越20%~25%,为得到硫精矿还需再次分选。处理细密铜矿石,常选用两段磨矿或阶段磨矿,磨矿细度要求较细。药剂用量也较大,黄药用量100g/(t原矿)以上,石灰8~10kg(t原矿)以上。 铜矿的冶炼工艺 从铜矿中挖掘出来的铜矿石,经过选矿成为含铜档次较高的铜精矿或许说是铜矿砂,铜精矿需求经过冶炼提成才干成为精铜及铜制品,现在,国际上铜的冶炼工艺首要有两种:即火法冶炼与湿法冶炼(SX-EX) 1.火法冶炼选矿办法: 至今铜的冶炼仍以火法治炼为主,其产值约占国际铜总产值的85%。 经过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高档次的硫化铜矿。 火法冶炼一般是先将含铜百分之几或千分之几的原矿石,经过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精粹脱杂,或铸成阳极板进行电解,取得档次高达99.9%的电解铜。该流程简略、适应性强,铜的收回率可达95%,但因矿石中的硫再造硫和吹炼两阶段作为二氧化硫废气排出,不易收回,易构成污染。近年来呈现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐步向接连化、自动化开展。 除了铜精矿之外废铜做为精粹铜的首要原料之一,包含旧废铜和新废铜,旧废铜来自旧设备和旧机器,抛弃的高楼和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右)一般废铜直销较安稳,废铜可以分为:裸杂铜:档次在90%以上;黄杂铜(电线);含铜物料(旧马达、电路板);由废铜和其他相似材料生产出的铜,也称为再生铜。 2.湿法冶炼选矿办法: 现代湿法冶炼的技能正在逐步推广,湿法冶炼的推出使铜的冶炼本钱大大下降。一般适于低档次的氧化铜,生产出的精铜称为电积铜。现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低档次杂乱矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技能正在逐步推广,估计本世纪末可达总产值的20%,湿法冶炼的推出使铜的冶炼本钱大大下降。 湿法冶炼选矿工艺原理为:Fe+CuSO4=FeSO4+Cu,不一定用铁,金属活动性比铜强就行。也不一定用硫酸铜,可溶性的铜盐就可以。湿法炼铜就是电解饱满硫酸铜溶液。在电解池中,用铁作阳极,用铜作阴极,饱满硫酸铜溶液作电解液。通电今后阳极上的铁因为失电子构成亚铁离子,铜离子在阴极上得电子而变成铜原子。这样可以得到一个比较纯洁的铜单质。 电化学方程式: 阳极:Fe=Fe2+ + 2e-(电子) 阴极:Cu2+ +2e-=Cu   总的方程式:Fe+CuSO4->Cu+FeSO4

P91合金管生产工艺

2019-03-15 09:13:19

P91合金管生产工艺是用实心管坯经穿孔后轧制的.1,P91合金管生产制造方法 按生产方法不同可分为热轧管,冷轧管,冷拔管,挤压管等. 合金管 1.1,热轧 P91 合金管一般在自动轧管机组上生产.实心管坯经检查并清除 表面缺陷,截成所需长度,在管坯穿孔端端面上定心,然后送往加热炉加热,在 穿孔机上穿孔.在穿孔同时不断旋转和前进,在轧辊和顶头的作用下,管坯内部 逐渐形成空腔,称毛管.再送至自动轧管机上继续轧制.最后经均整机均整壁厚, 经定径机定径,达到规格要求.利用连续式轧管机组生产热轧 P91 合金管是较先 进的方法. 1.2,若欲获得尺寸更小和质量更好的无缝管,必须采用冷轧,冷拔或者两者 联合的方法.冷轧通常在二辊式轧机上进行,钢管在变断面圆孔槽和不动的锥形 顶头所组成的环形孔型中轧制.冷拔通常在 0.5~100T 的单链式或双链式冷拔机 上进行. 1.3,挤压法即将加热好的管坯放在密闭的挤压圆筒内,穿孔棒与挤压杆一起 运动,使挤压件从较小的模孔中挤出.此法可生产直径较小的钢管.2, P91合金管用途 2.1, P91 合金管用途很广泛.一般用途的 P91 合金管由普通碳素结构钢, 低合金结构钢或合金结构钢轧制,产量最多,主要用作输送流体的管道或结构零 件. 2.2,根据用途不同分三类供应:a,按化学成分和机械性能供应;b,按机械 性能供应;c,按水压试验供应.按 a,b 类供应的钢管,如用于承受液体压力, 也要进行水压试验. 2.3,专门用途的 P91 合金管有锅炉用 P91 合金管,地质用 P91 合金管及石 油用无缝管等多种.3, P91合金管合金管的分类 P91合金钢管的主要合金元素有硅,锰,铬,镍,钼,钨,钒,钛,铌,锆,钴, 铝,铜,硼,稀土等 合金钢管 在钢中除含铁,碳和少量不可避免的硅,锰,磷, 硫元素以外,还含有一定量的合金元素,钢中的合金元素有硅,锰,钼,镍,硌, 矾,钛,铌,硼,铅,稀土等其中的一种或几种,这种钢叫合金钢 各的合金钢系 统,随各自的资源情况,生产和使用条件不同而不同,国外以往曾发展镍,硌钢 系统,我国则发现以硅,锰,钒,钛,铌,硼,铅,稀土为主的合金钢系统 合金 钢在钢的总产量中约占百分之十几,一般是在电炉中冶炼的按用途可以把合金钢 管分为 8 大类,它们是:合金结构钢管,弹簧钢管,轴承钢管,合金工具钢管, 高速工具钢管,不锈钢管,耐热不起皮钢管,电工用硅钢管 PC/ABS 具有良好的 成型性,可加工汽车大型部件,如汽车挡泥板, 有很高的性价比.合金钢管在普 通碳素钢基础上添加适量的一种或多种合金元素而构成的铁碳合金钢管的分类: 钢管分 P91 合金管和焊接钢管等. 4,规格及外观质量 P91 合金管按 GB/T8162-87 规定 4.1,规格:热轧管外径 32~630mm.壁厚 2.5~75mm.冷轧(冷拔)管外径 5~200mm.壁厚 2.5~12mm. 4.2,外观质量:钢管的内外表面不得有裂缝,折叠,轧折,离层,发纹和结 疤缺陷存在.这些缺陷应完全清除掉,清除后不得使壁厚和外径超过负偏差. 4.3,钢管的两端应切成直角,并清除毛刺.壁厚大于 20mm 的钢管允许气割 和热锯切割.经供需双方协议也可不切头. 4.4,冷拔或冷轧精密 P91 合金管《表面质量》参照 GB3639-83. 5,化学成分检验 5.1,按化学成分和机械性能供应的国产 P91 合金管,如 10,15,20,25, 30,35,40,45 和 50 号钢的化学成分应符合 GB/T699-88 的规定.进口 P91 合 金管按合同规定的有关标准检验.09MnV,16Mn,15MnV 钢的化学成分应符合 GB1591-79 的规定. 5.2,具体分析方法参照 GB223-84《钢铁及合金化学分析方法》的有关部分. 5.3,分析偏差参照 GB222-84《钢的化学分析用试样及成品化学成分允许偏 差》. 6,合金管的焊接工艺 为增大氩气保护区和增强保护效果,可采用大直径焊瓷嘴,加大焊氩气 流量.当喷嘴上有明显阻碍氩气气流流通的飞溅物附着时.必须将飞溅物清除或 更换喷嘴.当钨极端部出现污染,形状不规则等现象时.必须修整或更换.钨极不 宜伸出喷嘴外.焊接温度的控制主要是焊接速度和焊接电流大小的控制.试验结 果表明,大电流,快速焊能有效防止气孔的产生.这主要是由于在焊接过程中以 较快速度焊透焊缝,熔化金属受热时间短,吸收气体的机会少. P91合金钢管重量计算公式 [(外径-壁厚)*壁厚]*0.02466=kg/米(每米的重量)

