您所在的位置: 上海有色 > 有色金属产品库 > 火焰反射炉

火焰反射炉

抱歉!您想要的信息未找到。

火焰反射炉价格

更多
抱歉!您想要的信息未找到。

火焰反射炉厂家

更多

大连瑞源动力有限公司

天津市佰瑞得商贸有限公司

益阳市久通冶炼有限公司

优锦化工(上海)有限公司

火焰反射炉专区

更多
抱歉!您想要的信息未找到。

火焰反射炉百科

更多

铜熔炼反射炉加料

2019-03-05 10:21:23

固体炉料一般经过炉顶上的两边加料孔参加反射炉。通常在整个炉长三分之二的前段参加质料,三分之一后段参加石英石,以构成依靠两边炉墙的料坡,使炉墙不直接与高温火焰触摸,延伸炉墙寿数,削减炉墙的热丢失。料坡高度一般是操控顶部距炉顶拱脚的间隔,处理生精矿时可取200~400mm,处理焙烧矿时可取300~500mm。处理生精矿简单构成料坡,处理焙烧矿难以构成料坡而成为无料坡熔炼。 炉料参加量和参加速度,首要取决于炉料的熔化速度,可以用人工或机械办法测定料坡高度给予操控。炉料参加量沿炉长分配的份额随炉内温度区域的不同而不同。国内反射炉一般在高温区参加炉料的60%左右。每个加料口每次加料时刻,在高温区不多于90s,中温区不多于60s。 加拿大加斯佩厂设有一台内部尺度为30.2×7.8m的熔炼生精矿的反射炉,每班参加8批炉料,每小时60t。炉料从炉顶两边参加,加料口(203×203mm)散布于距炉头前21m的区段内,其间心距离为915mm。 我国白银一冶原用人工调查料坡巨细来调整加料时刻或加料量,于1972年首要依据侧墙受辐射热随料坡巨细而改变的原理开端加料自动化的实验。1974年,此设备正式投入运转,图1为料坡自动操控系统信号传递示意图。 表1为反射炉料配比实例。 表1  反射炉炉料配比实例  %厂别铜精矿焙烧矿石英石石灰石烟尘大冶78 805 5.55 4.712① 9.8白银一冶65204.55.55芒特·艾萨76177①包含反射炉烟尘和转炉烟尘。     图1  料坡自动操控系统信号传递示意图   1992年,大冶冶炼厂新建转炉渣选矿车间, 转炉渣部分回来反射炉,而另一部分送选 矿车间处理产出渣精矿,和铜精矿配料够 送反射炉。白银一冶以“白银炼铜法”取 代了反射炉熔炼今后,转炉渣回来白银炉处理。     大冶和白银一冶原规划均将液态转炉渣回来反射炉处理。大冶从反射炉前端墙孔倾入转炉渣,白银一冶则从反射炉前部侧墙孔倾入。表2为液态转炉渣倾入反射炉操作条件实例。表3为转炉渣倾入反射炉方位比较。 表2  液态转炉渣倾入反射炉操作条件实例厂别转炉渣量t/d每班倾入包数每班倾入次数每包容量t倾入速度 min/包大冶450~5008~108~15161~3白银一冶450~5109~1010~18162~4 表3  转炉渣倾入反射炉方位比较炉前倾入炉侧倾入1、易于保护炉子头部两边的料坡1、倾进口对对面料坡易被冲垮,倾进口邻近料坡不易保护2、可削减炉坝的构成2、易生成料坝3、溜槽较长,简单损坏,整理劳动强度大3、溜槽较短,能减轻整理劳动强度注:第3条系对反射炉与转炉平行装备而言,如系笔直装备则反之。

