您所在的位置: 上海有色 > 有色金属产品库 > 烧结铁粉

烧结铁粉

抱歉!您想要的信息未找到。

烧结铁粉专区

更多
抱歉!您想要的信息未找到。

烧结铁粉百科

更多

铁粉分类及应用

2019-01-03 09:36:51

铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉 纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。 铁粉的应用 粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。

材料的烧结----液相烧结

2019-01-07 07:51:19

液相烧结:凡是有液相参与的烧结过程称为液相烧结。液相烧结的主要传质方式有:流动传质、溶解-沉淀传质等。 1、液相烧结的特点 液相烧结与固态烧结的共同之点是烧结的推动力都是表面能;烧结过程也是由颗粒重排、气孔填充和晶粒生长等阶段组成。不同点是:由于流动传质速率比扩散快,因而液相烧结的致密化速率高,可使坯体在比固态烧结温度低得多的情况下获得致密的烧结体。此外,液相烧结过程的速率与液相的数量、液相性质(粘度、表面张力等)、液相与固相的润湿情况、固相在液相中的溶解度等有密切的关系。 2、流动传质 粘性流动:在高温下依靠粘性液体流动而致密化是大多数硅酸盐材料烧结的主要传质过程。在液相烧结时,由于高温下粘性液体(熔融体)出现牛顿型流动而产生的传质称为粘性流动传质(或粘性蠕变传质)。 粘性流动初期的传质动力学公式:式中 r为颗粒半径;x为颈部半径;η为液体粘度;γ为液-气表面张力,t为烧结时间。 适合粘性流动传质全过程的烧结速率公式:       式中θ为相对密度。     塑性流动:当坯体中液相含量很少时,高温下流动传质不能看成是纯牛顿型流动,而是属于塑性流动类型。也即只有作用力超过其屈服值(f)时,流动速率才与作用的剪切应力成正比。此时传质动力学公式改变为:                  式中 η是作用力超过f时液体的粘度;r为颗粒原始半径。 3、溶解 - 沉淀传质 在有固液两相的烧结中,当固相在液相中有可溶性,这时烧结传质过程就由部分固相溶解,而在另一部分固相上沉积,直至晶粒长大和获得致密的烧结体。发生溶解-沉淀传质的条件有:(1)显著数量的液相;(2)固相在液相内有显著的可溶性;(3)液体润湿固相。 溶解-沉淀传质过程的推动力仍是颗粒的表面能,只是由于液相润湿固相,每个颗粒之间的空间都组成了一系列的毛细管,表面张力以毛细管力的方式便颗粒拉紧。固相颗粒在毛细管力的作用下,通过粘性流动或在一些颗粒间的接触点上由于局部应力的作用而进行重新排列,结果得到了更紧密的堆积。 溶解-沉淀传质根据液相数量的不同可以有Kingery模型(颗粒在接触点处溶解,到自由表面上沉积)或LSW模型(小晶粒溶解至大晶粒处沉淀)。其原理都是由于颗粒接触点处(或小晶粒)在液相中的溶解度大于自由表面(或大晶粒)处的溶解度,通过液相传递而导致晶粒生长和坯体致密化。Kingery运用与固相烧结动力学公式类似的方法,并作了合理的分析导出了溶解-沉淀过程的收缩率为:式中 ⊿ρ为中心距收缩的距离;K为常数;γLV为液-气表面张力;D为被溶解物质在液相中的扩散系数;δ为颗粒间液膜的厚度;C0为固相在液相中的溶解度;V0为液相体积;r为颗粒起始粒度;t为烧结时间。