粗制镍铁的生产工艺

2019-01-04 11:57:12

进入工厂原料场的氧化镍矿石含有30%以上的水分(结晶水),需要在还原焙烧阶段将水分去除。这个过程是在一个回转窑中进行的。矿石在料场破碎、中和混匀以后,向其中加入炭素还原剂和熔剂,充分混合均匀以后加入到回转窑中。在回转窑中,矿石被焙烧脱水,重量减少30%左右,镍被加入的炭素还原剂还原,形成了温度为600~700℃镍渣。这些镍渣在隔热的状态下被送入到矿热炉的供料料仓(内衬耐火保温层),根据生产工艺的要求,镍渣通过一个密封的管状布料装置均匀地分配到矿热炉内。            矿热炉在这种工艺流程中是投资最大的设备,为了环保和工业卫生的需要,炉子被密封起来。在矿热炉中通过电弧冶炼,分离出粗制的镍铁和电炉渣,同时产生含CO75%的还原性气体,这种气体经过净化以后返回到回转窑中作为燃料进行燃烧,提供回转窑所需要的热能,尘灰返到矿热炉继续参与冶炼。电炉炉渣是一种很好的建筑材料,但是目前仅用于道路的建设。从矿热炉中得到的镍铁含硫、硅、碳、磷等杂质高,还不适用于冶炼高级不锈钢。这些粗制的焙烧脱水还需要进行精炼以后才能做为成品出厂。              将1t的原料矿加入回转窑,大约可以得到650~700kg的镍渣,这些镍渣加入到矿热炉中,大约可以得到120~150kg的粗制镍铁。粗制镍铁中的镍含量一般为14%,最高时可以达到18%。

隔热铝合金型材保温原理及生产工艺流程

2019-03-11 11:09:41

跟着寓居环境高级化,新式隔热保温铝合金型材由国外传到国内。各铝型材出产厂商纷繁引入国外隔热断桥穿条设备,国内从事铝加工设备的厂商也开宣布隔热断桥穿条设备。都期望把新式隔热保温铝型材推入商场。隔热铝型材的出产成本比普通铝型材的高,添加了贯穿氧化、喷涂、穿条等工序。经过穿条断桥衔接,能够将白色料与五颜六色喷涂料,砂面料与着色料相衔接;添加型材的装修感。具体情况浅释如下:   1.隔热铝型材保温原理   隔热穿条铝型材是由铝合金型材和热塑性混合材料隔热条组合而成。滚压式隔热铝合金型材是以隔热功能好的高密度聚酰胺PA66胶条,或聚氯乙烯硬质塑料胶条经穿条滚压加工,使铝、塑连成一体。发泡式隔热铝型材是使用隔热条把内、外层铝型材衔接嵌装成一体,在构成的隔热腔内填充聚酯泡沫,成为隔热铝合金型材的“冷桥”,到达保温、节能的成效。   2.出产工艺流程   国内的隔热铝型材出产线,首要出产工艺技术是选用“辊压嵌入式”,无论是引入国外的或国产设备,均是选用“三步法”出产程序,即开齿、穿条、辊压。也有的厂商在研讨“两步法”出产程序,将开齿、穿条同步进行,但基本原理仍是相同,仅仅缩短了工序时刻。   工艺流程为:型材上操作渠道→贴维护膜→开齿→穿条→辊压→隔热腔填充聚酯泡沫→包装。   (1)第一道工序首要是查验型材表面质量及尺度规格。内、外层铝型材能够选用阳极氧化或静电粉末喷涂型材。也能够将内、外层铝型材选用不同色彩配料,经过穿条断桥衔接,构成内、外双色铝合金门窗。   (2)第二道工序是贴维护膜,首要维护型材表面质量在加工、转移过程中不被损坏。   (3)开齿是要害工序,首要是在隔热铝型材穿条滑道两内壁碾压构成如锯齿状齿道。经过辊压嵌入聚氯乙烯硬质塑料胶条,使其固定在一同。   目前国内对齿道深度没有具体规则,但在职业标准JC/T建筑隔热铝合金型材标准中.规则了其抗拉强度和抗剪强度值(见表1),然后要求齿道必须将聚氯乙烯硬质塑料隔热条与铝合金型材经过辊压紧衔接在一同。   (4)穿条与辊压工序是重要工序,穿条是将聚氯乙烯硬质塑料隔热条,经过穿条设备穿入已开好齿的隔热铝型材齿道内(如图2),然后又经过辊压设备,将隔热铝型材与聚氯乙烯硬质塑料胶条辊压在一同。   (5)隔热腔填充聚酯泡沫工序是对发泡式隔热铝型材而言的,将型材放在双组分计量混配器中,经过混合喷头灌注到隔热腔内天然发泡。   聚酯是聚基酯的简称。高分子主链上含有许多重复的基团的高分化合物,总称聚基酯。热导率特别低,有优胜的声学功能、电学功能和耐化学作用功能。发泡式隔热铝型材具有两层保温作用,适用于冰冷地带。   (6)包装是最终工序,可用塑料薄膜套装,也可用包装纸环绕包装,首要是维护型材在运送、加工中不被磕碰伤。   3.隔热型材惯例查验和隔热作用的验证   (1)隔热铝合金型材除了要契合GB/T5237-2000标准要求外,还需做惯例的抗剪强度和横向抗拉强度检测、组合弹性和组合惯性矩检测等。这儿只介绍首要的、杂乱检测项目,具体具体的检测项目可参看职业的JG/T建筑隔热铝合金型材标准。   抗剪强度实验:取(100±1)mm长复合隔热铝合金型材,在(23±2)℃、湿度为45%~55%的环境中保存两天,经过抗剪强度检测仪将作用力均匀地面向型材切面,给进速度为1~5mm/min,记载所加荷载和相应的剪切变形数。抗剪强度计算式: 12后一页