反射炉熔炼原理

2019-02-28 10:19:46

用一段法处理杂铜时,一般都在固定反射炉中进行,所以实际上,在反射炉 进行的 既是熔炼也是精粹。   杂铜反射炉精粹原理实质上与矿铜的火法精粹原理相同,不过,由于次粗铜杂质含量高(有时高达 4% ),所以在操作上有其共同特色,杂铜在反射炉中处理时,整个精粹进程包含熔化、氧化、复原、除渣、浇铸等作业。整个作业的中心是氧化和复原。下面首要论述氧化和复原。   杂铜氧化精粹的根本原理在于铜中存在的大大都杂质对氧的亲合力都大于铜对氧的亲合力,且大都杂质的氧化物在铜液中溶解度小,所以当向熔体中鼓入空气时,便优先将杂质氧化脱除,但熔体中铜占绝大大都,而杂质量很少,故氧化时,首先是铜被氧化。   4Cu+O2=2Cu2O   所发作 Cu2O 当即溶于铜液中,并与铜液中的杂质发作反响,使杂质氧化。   [Cu2O]+[Me]=2[Cu]+(MeO)   式中:[ ] 标明铜液中物质浓度;   ( )标明渣相中物质浓度;   Me 为杂质金属。   此反响的平衡常数为:   铜液中的主体为金属铜,浓度很大,因杂质量相对很少,故虽然杂质被 Cu2O 氧化,能够为 [Cu] 根本不变(即为常数)。一同,由于杂质氧化物( MeO )在铜液中的溶解度很小,能敏捷到达饱满,因此在大大都情况下,当温度一守时, [MeO] 能够为也是一个稳定值,所以反响的平衡常数可用下式标明:   K’=[Cu2O][Me]   这标明,在必定温度下(即 K 为断定常数)铜液中的杂质含量与 Cu2O 的含量成反比, [Cu2O] 越大, [Me] 越小,即残留在铜液中未氧化的杂质越少,精粹作业愈彻底。实践标明,为了更敏捷、彻底地除掉铜液中的杂质,应力求强化氧化进程,使 Cu2O 在铜液中的浓度到达饱满状态。   Cu2O 在铜液中的溶解度随温度升高而添加:   温度℃ 1100 1150 1200 1250   溶解度 % 5 8.3 12.4 13.1   当 Cu2O 的溶解量超越该温度下的溶解度时,熔体将分为两层,基层是饱满了 Cu2O 的铜液,上层是饱满了铜的 Cu2O 相,这一联系可从 Cu ¢ O 系相图看得清楚。铜液中的溶解度添加很少,并且熔体呈现分层,使部分 Cu2O 进入渣层中,并且过度的氧化,使复原进程添加,一同要耗费更多的复原剂,所以为了防止铜液过度氧化,要求氧化期坚持在 1150 ~ 1170 ℃下进行。   首要杂质在氧化精粹进程中的行为简述如下:   铁。铁对氧的亲合力远远大于铜对氧的亲合力,所以铁很简单氧化,并造渣脱除。铁氧化反响按下式进行:   Cu2O+Fe=2Cu+FeO   按热力学预算,在精粹进程中铁可除到十万分之一。   镍。镍是难于除掉的杂质,镍和铜能生成一系列固溶体,虽然镍在熔化期和氧化期均遭到氧化,但既缓慢又不彻底,并且在氧化期所生成的 NiO 散布于铜液和炉渣之间。溶于渣中的 NiO 可生成不溶于铜液而溶于渣相中的 NiO · Fe2O3 ,这部分镍可脱除,热力学核算标明,当铜液中含镍 16% 时,镍可除到 0.25% 。   当铜液中既含镍又含砷和锑时,镍的脱除更尴尬。由于溶于铜液中的 NiO 能与 Cu 、 As 或 Sb 构成溶于铜液的镍云母( 6Cu2O · 8NiO · 2As2O3 或 6Cu2O · 8NiO · 2Sb2O3 )。为了脱镍,这时只有加碱性熔剂,使镍云母分化。   锌。