材料的烧结----烧结的基本概念

2019-01-07 07:51:19

根据烧结粉末体所出现的宏观变化提出了烧结的宏观定义,一种或多种固体(金属、氧化物、氮化物、粘土……)粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这种过程称为烧结。为了揭示烧结的本质提出了烧结的微观定义,由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程称为烧结。     烧结与烧成。烧成包括多种物理和化学变化。例如脱水、坯体内气体分解、多相反应和熔融、溶解、烧结等。而烧结仅仅指粉料成型体在烧结温度下经加热而致密化的简单物理过程,显然烧成的含义及包括的范围更宽,一般都发生在多相系统内。而烧结仅仅是烧成过程中的一个重要部分。     烧结和熔融。烧结是在远低于固态物质的熔融温度下进行的。烧结和熔融这两个过程都是由原子热振动而引起的,但熔融时全部组元都转变为液相,而烧结时至少有一个组元是处于固态的。     烧结与固相反应。这两个过程均在低于材料熔点或熔融温度之下进行的。并且在过程的自始至终都至少有一相是固态。两个过程的不同之处是固相反应必须至少有两个组元参加(如A和B),并发生化学反应,最后生成化合物AB。AB的结构与性能不同于A与B。而烧结可以只有单组元,或者两组元参加,但两组元之间并不发生化学反应。仅仅是在表面能驱动下,由粉末体变成致密体。从结晶化学观点看,烧结体除可见的收缩外,微观晶相组成并未变化,仅仅是晶相显微组织上排列致密和结晶程度更完善。

材料的烧结----固相烧结

2019-01-07 07:51:19

固相烧结:固态烧结的主要传质方式有:蒸发-凝聚、扩散传质等。 1、 蒸发-凝聚传质 蒸发-凝聚传质时在球形颗粒表面有正曲率半径,而在两个颗粒联接处有一个小的负曲率半径的颈部,根据开尔文公式可以得出,物质将从饱和蒸气压高的凸形颗粒表面蒸发,通过气相传递而凝聚到饱和蒸气压低的凹形颈部,从而使颈部逐渐被填充。球形颗粒接触面积颈部生长速率关系式:                         蒸发-凝聚传质的特点是烧结时颈部区域扩大,球的形状改变为椭圆,气孔形状改变,但球与球之间的中心距不变,也就是在这种传质过程中坯体不发生收缩,即⊿L/L0 =0。气孔形状的变化对坯体一些宏观性质有可观的影响,但不影响坯体密度。 2、 扩散传质 在大多数固体材料中,由于高温下蒸气压低,则传质更易通过固态内质点扩散过程来进行。在颗粒的不同部位空位浓度不同,颈部表面张应力区空位浓度大于晶粒内部,受压应力的颗粒接触中心空位浓度最低。系统内不同部位空位浓度的差异对扩散时空位的漂移方向是十分重要的。扩散首先从空位浓度最大的部位(颈部表面)向空位浓度最低的部位(颗粒接触点)进行,其次是颈部向颗粒内部扩散。空位扩散即原子或离子的反向扩散。因此,扩散传质时,原子或离子由颗粒接触点向颈部迁移,达到气孔充填的结果。 扩散传质初期动力学公式:    x/r = K r-3/5t1/5                在扩散传质时除颗粒间接触面积增加外,颗粒中心距逼近的速率为  ⊿L/L0 = K1 r-6/5t2/5            烧结进入中期,颗粒开始粘结,颈部扩大,气孔由不规则形状逐渐变成由三个颗粒包围的圆柱形管道,气孔相互联通。科布尔(Coble)提出烧结体此时由众多个十四面体堆积而成的,Coble根据十四面体模型确定了烧结中期坯体气孔率(Pc)随烧结时间(t)变化的关系式:        式中 L为圆柱形空隙的长度,t为烧结时间,tf为烧结完成所需要的时间。 烧结进入后期,晶粒已明显长大,气孔己完全孤立,气孔位于四个晶粒包围的顶点。从十四面体模型来看,气孔已由圆柱形孔道收缩成位于十四面体的24个顶点处的孤立气孔。根据此模型Coble导出了烧结后期坯体气孔率(Pt)为:

还原铁粉让普通铁精粉身价倍增

2018-12-13 10:31:09

日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )         北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。    据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网