硅微粉生产工艺及用途

2019-02-20 14:07:07

硅微粉是由纯洁石英粉经先进的超细研磨工艺加工而成,是用处极为广泛的无机非金属材料。具有介电功能优异、热胀大系数低、导热系数高、悬浮功能好等长处。因其具有优秀的物理功能、极高的化学稳定性、共同的光学性质及合理、可控的粒度散布,然后被广泛使用于光学玻璃、电子封装、电气绝缘、高级陶瓷、油漆涂料、精细铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等出产范畴。硅微粉仍是出产多晶硅的重要质料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在中复原堆积成多晶硅。而多晶硅则是光伏工业太阳能电池的首要原材料。近年来,全球动力的继续严重,使大力开展太阳能成为了国际各国动力战略的要点,跟着光伏工业的如火如荼,太阳能电池原材料多晶硅报价暴升,又促进硅微粉的商场需求迅猛添加,硅微粉呈现出求过于供的局势,更使硅资源具有者尽享惊人的暴利。据调查,现在国内出产硅微粉的才能约25万吨,首要是普通硅微粉,而高纯超细硅微粉很多依托进口。开始猜测2005年我国对超细硅微粉的需求量将达6万吨以上。其间,橡胶职业是最大的用户,涂料职业是重要有巨大潜力的使用范畴,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉质料悉数依托进口,仅普通球形硅微粉的报价2—3万元/吨,而高纯超细硅微粉的报价则高达几十万元/吨以上。硅微粉是由纯洁石英粉经先进的超细研磨工艺加工而成,是用处极为广泛的无机非金属材料。具有介电功能优异、热胀大系数低、导热系数高、悬浮功能好等长处。因其具有优秀的物理功能、极高的化学稳定性、共同的光学性质及合理、可控的粒度散布,然后被广泛使用于光学玻璃、电子封装、电气绝缘、高级陶瓷、油漆涂料、精细铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等出产范畴。 硅微粉仍是出产多晶硅的重要质料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在中复原堆积成多晶硅。而多晶硅则是光伏工业太阳能电池的首要原材料。近年来,全球动力的继续严重,使大力开展太阳能成为了国际各国动力战略的要点,跟着光伏工业的如火如荼,太阳能电池原材料多晶硅报价暴升,又促进硅微粉的商场需求迅猛添加,硅微粉呈现出求过于供的局势,更使硅资源具有者尽享惊人的暴利。 据调查,现在国内出产硅微粉的才能约50万吨,首要是普通硅微粉,而高纯超细硅微粉很多依托进口。开始猜测2008年我国对超细硅微粉的需求量将达10万吨以上。其间,橡胶职业是最大的用户,涂料职业是重要有巨大潜力的使用范畴,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉质料悉数依托进口,仅普通球形硅微粉的报价2—3万元/吨,而高纯超细硅微粉的报价则高达几十万元/吨以上。 超细硅微粉具有粒度小、比表面积大、化学纯度高、涣散功能好等特色。以其优胜的稳定性、补强性、增稠性和触变性而在橡胶、涂料、医药、造纸、日化等许多范畴得到广泛使用,并为其相关工业范畴的开展供给了新材料的根底和技能确保,享有“工业味精”“材料科学的原点”之美誉。自面世以来,已成为当今时刻材料科学中最能习惯年代要求和开展最快的种类之一,发达国家现已把高功能、高附加植的精细无机材料作为本世纪新材料的要点加以开展。 近年来,计算机商场、网络信息技能商场开展迅猛,CPU集程度愈来愈大,运算速度越来越快,家庭电脑和上网用户越来越多,对计算机技能和网络技能的要求也越来越高,作为技能依托的微电子工业也获得了飞速的开展,PⅢ、PⅣ处理器,宽带大容量传输网络,都离不开大规模、超大规模集成电路的硬件支撑。 跟着微电子工业的迅猛开展,大规模、超大规模集成电路对封装材料的要求也越来越高,不只需求对其超细,并且要求其有高纯度、低放射性元素含量,特别是关于颗粒形状提出了球形化要求。高纯超细熔融球形石英粉(简称球形硅微粉)因为其有高介电、高耐热、高耐湿、高填充量、低胀大、低应力、低杂质、低摩擦系数等优胜功能,在大规模、超大规模集成电路的基板和封装猜中,成了不可短少的优质材料。 为什么要球形化?首要,球的表面流动性好,与树脂拌和成膜均匀,树脂添加量小,并且流动性最好,粉的填充量可到达最高,分量比可达90.5%,因而,球形化意味着硅微粉填充率的添加,硅微粉的填充率越高,其热胀大系数就越小,导热系数也越低,就越挨近单晶硅的热胀大系数,由此出产的电子元器件的运用功能也越好。其次,球形化制成的塑封料应力会集最小,强度最高,当角形粉的塑封料应力会集为1时,球形粉的应力仅为0.6,因而,球形粉塑封料封装集成电路芯片时,成品率高,并且运送、装置、运用过程中不易发生机械损害。其三,球形粉摩擦系数小,对模具的磨损小,使模具的运用寿命长,与角形粉的比较,能够进步模具的运用寿命达一倍,塑封料的封装模具报价很高,有的还需求进口,这一点对封装厂下降成本,进步经济效益也很重要。 球形硅微粉,首要用于大规模和超大规模集成电路的封装上,依据集程度(每块集成电路标准元件的数量)断定是否球形硅微粉,当集程度为1M到4M时,现已部分运用球形粉,8M到16M集程度时,现已悉数运用球形粉。250M集程度时,集成电路的线宽为0.25μm,当1G集程度时,集成电路的线宽现已小到0.18μm,现在计算机PⅣ 处理器的CPU芯片,就到达了这样的水平。这时所用的球形粉为更高级的,首要运用多晶硅的下脚料制成正硅酸乙脂与水解得到SiO2,也制成球形其颗粒度为 -(10~20)μm可调。这种用化学法组成的球形硅微粉比用天然的石英质料制成的球形粉要贵10倍,其原因是这种粉根本没有放射性α射线污染,可做到0.02PPb以下的铀含量。当集程度大时,因为超大规模集成电路间的导线距离非常小,封装料放射性大时集成电路作业时会发生源差错,会使超大规模集成电路作业时可靠性受到影响,因而有必要对放射性提出严厉要求。而天然石英质料到达(0.2~0.4) PPb就为好的质料。现在国内运用的球形粉首要是天然质料制成的球形粉,并且也是进口粉。 一般集成电路都是用光刻的办法将电路会集刻制在单晶硅片上,然后接好衔接引线和管角,再用环氧塑封料封装而成。塑封料的热胀大率与单晶硅的越挨近,集成电路的作业热稳定性就越好。单晶硅的熔点为1415℃,胀大系数为3.5PPM,熔融石英粉的为(0.3~0.5)PPM,环氧树脂的为(30~50)PPM,当熔融球形石英粉以高份额参加环氧树脂中制成塑封料时,其热胀大系数可调到8PPM左右,加得越多就越挨近单晶硅片的,也就越好。而结晶粉俗称生粉的热胀大系数为60PPM,结晶石英的熔点为1996℃,不能替代熔融石英粉(即熔融硅微粉),所以中高级集成电路中不必球形粉时,也要用熔融的角形硅微粉。这也是高级球形粉想用结晶粉整形为近球形不能成功的原因地点。80年代日本也走过这条路,效果不可,走不通;10年前,包含现在我国还有人走这条路,从以上理论证明此种办法是不可的。即高级塑封料粉不能用结晶粉替代。 是用熔融石英(即高纯石英玻璃),仍是用结晶石英,哪一种为质料出产高纯球形石英粉为好?依据实验,专家以为:这个题现已非常清楚,用天然石英SiO2,高温熔融喷发制球,能够制得彻底熔融的球形石英粉。用天然结晶石英制成粉,然后涣散后用等离子火焰制成的球就是熔融的球,用火焰烧粉制得的球,表面光华,体积也有缩短,更好用,日本供给的这种粉,用X射线光谱分析谱线彻底是平的,也是全熔融球形石英粉,而国内电熔融的石英,如连云港的熔融石英光谱分析不定型含量为95%,谱线仍能看出有尖峰,仍有5%未熔融。由此可见,出产球形石英粉,只需纯度能到达要求,以天然结晶石英为质料最好,其出产成本最低,工艺道路更简捷。 一、硅微粉在橡胶制品中的使用活性硅微粉(经偶联剂处理)填充于天然橡胶、顺丁橡胶等胶猜中,粉体易于涣散,混炼工艺功能好,压延和压出性良,并能进步硫化胶的硫化速度,对橡胶还有增进粘性的成效,尤其是超细级硅微粉,替代部分白炭黑填于胶猜中,关于进步制品的物性目标和下降出产成本均有很好效果。-2um达60-70%的硅微粉用于出口级药用氯化丁基橡胶瓶塞和用于电工绝缘胶鞋中效果甚佳。硅微粉在仿皮革制造中作为填充料,其制品的强度、伸长率、柔性等各项技能目标均优于轻质碳酸钙、活性碳酸钙、活性叶蜡石等无机材料作填充剂制造的产品。硅微粉替代精制陶土、轻质碳酸征等粉体材料使用于蓄电池胶壳,填充我量可达65%左右,且工艺功能杰出。所获胶壳制品,具有外表平坦润滑,硬度大,耐酸蚀,耐电压,热变形和抗冲击等物理机械功能均到达或超越JB3076-82技能目标。二、硅微粉在塑料制品中的使用活性硅微粉是聚、聚氯乙烯、聚乙烯等制品抱负的增强剂,不只要较大的填充量,并且抗张强度好。制成母粒,用于聚氯乙烯地板砖中,可进步产品耐磨性。硅微粉使用于烯烃树脂薄膜其粉体涣散均匀,成膜性好,力学功能强,较用PCC做填充料出产的塑膜,隔绝红外线透过率下降10%以上,对农用棚膜使用推行极为在举国。也可用于电线电缆外包皮等范畴。三、硅微粉在熔制仪器玻璃和玻纤中的使用因为硅微粉颗粒细微,纯度高,在制玻出产中易熔化、时刻短,制品如硼硅仪器玻璃、钠征仪器玻璃、中性器皿等产品的理化功能和外观质量均到达相应标准,与此同时,出产中节能效果特别明显。再则,依据硅微粉具有粒度细且均匀,比表面积大的特色,用于玻纤直接拉丝新工艺,大大的进步了玻纤合作料的均化程度和加速炉内的玻化速度。拉丝的稳定性优于玻璃球拉丝工艺,且具有明显的节能和下降出产成本效果。作为节能矿藏质料,硅微粉使用于陶瓷职业中,关于下降烧成温度和进步成品率等亦收到抱负效果。四、硅微粉做抛光洗刷磨料效果好跟着现代化技能的开展,对材料的表面处理亦要求更高更精,而磨咱们的使用日趋广泛。硅微粉因其颗粒挨近圆形,经过超细、分级制备的超微粉,再经改性处理后,是金属件杰出的洗刷磨料,如在洗刷轴承中使用,光洁度可达3.0以上,优于显示器的同类产品。别的用于半导体职业、精细阀门、硬磁盘、磁头的抛光,轿车抛光剂,均有很好的效果五、硅微粉在涂猜中的使用使用硅微粉特有的功能性,替代沉积硫酸、滑石粉,用于调合漆、底漆、防犭漆等的制造中(参加量6%~15%)不只起到填充增容效果,并且关于进步油漆细度、流平功能、漆膜硬度,缩短涂料研磨时刻和油漆的耐水、防锈、防腐功能及颜料的涣散性、漆的贮存稳定性等效果均为明显。再则,由硅微粉、水、表面活性剂和水按必定份额装备的熔膜涂料,因为其粘度低,无充挂现象运用方便等特色,成为精细铸中的优质涂料。用于橱柜饰面,具有优异的装修效果和耐腐蚀性。六、硅微粉在电器绝缘封装材料中的使用电工级硅微粉是一种活性硅微粉,用作电器产品环氧树脂绝缘封填料,不只可大起伏添加填充量而更重要的是关于下降混合料系统的粘度,改进加工功能,进步混合料对高压电器线圈的渗透性,下降固化物的胀大系数和固化过程中的缩短率,养活混合料与线圈之间的热张差,进步固化物的热、电、机械功能诸方面起到有利效果。至于硅微粉的职业远景,咱们从以下几个方面展望一下: 商场空间 国际方面,现在全国际年需求硅微粉10万吨左右。日本是当今国际出产环氧塑封料产值最大的国家,年需求硅微粉3万吨,悉数依托进口;美国年需求硅微粉2万吨;韩国年需求硅微粉1万吨以上。 国内方面,据有关部门统计,高纯300目~1000目普通硅微粉和超细结晶硅微粉每年国内外用量保持在20%~35%的添加起伏,跟着使用规模的扩展需求量添加将会不断加大。 2001年我国熔融类总用量1.8万吨,其间1.2万吨进口,2004年总用量7.8万吨,其间进口4.8万吨,估计本年总用量将打破10万吨,上半年已进口达2.5万吨。高科技范畴硅微粉的年需求量为2万吨以上。据估测,国内对熔融型硅微粉的需求量,2010年可到达15~30万吨;在电子产品方面,对结晶型硅微粉的需求,估计年需求量将超越70万吨;在熔融石英陶瓷方面,国内对硅微粉的年需求量将达3万吨,商场远景宽广。 据了解,我国硅微粉高级产品首要依托进口。跟着我国参加了WTO商场,以及我国IT工业的迅猛开展,电子封装这一工业将逐步移向我国。专家预言:新的世纪我国将成为国际的封装大国,高纯超细硅微粉等下流产品的商场也将随之扩展。 赢利空间 虽同是硅微粉产品,但报价却相差十万八千里,如普通300目硅微粉只要600元/吨,而8000目~10000意图超细高纯电子类适用微粉报价却高达100000元/吨,假如再晋级至纳米级熔融微细粉吨价更高达200000元/吨以上。 产品上行开展空间 我国有关单位又成功地研宣布电子级高纯超细硅微粉。这是一种商场远景诱人的电子材料产品。高纯超细硅微粉是大规模集成电路基板和电子封装材料的首要质料,它与环氧树脂结合可完结芯片或元器件的粘接封固。超细硅微粉在环氧树脂中的掺入份额决议了基板的热胀大系数。硅微粉所占份额越高,基板的热胀大系数越小,即越挨近硅片的热胀大系数,然后可防止不均匀胀大构成的对微米线路的损坏。因而,对硅微粉的纯度、细度和粒度散布均有严厉的要求。 厂商实例 以上分析能够看出,硅微粉有着诱人的商场远景和宽广的开展空间。跟着高新技能的开展,对硅微粉材料的要求越来越高,厂商彻底能够依据商场的需求,比较少的投入,随时调整产品结构,开发深加工产品,以进步厂商的竞争力。但这些都要有一个必不可少的条件---科技立异。只要依托科技开宣布高新产品,才能使商场空间不断拓宽并构成良性循环。