锌与铜在液态时彻底互溶,锌的沸点为 906 ℃,在精粹时,大部分锌在熔化阶段即以金属形状蒸发,然后被炉气中的氧氧化成 ZnO 随炉气排出,并在收尘体系中搜集下来,其他的锌在氧化初期被氧化成 ZnO ,并构成硅酸锌( 2ZnO · SiO2 )和铁酸锌( ZnO · Fe2O3 )进入炉渣。当精粹含锌高的杂铜料(黄杂铜等)时为加快锌的蒸发,在熔化期和氧化期均进步炉温 ( 一般坚持在 1300 ~ 1350 ℃ ) ,并在熔体表面上掩盖一层木炭或不含硫的焦碳颗粒,使氧化锌复原成金属锌而蒸发,避免生成氧化锌结壳阻碍蒸锌进程的进行。   铅。固态铅不溶于铜,在液态时溶解得也很少,但在氧化期,当铅氧化成氧化铅后,因其密度( 9.2 )比铜的密度( 8.9 )高,故沉于炉底,所以假如是酸性炉底,则 PbO 将与筑炉材料中的 SiO2 效果,生成密度小的( XPbO · YSiO )。然后上浮到熔池表面而被除掉。假如炉底为碱性耐火材料,则铅的脱除很困难,这时有必要向熔体中吹入石英熔剂,增大风量并坚持较高的炉温(约 1250 ℃),使 PbO 和 SiO2 效果,产出。用石英造渣除铅办法耗时长,铜入渣丢失大,为了改善除铅效果,战胜该法缺陷,可改加磷铜,使铅以磷酸盐形状除掉。也能够氧化硼作熔剂,使铅呈铅形状脱去。   锡。处理青铜料时,猜中含锡高,锡与铜液态时互溶,在反射炉中锡氧化生成氧化亚锡( SnO )和二氧化锡( SnO2 ), SnO 呈弱碱性,能与 SiO2 造渣,还能部分蒸发。 SnO2 呈弱酸性,且溶于铜液中,这时需参加碱性溶剂(苏打或石灰石)使其造渣,生成不熔于铜液的锡酸钠( Na2O · SnO2 )或锡酸钙( CaO · SnO2 )。实践证明,参加由 30% 氧化钙和 70% 碳酸钠组成的混合熔剂,可使铜中含锡量从 0.029% 降到 0.002% 。运用 Fe2O3 与和 SiO2 各占 50% 的混合熔剂亦能使锡的含量很快下降至 0.005% ,并可除掉部分铅。   砷。从 As ? Cu 相图可知,砷与铜在液态时互溶,在氧化时,砷能氧化成易蒸发的 As2O3 ,然后随炉气排走,但也有少数砷氧化成 As2O5 ,并生成铜( Cu2O · XAs2O5 ),溶于铜液中,当铜液中有镍存在时,砷还能与铜、镍一同生成镍云母,这都给脱砷添加了困难。   锑。锑与铜在液态时无限互溶,并且铜与锑还能生成 Cu3Sb 和 Cu3Sb2 。与砷相同,在氧化时锑也生成易蒸发的 Sb2O3 ,还可生成溶于铜液的 Cu2O · Sb2O3 和 Cu2O · Sb2O5 。所以当处理含 As 和 Sb 高的杂铜时,氧化和复原进程需重复进行数次,使不蒸发的 As2O5 和 Sb2O5 复原为易蒸发的 As2O3 和 Sb2O3 ,未蒸发的 As 和 Sb ,加碱性熔剂处理。   金和银。金和银彻底富集在阳极铜中,在电解精粹时进入阳极泥,进一步处理阳极泥得以收回。   当悉数杂质脱除后,氧化期完毕,进程转入复原期。复原的效果一是使过氧化的铜氧化物复原成金属铜,二是脱除溶于铜液中的气体,由于在氧化完毕时,铜液中还存有 8% 左右的 Cu2O ,铜中含氧过多,将使铜变脆,延展性和导电性下降,故有必要进行复原。在复原期,运用重油、插木等复原时,发作的首要化学反响如下:   6Cu2O+2C2Hm=12Cu+2Co+mH2+2CO2   用 NH3 复原时,发作下列反响:   Cu2O+2NH3 6Cu+N2+3H2O   假如用天然气作复原剂,有必要对天然气进行所谓“重整”,不然,天然气中的成分 CH4 在 1000 ℃时分化产出很多 H2 ,虽能加强复原,但也添加铜对的吸附。