大型烧结技术了解

2019-01-04 15:47:49

由于烧结机大型化适应了“资源高效使用”和“节能减排”的可持续发展需要,因此,大型烧结已经成为新世纪烧结技术发展的主流。为了充分发挥大型烧结机的诸多优势,注重大型烧结的操作技术具有重要意义。 一、控制与优化混合制粒参数。混合料制粒是烧结工艺的重要环节,其目的是通过混匀、加水润湿和制粒,得到成分均匀、粒度适宜、具有良好透气性的烧结混合料。太钢450m2烧结机采取了三段混合工序,设计之初即把强化制粒、改善烧结料层透气性这一问题纳入重点研究解决的工艺问题,同时兼顾系统的可靠性,取得了显著效果。 二、控制FeO含量。FeO含量过高,会影响铁酸钙粘结相的生成,使烧结矿强度和还原性降低;过低的FeO含量则会导致液相量不足而影响烧结矿强度。因此,需要根据原料结构和烧结操作制度把FeO含控制量在一个合理的范围。首钢京唐烧结的含铁原料由巴西赤铁矿粉和澳洲褐铁矿粉以及少量国内磁铁精粉组成,经过一段时间的生产实践,摸索到烧结矿FeO质量分数的合理水平,改善了烧结矿转鼓强度和低温还原粉化性能。 三、治理烧结系统漏风。由于烧结料层越厚,阻力越大,风箱负压越高,漏风率也相应增加,因此,有必要对烧结机滑道系统及机头、机尾密封板等部位进行优化设计,加强密封,改进台车、首尾风箱隔板、弹性滑道的结构;加强对整个抽风机系统的维护检修,及时堵漏风,将漏风率降至最低程度。同时,可通过跟踪烧结废气中O2含量的变化,随时掌握烧结系统漏风的实际情况。如宝钢2006年先后在3台烧结机投入运行了烧结烟气分析系统,及时地推断出烧结过程的漏风状况,有效治理烧结系统的漏风。 四、主抽风机节能操作。主抽风机是烧结生产中电耗最大的设备,为了保证烧结过程的完全,实践中主抽风机处于运行能力相对过剩的工况。为了最大限度地利用风量,减少能源浪费,应从生产操作控制途径出发,结合主抽风机实际工作状况,使烧结生产过程主抽风机风量的使用与实际生产状况相匹配,既使烧结气流分布趋于合理,又能节省电能,同时提高烧结矿产、质量。应制定烧结操作模式化控制制度,将机速范围、料层厚度、负压与主抽风门开度范围进行合理的、严格的匹配,保证风量与机速的最佳匹配。在优化制粒的基础上降低风门开度,实现高机速、厚料层、低风门、高负压的协同化。 五、烧结终点合理控制。烧结终点的控制直接关系到烧结矿各项物理、化学指标以及技术经济指标。烧结终点控制的主要目标是将烧结终点有效地控制在最优设定位置附近,同时保证烧结终点的稳定和整个烧结面积的合理有效利用。