氯化锌生产工艺

2019-02-14 10:39:49

氯化锌(ZnC12),白色棒状、粒状或粉状晶体,密度2.91 g/cm3,熔点283℃,沸点723℃,无味,潮解性强,能自空气中吸收水分而溶化。    氯化锌易溶于水,水溶液呈酸性;能溶于甲醇、乙醇、丙醇、等含氧有机溶剂;及溶于、等含氮溶剂;还具有溶解金属氧化物纤维的特性;不溶于液。熔融的氯化锌具有很好的导电功能。氯化锌有毒性,腐蚀性很强,应密闭储存。    氯化锌产品用于电池工业作电解质,出产活性炭的活化剂,在有机工业中用作聚腈的溶剂及有机组成的脱水剂、缩合剂,石油工业用作净化剂,染料工业用作显色稳定剂、活性染料和阳离子染料的出产,印染工业用作媒染剂、丝光剂、上浆剂。此外,还用于造纸、木材防腐、医药、纺织、电焊、电镀、颜料等工业部门。    氯化锌的出产工艺流程如下图所示。    现在,我国氯化锌出产大都选用锌浮渣、锌烟尘、锌铸型渣,也有选用锌锭或氧化锌(含Zn0 90%)为质料,工艺简略,产品质量好。可是,跟着工业的开展,锌锭和氧化锌求过于供。因而要寻觅扩展氯化锌工业开展的途径。我国菱锌矿资源丰富,亟待开发使用。研讨使用菱锌矿直接出产氯化锌是开展氯化锌工业的途径之一。    用菱锌矿出产氯化锌的关键在于原矿杂质含量高,