反射炉熔炼概述

2019-01-07 17:38:32

反射炉熔炼是传统的火法炼铜的主要方法。以前,世界上主要产铜国如美国、智利、赞比亚、秘鲁和前苏联等的粗铜主要是用反射炉生产的。据80年代初期不完全统计,全世界采用反射炉熔炼法的铜冶炼厂仍有60家,其产铜量在6000Kt/a以上,约占全世界铜熔炼总生产能力的53%。这是由于它具有对原料的适应性较好,对燃料种类无严格要求,炉体寿命长、易于操作,作业率高,适合大规模生产等优点。     如前所述,反射炉熔炼具有两大缺点,为数尚多的工厂已在对现存的反射炉进行技术改造,其主要改造途径是富氧空气熔炼和使用热风。     小名滨、卡勒托内斯、楚基卡马塔、罗卡纳、霍恩、国际镍公司和莫伦西等冶炼厂的反射炉使用了富氧熔炼,氧-燃料喷嘴(粉煤、油、气体燃料)安装在反射炉头部或靠近炉头的炉顶两侧,火焰直接喷射到料坡上熔化炉料,可以减小出炉烟气体积,提高烟气中SO2浓度。使用富氧可使火焰温度升高,提高对炉料的传热速率,减少排出烟气带走的显热,节约燃料。并且提高了炉子的生产率。由于烟气SO2浓度的提高,创造了与转炉烟气混合制酸的可能性,改善了对周围环境的污染。此外,海登铜冶炼厂原有反射炉和帕伊波特炼铜厂反射炉使用了350~390℃的热风,提高了炉子的热效率和床能率,降低了燃料消耗。     由于现今对环境保护提出了越来越严格的要求,重视节约能源,预料反射炉熔炼将不会再有发展,新建和改建的反射炉炼铜厂将普遍采用环境保护好的节能的工艺流程。

反射炉熔炼实例

2019-01-03 14:43:37

反射炉正常作业包括:配料、进料、升温、熔化、沉淀、放渣、放冰铜、放粗铋、封炉口、清炉等步骤,可划分为备料(配料、进料),司炉(升温、熔化、沉淀、清炉)、炉前(放渣、放冰铜、放粗铋、封炉口)等三个岗位,实行岗位责任制。 一、备料岗位。 包括如下工作: 进行配料计算,根据炉况及时调整配料比; 严格按配料比配料,铋精矿、氧化铋渣与熔剂(纯碱与萤石粉)、还原剂(煤粉)、置换剂(铁屑)应混合均匀,各种返炉渣料与烟尘应配足量。 处理渣料时应注意以下几点:①每炉处理量不宜太大,将铋精矿与返渣料混合处理,一般返渣量为炉料量的十分之一;②精炼渣含NaOH较高,处理时要适当减少配入的纯碱量。精炼渣每炉处理量不宜太大,以防跑炉;③对难熔的渣料,如炉底灰、烟道结等,每炉配入量最好不大于炉料量的百分之五,以防炉料的熔点升高过多:④当不得不单独处理返渣时,精炼渣中要配入较多的煤粉还原;浸出渣中要配入较多的纯碱和其中脉石成分造渣;铋烟灰中要适当配入铁屑与其中的硫反应,生成FeS入冰铜。 进料前要打开进料口盖,关闭反射炉与烟道间闸门,并检查箕斗式进料机的运转状况。 二、司炉岗位。 司炉工作的关键是控制各阶段的炉温,最大限度地节约燃料。 炉温的控制:进料时炉温为1000℃左右;熔化阶段逐渐升温至1250℃;保持高温熔炼六小时以上,直至炉料化平;保温沉淀阶段温度控制在1200~1250℃之间,沉淀时间不少于六小时,以使冰铜与炉渣中悬浮的铋珠能进入粗铋。 执行节煤司炉制:采用薄煤层、勤添煤、炉膛内保持零压或微负压、微正压操作,保持适当的过剩空气量,使在熔池前部形成高温区,碳在炉膛内完全燃烧成CO2。 三、炉前岗位。 炉前操作影响到渣含铋,冰铜含铋等技术指标。 由于冰铜熔点比炉渣低,流动性比炉渣好,所以在开炉口前,做好一切准备,开始放渣时,应根据“宽,浅、平”的要诀开炉口,使渣慢慢流出,不致影响炉内液体的分层状况,尽量使渣放干净后,再放冰铜。冰铜放出速度宜快,因为冰铜放出时,会从炉内带走大量热,使炉温急剧下降,如果操作缓慢,则冰铜尚未放净时,炉温已降低,炉内尚未放出的冰铜粘度增加,流动性变差,所以要在炉温尚未下降之前,把冰铜放出,炉内可存少量冰铜以降低冰铜含铋。 虹吸放粗铋时,要掌握炉内粗铋的存留量,以防止冰铜或渣进入虹吸的下端口,而将虹吸孔道堵塞。最好将虹吸放粗铋次序安排在进完炉料后,以免由于炉内存留液体金属量太少,使固态炉料掉入虹吸孔道而堵塞孔道。当虹吸口堵塞时,可用氧气通入虹吸口内烧通。