烧结机鼓风烧结焙烧及工艺流程实例

2019-01-07 17:38:01

鼓风烧结对原料的适应性大,可处理高铅物料,烧结过程料层阻力小、透气性较均匀、烟气二氧化硫浓度较高,基本排除了炉料熔结而堵塞风箱和粘结蓖条的现象,故大大减轻了工人劳动强度和改善环境卫生条件,因而在目前的铅和铅锌烧结中被广泛应用。       烧结机面积大小是按脱硫强度确定的。鼓风烧结机的脱硫强度为0.8-2.1t/(m2·d)。我国设计和采用过的鼓风烧结机有21.5m2、24m2、28m2,45m2, 60m2, 70m2,110m2等规格。       为尽量提高鼓风烧结烟气的二氧化硫浓度,减少漏风,鼓风烧结机渐趋于大型化。在生产中采取返烟提浓,富氧空气烧结或抽取烟罩内二氧化硫浓度较高的部分烟气等办法;以满足制酸要求。       铅精矿与铅锌混合精矿烧结烙烧的一般工艺流程见图1。    图1  烧结机鼓风烧结焙烧一般工艺流程       图2至图7为铅精矿矿和铅锌混合精矿烧结工艺流程实例。    图2  沈冶铅精矿烧结工艺流程实例   1-胶带运输机;2-精矿仓;3-石英仓;4-石灰石仓;5-焦炭仓; 6-烟尘仓;7-返粉仓;8一圆简混合机;9-圆筒制粒机; 10-梭式布料机;11-点火炉;12-70m2烧结机;13-单辊破碎机; 14-振动给料机;15-双辊分级机;16-链板运输机;17-波纹辊破碎机; 18-平面辊破碎机;19-圆筒冷却机    图3  株冶铅精矿烧结工艺流程实例   1一胶带运输机;2-焦粉仓;3-水碎渣仓;4-石英仓;5-河沙仓; 6-铅精矿仓;7-返粉仓;8-圆盘给料机;9-电子皮带秤; 10-圆筒混合机;11-圆筒制粒机;12-回转式布料机;13-点火炉; 14-60m2烧结机;15-单辊破碎帆;16-振动给料机;17-齿辊破碎机; 18-链板运输机;19-双辊分级机;20-漏斗秤;21-链板运输机; 22-波纹辊碎机;23-平面辊破碎机; 24-圆筒冷却机      图4  韶冶铅锌精矿烧结工艺流程实例   1-烟尘仓;2-精矿仓;3-石灰石仓;4-返粉仓;5-电子皮带秤; 6-胶带输送机;7-圆筒混合机;8-圆筒制粒机;9一梭式布料机; 10-点火炉;11-110m2烧结机;12-单辊破碎机;13-齿辊破碎机; 14-固定条筛;15-中间仓;16-变速振动给料机;17-波纹辊破碎机; 18-圆筒冷却机;19-平面辊破碎机;20-链板输送机    图5  科克尔-克里克冶炼厂铅锌烧结工艺流程   1-料仓;2-运输机;3-分料器;4-圆盘棍合机;5-分料器; 6-圆筒混合机;7-给料机; 8-点火炉;9-94m2烧结机; 10-风帆;11-单轴玻碎机;12-齿辊破碎机;13-筛子; 14-冷却盘;15-平辊破碎机;16-烧结矿料仓;17-返粉料仓                    图6  杜依斯堡冶炼厂铅锌烧结工艺流程   1-精矿料仓;2-返粉料仓;3-锤磨机;4-给料机;5-皮带秤; 6-电磁分离器;7-原料仓;5-返粉仓;9-电子皮带秤; 10-熔剂仓;11-过滤机;12-圆筒混合机;13-滤袋收尘收尘器; 14-链斗输送机;15-点火炉;16-73m2烧结机;17-单辊破玻碎机; l8-条筛;19-给料机;20-筛分溜槽;21-齿辊破碎机; 22-三辊破碎机;23-平面辊破碎机;24-圆筒冷却机; 25-收尘器;26-搅拌器;27-烧结矿料      图7  卡布韦冶炼厂铅锌烧结工艺流程图   1一配料仓;2一蓝粉过滤机;3一圆筒混合机;4一水分探测器; 5-圆盘给料机;6-点火炉;7-2×28.5m2烧结机;8-破碎机; 9-筛子;10-波纹辊破碎机;11-烧结矿料仓;12-圆筒冷却机; 13-平面辊破碎机;14-旋风除尘器;15-冷却塔;16-电收尘器; 17-搅拌槽;18-烟囱