铝棒生产工艺流程

2019-01-14 11:15:47

熔铸包括熔化、提纯、除杂、除气、除渣与铸造过程。主要过程为:    (1)配料:根据需要生产的具体合得奖号,计算出各种合金成分的添加量,合理搭配各种原材料。    (2)熔炼:将配好的原材料按工艺要求加入熔炼炉内熔化,并通过除气、除渣精炼手段将熔体内的杂渣、气体有效除去。    (3)铸造:熔炼好的铝液在一定的铸造工艺条件下,通过深井铸造系统,冷却铸造成各种规格的圆铸棒。

红铜解说铜的发现简史

2019-05-27 10:11:36

红铜即纯铜,又叫紫铜,具有很好的导电性和导热性,塑性极好,易于热压和冷压力制作,可制成管、棒、线、条、带、板、箔等铜材。现很多用于制作电线、电缆、电刷、电火花专用电蚀铜等要求导电性杰出的产品,须防磁性搅扰的磁学仪器、外表,如罗盘、航空外表等。铜发现简史  铜是古代就现已知道的金属之一。一般以为人类知道的第一种金属是金,其次便是铜。铜在自然界储量非常丰富,而且制作便利。铜是人类用于加工的第一种金属,开始人们运用的仅仅存在于自然界中的天然单质铜,用石斧把它砍下来,便能够锤打成多种器物。跟着加工的开展,仅仅运用天然铜制作的加工工具就不足应用了,加工的开展促进人们找到了从铜矿中获得铜的办法。含铜的矿产比较多见,大多具有艳丽而有目共睹的色彩,    例如金黄色的黄铜矿CuFeS2,鲜绿色的孔雀石CuCO3Cu(OH)2,深蓝色的石青2CuCO3Cu(OH)2等,把这些矿物在空气中焙烧后构成氧化铜CuO,再用碳复原,就得到金属铜。纯铜制成的器物太软,易曲折。人们发现把锡掺到铜里去,能够制成铜锡合金──青铜。铜,    COPPER,源自Cuprum,是以产铜出名的塞浦路斯岛的古名,早为人类所熟知。它和金是仅有的两种带有除灰白黑以外色彩的金属。铜与金的合金,可制成各种饰物和用具。参加锌则为黄铜;加进锡即成青铜。