铜熔炼反射炉的选择

2019-01-07 17:38:34

反射炉熔炼炉料的能力可从每日400t到1200t左右,最大可达2000t以上。炉床面积通常为210~270m2,最大达360 m2。其主要结构尺寸选择计算如下: 一、炉床面积 炉床面积是指炉内渣线处平面面积,其计算公式为:            (5-1) 式中  F-炉床面积,m2;       A-每昼夜熔炼的固体炉料量,t/d;       a-床能率,t/(m2·d)。 二、炉膛宽度 炉膛内宽在6~10m之间。实践表明,增加炉子宽度有助于提高反射炉熔化料量和降低燃料率。大型熔炼反射炉宽度有达12m左右的。 确定反射炉内宽还须考虑安装燃烧器所需的宽度。            (5-2) 式中  B-炉膛宽度,m;       n-燃烧器个数,个;       S-燃烧器中心距,m;       b-外侧燃烧器中心至炉侧墙距离,m。 表1为熔炼反射炉宽度及燃烧器安装实例。 表1  熔炼反射炉及燃烧器安装实例厂别燃料炉床面积 m2炉膛宽度 m燃烧器个数燃烧器中心距mm燃烧器外距 mm外侧燃烧器到炉侧墙距 mm燃烧器安装角度大冶白银粉煤粉煤217 270 2108.10 9.30 7.806 7 5870 870 902.5620 660 7201875 2040 20803~5 3~5 ~4 三、炉膛长度 熔炼反射炉的炉长一般为27~36m,有的长达40m。在有液态转炉渣返回时,炉子宜长些;对难熔炉料、高粘度炉渣,炉子宜短些。 反射炉的长宽比一般为3.2~4.5,熔炼焙烧矿的炉子,其长宽比通常要比熔炼生精矿的大。 四、熔池深度 熔池平均深度为0.8~1.2m。铜锍产出率较大时,应选择较深的熔池,但熔池过深,不利于铜锍层的过热。铜锍层的厚度一般为0.4~0.7m,渣层厚度一般为0.4~0.5m。根据渣的粘度及炉温高低,一般要求熔体在熔池内停留15~25h。 五、炉膛空间高度 渣面以上的炉膛空间高度通常为2.5~3m,一般可按炉膛内气流速度5~7m/s计算,不宜过大,以延长炉顶寿命。 表2为熔炼反射炉主要结构参数实例。 表2  熔炼反射炉主要结构参数实例名称大冶白银一冶犹他直岛炉料生精矿生精矿+焙烧矿生精矿热焙烧矿熔炼方式料坡熔炼料坡熔炼料坡熔炼熔池熔炼炉床面积 m2217270210360297炉膛长度m29.943129.593633炉膛宽度m8.19.37.810.679.0长宽比3.73.34.03.13.7炉膛高度m4.104.413.974.403.76熔池深度m1.21.21.21.271.06燃烧器型式圆筒套管圆筒套管天然气烧嘴低压重油喷嘴燃烧器数量/个67586炉顶结构碱性吊顶同左同左同左