烧结技术大揭秘

2019-01-03 09:36:39

特种陶瓷的主要制备工艺过程包括坯料制备、成型和烧结三步。在成型工艺完成后,烧结可以控制晶粒的生长,对材料的使用性能影响至关重大。到目前为止,陶瓷烧结技术一直是人们不断突破的领域。 特种陶瓷烧结原理烧结是指成型后的坯体在高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固烧结体的致密化过程。在宏观和微观上对烧结现象进行观察,可以看到宏观上,烧结后的产物体积收缩,致密度提高,强度增加。微观上,气孔形状改变,晶体长大,成份变化(掺杂元素)。按照烧结过程中的变化,主要将烧结分为以下阶段: 1.烧结前期阶段 ①粘结剂等的脱除:如石蜡在250~400℃全部汽化挥发。 ②随着烧结温度升高。原子扩散加剧,空隙缩小,颗粒间由点接触转变为面接触,空隙缩小,连通孔隙变得封闭,并孤立分布。 ③小颗粒率先出现晶界,晶界移动,晶粒变大。 2.烧结后期阶段 ①孔隙的消除:晶界上的物质不断扩散到孔隙处,使孔隙逐渐消除。 ②晶粒长大:晶界移动,晶粒长大。 陶瓷烧结主要可分为固相烧结和液相烧结,并分别对应着不同的反应机理。液相烧结的反应机理可简单归纳为熔化、重排、溶解-沉淀、气孔排除;按照烧结体的结构特征,将固相烧结机理划分为3个阶段:烧结初期、烧结中期和烧结后期。 固相烧结示意图烧结前期:在烧结初期,颗粒相互靠近,不同颗粒间接触点通过物质扩散和坯体收缩形成颈部。在这个阶段,颗粒内的晶粒不发生变化,颗粒的外形基本保持不变。 烧结中期:烧结颈部开始长大,原子向颗粒结合面迁移,颗粒间距离缩小,形成连续的孔隙网络。该阶段烧结体的密度和强度都增加。 烧结后期:一般当烧结体密度达到90%,烧结就进入烧结后期。此时,大多数孔隙被分隔,晶界上的物质继续向气孔扩散、填充,随着致密化继续进行,晶粒也继续长大。这个阶段烧结体主要通过小孔隙的消失和孔隙数量的减少来实现收缩,收缩缓慢。 特种陶瓷烧结方法 人们根据不同的依据分别对陶瓷的烧结方法进行分类,其特点及适用范围如下: 陶瓷烧结方法简介影响烧结的因素 1.粉末颗粒度 细颗粒增加烧结推动力,缩短原子扩散距离,提高颗粒在液相中的溶解度,导致烧结过程加速,但是过细的颗粒容易吸附大量气体,妨碍颗粒间的接触,阻碍烧结,因此必须根据烧结条件合理的选择粒度。 2.外加剂的作用 固相烧结中,外加剂可通过增加缺陷促进烧结;液相烧结中,外加剂可通过改变液相的性质来促进烧结。 3.烧结温度和时间 提高烧结温度对固相扩散等传质有利,但过高的温度会促使二次结晶,使材料性能恶化。烧结的低温阶段以表面扩散为主,高温阶段以体积扩散为主,低温烧结时间过长对致密化不利,是材料的性能变坏,因此通常采用高温短时烧结提高材料的致密度。 4.烧结气氛 在空气中烧结,会使晶体生成空位、造成缺陷,所以烧结不同的基体材料要对气氛进行选择。而气氛对烧结的影响又十分复杂。一般材料如TiO2、BeO、Al2O3等,在还原气氛中烧结,氧可以直接从晶体表面逸出,形成缺陷结构,从而利于烧结;非氧化物陶瓷,由于在高温下易被氧化,因而在氮气及惰性气体中进行烧结;PZT陶瓷,为防止Pb的挥发,要求加气氛片或气氛粉体进行密闭烧结。 5.成型压力 坯体的成型压力也对材料的性能影响至关重要。成型压力越大,坯体中颗粒接触的越紧密,烧结时扩散阻力越小;过高的成型压力又会是粉料发生脆性断裂,不利于烧结。

铅和铅锌烧结技术操作条件-富氧鼓风烧结

2019-01-07 17:38:01

采用富氧鼓风烧结对提高单位生产能力和烟气二氧化硫浓度是一项有效措施、效果是肯定的。但须详细研究炉料的物理化学性质与采用富氧的关系,才能发挥富氧鼓风的效果。根据国外生产情况,铅富氧烧结时,控制氧浓度最好为22.5%~24%;氧浓度超过24%时,烧结块含硫量高,脱硫率、烟气SO2浓度和单位烧结能力也都下阵。铅锌富氧烧结的浓度一般为21.5%~24%,鼓入第2~5号风箱。富氧鼓风烧结后,烧结机脱硫强度可提高15%~20%,烧结成品烟气中SO2浓度约提高0.5%。       烧结机尾部烟罩的通风烟气含SO20.1%~0.5%,含氧为19%~20%。出于对环境保护的考虑,应将这部分烟气返回烧结取代新鲜空气。但由于含氧低,故最好配入工业氧使氧含量达到21%以上,以利于烧结过程的进行。   表1为鼓风中富氧浓度变化与烧结主要工艺指标的关系。鼓风含氧 %含硫,%台车速度m/min富氧单耗m3/t混合料烧结块生产能率%混合料烧结块烧结块硫酸盐硫217.22.1851.181.3071810021~22.57.391.821.371.3579511522.5~237.081.891.201.3576611523~23.56.971.841.291.3778111723.5~246.851.981.161.3778511724~257.452.131.371.27815108.5鼓风含氧%脱硫强度t/(m2·d)烟气SO2浓度%烧结块强度(+10mm)烧结块软化温度,℃脱硫率%开始最终211.2665.2985.89845103580.021~22.51.946.2090.8855102889.922.5~231.776.7591.5842101088.723~23.51.786.8090.2865100288.923.5~241.656.6092.184098287.524~251.686.3093.784294487.5

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图