多孔扁通道铝合金扁管的生产工艺和技术

2019-03-04 10:21:10

空调体系首要有四大部件组成,分别是压缩机、冷凝器、节省胀大组织和蒸发器。其间冷凝器和蒸发器被统称为热交换器,是制冷空调设备中的换热单元,对整个空调功能起着至关重要的作用。 跟着空调职业的快速开展,对高效、紧凑、节能的新式换热器的需求越来越大。特别是因为传统的氟氯烃类制冷剂在环保方面的丧命缺点将被代替,而新的代替工质如二氧化碳等的作业压力很高,需求换热器具有满足的耐压才能。 多通道平行流换热器具有结构紧凑,分量轻,换热效率高,耐压才能强等特色,已成为现在较有开展前景的换热器方法。如图1所示,平行流式换热器由多孔扁管和波纹型百叶窗翅片组成,在多孔铝合金扁管的两头有集流管,集流管内有隔片间隔,每段管子数不同,呈逐步削减趋势,这种变流程规划可使换热器的有用容积得到合理使用,进步换热才能。如图2所示,多孔铝合金扁管的流道形状首要有矩形和圆形。研讨标明流道标准越小换热效率越高,当流道标准小于3mm时,管内气液两相活动与传热将呈现标准效应,通道越小,这种标准效应越显着。为了进步换热器的强化传热才能一同减轻分量,多孔扁管的流道当量直径呈现越来越小的趋势,乃至到了亚毫米的微通道等级。图3说明晰多孔扁管的开展趋势,现在国外现已能出产第四代铝合金揉捏多孔扁管,其管厚为1mm,流道当量直径为0.5mm,而我国正在尽力向第四代微通道多孔扁管方向尽力。2、多孔铝合金扁管揉捏工艺 用于出产平行流换热器的多孔扁管是用铝合金经过铝揉捏工艺取得的,考虑到多孔扁管的结构杂乱性,一般多选用分流组合模对铝锭坯料进行揉捏成形,使用分流组合模能确保壁厚均匀共同,一同具有出产设备简略、出产本钱低的长处。图4所示为制作多孔扁管的揉捏模具,首要包含揉捏筒、分流孔、分流桥、模芯、作业带及焊合室等。分流模揉捏中金属活动进程分为分流、焊合和成形阶段,如图5所示。在分流阶段,材料被分红两股进入分流孔;在焊合阶段,材料进入焊合室,在高温高压下融合为一体;在成形阶段,材料充溢焊合室后从作业带挤出成形。微通道管关闭截面多、焊合面多,且管材在制冷体系中处于交变承压工况,因而焊合面的成形质量问题成为多通道管揉捏成形的要害问题之一。经过数值模仿能够看到,整个焊合进程材料首要经过活动进入由焊合室和芯棒构成的杂乱型腔,在揉捏力作用下两股材料在芯棒周围发作触摸,因为焊合室内高温高压的作用,两股材料在极短的时间内焊组成一体。分流模揉捏模具规划是微通道扁管出产的决议性问题。揉捏筒依照其模孔模角巨细可分为平模和锥模,传统型材揉捏一般选用平模,即模角为90°。这是因为平模揉捏时金属活动会存在死区,而由金属活动构成的天然模角一般为40°——70°,因而锭坯表面的氧化物和脏物油污等被留在死区,这样出产出来的揉捏制品表面质量好,但揉捏力大,能量消耗大。 分流孔是金属流向焊合室的通道,分流孔的个数、形状及其形状对揉捏制品的质量、揉捏力和模具寿数都有很大的影响。分流孔的个数一般状况下尽可能少,以削减焊缝,增大分流孔面积,下降揉捏力。分流孔的形状应尽量挨近型材的形状,一同要确保模具具有满足的强度,因而一般选用扇形分流孔。 分流孔的安置尽量与制品坚持几许相似性,既不能过于接近模具边际也不宜过于接近揉捏筒中心。分流桥用于支撑模芯,其结构和标准对金属活动速度、焊合质量和模具强度都有显着影响。模芯又称舌头,用来行程型材内腔形状和标准。焊合室是把分流孔分开成几股金属从头焊合起来的空间,模孔用来构成型腔的外部现状和标准。在模芯和模孔上都做有作业带,作业带部分决议了型材的形状和标准精度。 传统的平模分流尽管能够使制品表面质量好,可是揉捏力却变得很大,简单使模芯与作业带发作弹性变形而偏斜,如图7所示,这将严峻影响制品较终的形状和标准精度。更有甚者,若揉捏力过大超过了模芯材料的抗拉强度,会使模芯发作裂纹,如图8所示,然后影响模具使用寿数。3.铝合金换热器折弯工艺 在确保换热面积不变的状况下,为了使空调体系变得愈加紧凑,经过钎焊后的换热器一般需求进行一次或屡次的折弯成“L”形或“G”形,其成形进程如图9所示。一般状况下,完好的折弯模具包含:曲折模、夹紧模和压模(或底板)。换热器前端夹在曲折模和夹紧模之间,一同尾端受底板支撑,曲折时,夹紧模受力使整个换热器绕曲折模中心旋转,依照要求旋转规则的视点。曲折成形工艺是换热器成形的要害工艺之一,对换热器的功能具有重要影响。关于需求进行折弯加工的微通道平行流换热器的结构及装置方法如图10所示。为了添加换热器空气侧的对流换热的作用,与多孔扁管钎焊在一同的百叶窗翅片在宽度方向上要宽于扁管的宽度。为了避免曲折成形时,翅片因与模具触摸受压发作失稳倒伏,在曲折内侧翅片会与管材对齐,而在曲折外侧翅片会伸出构成相似悬臂结构。多孔扁管在曲折后管壁会发作减薄,一同流道形状也会发作畸变,尤其是管材的外侧流道在曲折后通流面积削减较为严峻。为了确保换热器有满足的承压才能,尤其是先进的代替工质,整个空调体系压力很高,对换热器曲折成形质量提出了更高的要求。经过法猜测壁厚的改变和流道的畸变状况,并用试验测量值对仿真成果进行验证(图11)。在高压工况下,有必要操控减薄率和流道畸变率都在5%以下,经过在换热器尾部添加恰当的推力能够有用下降管材的减薄和畸变程度。另一方面,全体折弯时首要在扁管平面内受力,因为多孔扁管本身的特殊结构,宽厚比较大,平面内的刚度会大于笔直于扁管平面方向的刚度,这样曲折时会在笔直于管平面方向上失稳委曲。如图12所示,仿真和试验的成果发现,三角形翅片换热器的成形状况杰出,翅片没有呈现压溃及歪曲;而矩形翅片换热器在成形进程中会呈现必定程度的委曲现象。这一现象标明三角形翅片因为其本身结构的稳定性,能够增强笔直于管平面方向的刚度,补偿曲折中的失稳,但矩形翅片因为本身结构缺少稳定性,对笔直方向刚度的增强作用有限,形成曲折进程中呈现失稳。为了能够缩短开发周期,习惯不同换热器的规划,一种无模曲折技能应运而生,其原理及曲折后如图13所示。无模曲折的模具取消了传统曲折工艺中的曲折模,首要由两个夹紧模组成,其间一个固定,另一个则在计算机操控下依照必定的运动轨道把工件曲折成方针形状。无模曲折技能因为没有曲折模能够完成恣意曲折半径的曲折进程,进步了曲折设备的通用性,下降了试模本钱。关于换热器而言,因为没有了曲折模与翅片的直触摸摸,换热器的结构方法不在局限于图10这种安装方法,从源头按捺了翅片发作失稳倒伏的可能性。为了进步出产率,削减后续安装工序,还能够把两层换热器叠放在一同进行一次曲折。4、总结 在节能、环保要求日益进步的布景和压力下,平行流式换热器现已成为空调制冷职业十分有开展前景的一种换热器,而且朝着微通道、强化换热异型结构的方向开展,这对相关的成形加工技能提出了更高的要求。因为多孔扁管的流道在强化传热的要求下当量直径越来越小,这会使制品的形状与标准精度对模具的变形十分灵敏,为了减小揉捏力,下降模具变形的可能性,开发新式的模具结构成为进步多孔扁管制作水平的一条新途径。高效、紧凑的空调体系要求换热器需求进行二次折弯加工,二次加工后的管材变形程度对换热器的全体换热功能有着重要的影响,评价曲折变形后的扁管成形质量对进步换热器的使用功能及扁管初始结构规划有重要的含义。为了下降开发本钱,进步出产率,选用数控无模曲折技能能够完成换热器曲折加工的柔性制作,而且下降工件成形缺点发作的几率。

铝合金门窗型材的生产工艺流程

2019-01-10 10:47:01

铝门门窗型材的生产,经过铸锭制备、挤压成型、热处理和表面处理四个工艺过程。   (一)铸锭制备   该工艺过程包括配料、熔炼、铸造、均热等主要工序,形成一定化学成分和外形尺寸的铸锭。 配制好的原材料,在煤气炉或电炉中熔炼。熔炼后的熔体经过静置炉、流槽、流盘、过滤器直到结晶器内,再经水冷,形成一定形状的铸锭。为保证铸锭表面光洁,采用磁力铸造或热顶铸造法,进行多模(多结晶器)铸造。铸锭均热,是使铸造状态的金相组织均匀化,使主要的强化相溶解。均热是在均热炉内进行。均热提高了铸锭的塑性,有利于提高挤压速度,延长挤压模具的寿命,改善挤压型材的表面质量。   (二)挤压成型   挤压成型是在铸锭加热、挤压、冷却、张力矫直、锯切等工序构成的一条自动生产线上进行。生产线上的设备,包括感应加热炉、挤压机、出炉台、出料运输机、型材提升移送装置、冷床、张力矫直机、贮料台、牵引机、锯床等。铸锭的加热温度一般控制在400℃~520℃,温度过高或过低都将直接影响挤压成型。挤压机一般采用单动油压机,其吨位在1200吨~2500吨之间。挤压机的挤压筒直径大小,随挤压机吨位大小变动,挤压机吨位大,挤压筒直径也大。挤压筒直径一般在150mm~300mm范围内。挤压工具工作温度为360℃~460℃,挤压速度20 m/min~80m/min。 挤压工具主要包括模具。挤压模具根据结构特点分为平模、分瓣模、舌型模和分流组合模。生产铝合金门窗型材多用平模和分流组合模。出料台接收来自挤压机挤出的型材,并把型材过渡到出料工作台。 出料工作台多是横条运输机型,其横条运动速度与挤压速度同步。 冷床多为步进梁式,下面安装有相当数量的风机,保证型材均匀冷却,使型材在矫直前温度低于70 ℃。 张力矫直机带有扭转钳口,可以边扭转校正边拉伸矫直。 张力矫直机后是贮料台,向锯床工作台提供型材,锯床按定尺锯断型材。   (三)热处理   铝门窗型材采用的铝镁硅系铝合金,是可强化的铝合金。通过不同的淬火和时效制度,使型材得到应有的力学性能。 铝门窗型材为RCS供应状态,即热处理为高温成型后快速冷却及人工时效。   (四)表面处理   铝门窗型材的表面处理,大多采用阳极氧化,使型材表面为银白色。表面处理可增强型材外表美观程度,并延长铝门窗型材的使用寿命。 阳极氧化的工艺流程:装料→脱脂→水洗→碱浸蚀→温水洗→冷水洗→中和出光→水洗→阳极氧化→冷水洗 →温水洗→封孔→干燥→卸料→成品检查→包装 铝门窗型材阳极氧化后的氧化膜厚度不低于10μm。 铝门窗型材的表面处理,也可进行着色处理。需其他颜色的铝型材,可经自然氧化着色法、电解着色法和浸渍着色法获得。

热镀铝锌合金镀层板生产工艺

2018-12-28 15:58:39

随着地球环境的日趋恶劣,为节约能源,延长材料的使用寿命,建筑、汽车等行业用户对材料的耐蚀性及耐候性等提出了更高的要求,为满足用户的这一需求,研发 了热镀Zn-Al系列合金镀层板,其中具有代表性及获得广泛应用的品种是美国伯利恒钢铁公司于20世纪60年代开发的55%Al-Zn-1.6%Si (Galvalume)和国际铅锌协会于20世纪80年代组织研发的Zn-5%Al-0.1%Ce、La(Galfan)。Galvalume从1972年伯利恒钢铁公司开始商业性生产到现在,国外已有42个公司先后取得了该产品的生产许可证,目前其年生产能力已达到1200万吨左右,产品广泛应用于建筑、汽车等行业。我国对热镀铝锌合金镀层板的研究、生产及应用可以说仍是一片空白,目前仅建成无锡新大中、宝钢及攀钢3条线,且攀钢和宝钢热镀铝锌合金镀层板生产线刚开始进入试生产阶段。因此,探讨热镀铝锌合金镀层板的生产工艺技术及产品质量特性,对我国热镀铝锌合金镀层板的生产,以及用户的合理使用该产品具有十分重要的现实意义。   2  生产工艺特性   2.1 清洗:较普通热镀锌板生产而言,铝锌合金镀层钢板的生产对基板清洁度有更加严格的要求。这是由于热镀铝锌合金时,镀液铝含量较高、镀液温度较高、铝易氧化、易产生锌蒸汽,从而易恶化镀层附着性。因此,为确保镀层粘附性,热镀铝锌合金镀层板生产一般需采用炉外清洗,即在退火炉前设置电解脱脂清洗段。   2.2 退火:热镀铝锌合金镀层板的退火与普通热镀锌板相比有两个问题需考虑:一是对LCAK钢如何实现在线过时效处理,因其过时效的最佳温度为 300~350℃,而带钢入锌锅温度要求大于550℃;二是由于其镀液温度比锌的熔点高出200℃左右,易引起炉鼻处锌的蒸发,这种锌蒸汽附着在带钢上, 就会使产品产生漏镀缺陷,因而需确保炉内强的还原性气氛和严格控制炉鼻处的零点温度。鉴于此,国外一些生产厂家将炉内H2含量提高到了40%~60%,炉鼻处的零点温度控制在-50℃以下。   2.3 热镀:由于Al-Zn合金熔点较高,故其镀液温度比普通热镀锌温度高,最佳温度范围为620~650℃。为获得较好的镀层附着性,带钢入锌锅温度要比镀液温度低约50℃。为了细化富铝的枝晶组织,减少枝晶间富锌的晶粒的体积分数,以提高镀层耐蚀性(富铝枝状晶细小、晶间的间隙小,枝晶间富锌的晶粒要少、且细密地分散在镀层中),镀后需要快速冷却,冷却速度一般要求10~30℃/s。   2.4 镀后处理:与普通热镀锌相同,热镀铝锌合金镀层板一般也进行铬酸钝化后处理。但近年来,为提高热镀铝锌合金镀层板的成形性及环保性,将辊涂丙稀酸工艺开始逐渐取代传统的铬酸钝化,且无铬有机钝化逐渐受到广泛关注。此外,就热镀铝锌合金镀层板用作彩涂基板而言,因其表面较普通热镀锌板干净,且对预处理较敏感,预清洗过度,会导致镀层表面变黑,降低涂层粘附性,所以其预处理要求要温和些。

钛白粉生产工艺技术——硫酸法生产工艺技术

2019-02-15 16:44:47

硫酸法技能的首要工艺进程是:    ①TiO2质料用硫酸酸解;    ②沉降,将可溶性硫酸氧钛从固体杂质中别离出来;    ③水解硫酸氧钛构成不溶水解产品或称偏钛酸;    ④煅烧除掉水分,生成枯燥的纯Ti02。    若选用的开端质料配料的铁含量高或钛含量较低时,则要在净化和水解之间添加去除和收回FeS04·7H20和浓缩钛液工艺进程。    1.酸解    经研磨、枯燥的钛铁矿(含42%-60%的TiO2)和/或酸溶性钛渣(TiO2含量72%一78%)一般在铅衬反响器顶用浓硫酸在150-180℃的温度下酸解。为便于酸解,质料一般要磨到200目左右。需求指出的是,白钛石、人工金红石和金红石不溶解于硫酸,因而不能用硫酸法钛白的出产办法。    酸一料混合物一般用空气进行气流拌和并经过吹人蒸汽加热。大多数出产厂运用浓度为85%-92%的硫酸,剧烈的放热反响在160℃左右就开端了。而某些厂则先进行酸矿预混物料,这样有助于陡峭剧烈的反响。    钛铁矿中的铁含量越高(TiO2含量越低),所用硫酸的稀释程度就越高。对处理岩矿而言,适宜的酸浓度为85%。而处理钛渣,酸中的H2S04一般为91%-92%。为了取得陡峭的反响,不需用比此更浓的硫酸。    之后,钛液被逐步稀释,首先用酸,然后用水。不管酸的浓度怎么,反响固相物的形状都是疏松的多孔饼,其首要组成是Fe2(S04)3和TiOS04(硫酸氧钛)。由于质猜中存在的钒、铬和其他金属要在硫酸中分化,因而多孔饼中也含有这类金属硫酸盐。    酸解反响一般用能装30-40t反响物的酸解罐进行间歇式操作。剧烈的放热反响一般继续约30min,然后将多孔饼固相物冷却3h左右。    硫酸法发生的空气污染大部分来自于酸解。反响中,很多硫氧化物、酸雾和夹藏的未反响质料粒子在很短时间内开释出来。这些放散物被暂时搜集到气体洗刷塔和固体物质除尘体系中。    有些工厂,如美礼联在萨尔瓦多(巴西)、亨兹曼在蒂鲁卡隆(马来西亚)的工厂和钛工业公司在宇部(日本)的工厂以及韩口公司(韩国)为便于更好地操控反响和下降硫氧化物的开释,选用了接连酸解工艺。    接下来是用水和/或稀硫酸将硫酸盐多孔饼浸出。这种饼的分化和三价铁/二价铁的复原一般要进行11-12h,使在酸解罐处的总反响时间达14-15h.    假如以钛铁矿为质料,钛液要用铁屑处理将三价铁(Fe3+)复原成二价铁(Fe2+)。假如以钛渣为根本质料,由于只要Fe2+,故省掉这一步工序。复原继续到发生一些三价钛(Ti3+)停止,意图是使一切的铁在随后各进程中都坚持二价方法。一般目标为2%的Ti3+就行了,大部分钛以四价(Ti4+)方法存在。正如接连酸解相同,复原也可选用接连方法进行。    假如让Fe3+进人水解阶段,它们将吸附在TiO2粒子表面,构成终究钛产品白度目标低。因而,在整个工艺进程中使铁坚持二价形状至关重要。[next]    2.弄清/沉降    冷却酸解液、固体慵懒物质和未反响的质料剩下物溶液从酸解罐的底部悉数排放到宽底的低位沉积池/沉降池中。    此处是将由钛矿杂质构成的可溶性剩下物去掉。这些剩下物或许包含硅石、锆石/硫酸锆、白钛石和/或金红石。加人酪蛋白、淀粉或其他有机絮凝剂,液体便经过简略的重力别离沉积在沉降池中。可溶性剩下物的沉降能够在此阶段辅以硫化锑(SbS3)沉积的方法进行。为此,需在酸解阶段将氧化锑加人到开端的质猜中,沉降时加人以沉积SbS3。    用旋转耙从沉降池中将固体物质去除。一般,在沉降池底部有一集中排放点。固体物质扫除后,先用废酸洗刷以收回未反响的质料,然后用水洗掉残留酸。沉降后的钛液经过精滤除掉纤细的剩下粒子。这些精滤滤渣与从沉降池中搜集的其他固体物合在一起送往答应的堆积场。    整个沉降进程大约8h。    3.绿矾收回    钛液冷却至10℃左右,以便以“绿矾”的方法分出大部分的铁。绿矾首要是FeS04·7H20,稠浊有铬、钒、锰和其他金属硫酸盐。这些金属是开端的质料夹藏的。剩下的Fe2+仍留在钛液中。绿矾能够以红泥浆的方法滤掉。处置绿矾是硫酸法工艺的首要问题之一。在现代化的硫酸法工厂中,绿矾用专门的真空冷冻结晶体系去除,该体系规划为能生成很大的FeS04·7H20晶体,而铬、钒杂质含量最少。大晶体便于处理和贮存,这一点十分重要,由于大多数钛白出产商将收回的绿矾加工成副产品供应,如用做土壤调节剂或水处理剂。    假如只用钛渣作质料,此阶段没有很多的铁分出。这样,钛出产商就防止了随之而来的绿矾处理问题。FeSO4:Ti02的临界比值是7:10。假如钛液的FeSO4含量很高,则在此阶段有必要除掉绿矾。但假如比值小于0.7,则没有必要除绿矾。    绿矾除掉后,余下的钛液一般经过真空蒸发浓缩到25摄氏度时1.67的相对密度。此步之后,假如质料是钛铁矿,钛液的Ti02含量为230g/L。假如质料是钛渣,则TiO2含量为250g/L。虽然经过了分出绿矾除铁,但经过钛铁矿获取的钛液中的铁含量仍高于钛渣钛液。    4.水解    水解工序是硫酸法钛出产十分要害的一步。这一步将可溶性硫酸氧钛在90℃时水解成不溶于水的水合Ti02沉积物,或称偏钛酸。要取得所需粒度的高质量水解产品,必需严格操控比如加热速度、钛液的Fe2+和Ti4+含量以及其他要素等条件。如前所述,防止呈现Fe3+是此环节的要害。    为操控水解速度、水解物的过滤洗刷功能和终究产品的细度及质量目标,需求在水解时加人晶种。晶种的加人方法有两种:本身晶种(Blumenfeld法,1928年)和外加晶种(Mecklenburg法,1930年)。两种方法均能出产出相同质量的产品。[next]    本身晶种是在水解时使用预先加人的水解钛液和水所发生的晶种进行水解工艺,不必别的制备晶种。    外加晶种望文生义是向钛液加人经别的制备的金红石或锐钛型晶种,用以操控水解速度和钛产品的终究晶体类型。为此意图的金红石晶种是用偏铁酸-或纯TiCl4制备,而锐钛型晶种是用偏钛酸、或向钛液加人水或酸发生的。    放下所加的晶种,从硫酸氧钛溶液中沉积出的TiO2为锐钛型。不过,在此阶段加人金红石晶种是为了在煅烧时易于使偏钛酸沉积物转化成的Ti02为金红石型。若选用锐钛型或本身晶种,则在煅烧时要加人金红石型煅烧晶种才有利于金红石Ti02的生成。    偏钛酸的沉积是经过几小时的钛液欢腾到达的。在沉积快结束时,有时要加人必定的水以进步水解率。可是,加人的水过量则会损坏Ti02沉积物的质量,整个水解沉积进程需求3-5h。    水解沉积物浆料经过滤、洗刷后,在复原条件下用硫酸酸浸以除掉终究微量吸附铁和其他金属,即一般所说的漂白,大约7%-8%的S03紧紧吸附在浆猜中,无法洗掉。事实上,要阅历过滤和洗刷,才能将偏钛酸沉积别离出来。硫酸法钛出产的大部分废酸由此发生。    第一次过滤中的滤液(称为“浓废酸”)一般含H2SO4 22%-24%。一般每出产It制品钛要发生8-l0t“浓废酸”。假如以钛渣为质料,这种酸仍含有分化的硫酸亚铁,一起还含有很多的硫酸铝和硫酸镁。    而之后的洗刷和过滤发生的酸废物(称为“稀废酸”),所含H2SO4低于0. 5%。依据水洗和过滤环节的数量,每出产It制品钛发生的稀酸可达60t.    为操控粒度成长,需向偏钛酸参加调节剂,如硫酸钾、磷酸钾和锌。有时还需在此进程中进一步加人金红石晶种以促进煅烧时构成金红石型Ti02。终究用于煅烧的物料是水合TiO2浆料,固含量为35%一50%。    5.煅烧    煅烧是在一个微倾的内燃式回转窑中进行的。在重力效果下,水合Ti02浆料在回转窑中慢慢前移。煅烧温度为900 - 1250摄氏度。为了到达所需的钛类型,实践温度需求按几个等级严格操控。一般出产金红石型钛所需的温度要高一些。经过煅烧环节脱去水分和除掉剩下的微量S03,一起还能够将锐钛型转变成金红石型。煅烧还有助于增强终究钛产品的化学慵懒和断定其粒度,虽然粒度的断定首要是在水解阶段。经过进程取样和对色彩、消色力及粒度的物理检测能够对煅烧进程的严密操控起辅佐效果。    在煅烧阶段,跟着S03和酸雾的扫除,不可防止要夹藏一些纤细的TiO2粒子,缕缕烟气显着可见。因而,工厂有必要设有收回Ti02粒子、除尘和除酸雾的设备,以使煅烧尾气不对环境构成损害。    煅烧后,Ti02经研磨破碎烧结颗粒。这以后,一些钛以未包膜Ti02初品的方法出售用于珐琅、焊条等需求初级产品的应用领域。其首要并且是简直一切的钛厂均要进行的表面处理,即后处理。不过,大多数出产商都是在同一现场进行Ti02的表面处理。仅有少部分供应商进行异地后处理加工。表面处理进程见后三末节叙说。[next]    该工艺所发生的首要废物是废酸(含洗水)和以钛铁矿为质料所产出的FeS04·7H20;废酸一般很稀,H2S04含量低于25%,一些钛出产商极力别离酸解时第一次过滤发生的强酸废物和随后过滤与水洗发生的弱酸废物。硫酸法出产每吨钛发生的副产品及产值如下。    以钛铁矿质料:3-4t FeS04·7H20; 7-8t (23%H2S04)废酸;    以钛渣质料:4-6t (25%H2S04)废酸。    此外,在锻烧阶段,每吨钛有7-8kg S03排人大气或有必要收回以削减对大气污染。