铋的反射炉熔炼

2019-01-03 15:20:48

炼铋反射炉与炼铜反射炉构造大体相似,只是由于生产能力(受原料来源的限制)的限制,熔池(熔炼室)大小一般在10米2以内,由于金属铋对砖缝有极强的渗透力,所以整个炉体砌筑在一个20毫米厚的钢板焊成的大铁箱内。 国内炼铋反射炉多采用烟煤作燃料,火膛(燃烧室)与熔池间用火墙(火桥)连接,进料采用炉顶中心装料法。 图1介绍了10米2铋反射炉的一般构造。地表面以下用钢筋混凝土浇灌基础,承受炉体,地面以上先砌炉基,炉基上置钢板焊制的大铁箱,炉体砌筑在铁箱内,四周围以钢立柱,用拉杆加固。 图1  10米2铋反射炉的一般构造 1-火膛;2-火桥;3-渣线:4-加料孔; 5-出料口;6-炉基;7-熔池;8-炉尾;9-虹吸口 一、铋反射炉的构造及主要尺寸 整个反射炉由炉基、炉底、炉墙、炉顶、炉尾烟道、加固支架、装料设备、虹吸出铋口、冰铜及渣放出口等几部分组成。 (一)炉基。炉基用红砖砌筑在基础之上,按设计图纸的要求,预先留出拉杆穿过部分,同时有利于炉底通风,以免当炉底漏铋时,铋液渗入地下。炉基高约0.5米,上面铺一层耐火泥拌和的细砂,以保持表面平整,使铁箱底部钢板严密吻合在炉基上,以保证均匀受压。 (二)炉底。反射炉底是指熔池的底部,砌筑在铁箱内,炉底由下至上之层次为:①钢板上衬一层石棉板;②根据炉底反拱的弧度砌铺底砖;③在铺底砖上用混合料(耐火砂、耐火混与水玻璃拌和)捣筑炉底;④用粘土砖砌下层炉底反拱;⑤用镁砖(铬镁砖)砌上层炉底反拱。 (三)炉墙。炉墙分内外两层,外层炉墙用粘土砖砌筑,内层炉墙渣线以上用粘土砖砌筑,渣线以下用镁砖砌筑。要求渣线以下砖缝小于1毫米。1米长度内膨胀缝宽度:粘土砖为5毫米,镁砖为10毫水。为了防止内层炉墙渣线腐蚀后向熔池内倒塌,常在每隔0.5~1米处,内外层搭砌一口砖联接。砌筑炉墙要留膨胀缝,以免砖体受热膨胀后变形。 (四)炉顶。铋反射炉炉顶宜用硅砖砌筑,当缺少硅砖时,也可用粘土砖、高铝砖、镁砖代替。拱式炉顶筑在固定于反射炉两侧的工字钢立柱上的由钢板焊成的拱脚树楔上,为了防止炉顶散热,拱顶砖上覆盖两层硅藻土轻质保温砖。 (五)炉尾烟道。炉尾呈船形逐渐收缩,尾部联接直升烟道,炉尾烟遭用粘土砖砌筑,直升烟道连接炉尾与水平烟道,使炉气经炉尾烟道、水平烟道,进入冷却器与除尘器中。 (六)加固支架。反射炉炉体砌筑在铁箱内,为了防止铁箱变形,在炉体两侧及两端,每隔1米左右设立柱,立柱用工字钢楔焊成,在每对立柱之间,穿过炉底下方空隙与炉顶上方,用直径30厘米圆钢拉杆拉紧。 (七)加料设备。炉料在地下配料仓混合后,放入容积0.3~0.5吨的箕斗内,用卷扬机提升箕斗至炉顶中心的两个加料口上,将炉料自炉顶加料口倾倒入熔池内,加料口直径40厘米,可采用水套式或铸铁式。加料口之盖板用铸铁铸造,经滑轮提升开闭。 (八)虹吸出铋口。虹啦出铋口位于炉尾侧部,如图1所示位置。虹吸日用镁砖砌筑,为一向上倾斜的孔道,下端口位于熔池内侧墙底部,为熔池底最低位置,被沉积在焙池内的熔融铋液所淹没。下端口与上端口倾斜穿过前侧墙,上端口位于炉外侧,即粗铋放出口。上下口之间高差0.22米,使熔池内保持一定量的粗铋,以免下端口为冰铜和炉渣所堵塞,并防止生成炉底结。虹吸口下的水平出铋口,只在停炉时将炉内粗铋全部放出时用。 (九)冰铜及炉渣放出口。设于炉前中部,为一上部装有工作门的阶梯式放出口,用镁砖砌筑。 二、反射炉作业基本条件 (一)炉料及装料方法。炉料的组成已如前述,采用周期性熔炼,可单独处理铋矿石,办可单独处理氧化铋渣,也可处理铋精矿与氧化铋渣的混合炉料。 10米2反射炉炼铋的装料方法,多采用炉顶中心进料。此法的优点是炉料受热面大,可以很好地利用炉顶与炉墙的辐射热,炉料熔化快;缺点是烟尘率较大,侧墙渣线部位容易腐蚀。 (二)燃料及燃烧方法。国内10米2炼铋反射炉,采用块状烟煤作燃料,其发热量在27196~29288焦耳/千克,燃料耗量一般为300~350千克/小时。 紧靠熔池筑有燃烧室,火膛面积的选择为:F火/F熔=0.15~0.22。熔池与火膛之间用火墙联接,火墙高度约0.65~0.75米。 10米2炼铋反射炉炉长与炉温间的变化关系如图2所示。图2  铋炉炉长与炉温间的变化关系 从图2可见高温区在炉前部三分之一处。 (三)烤炉。温度对耐火材料的热膨胀性影响非常大,某些耐火材料因温度的升高还伴随有晶形转变,所以,使用耐火材料砌体进行高温熔炼,必须预先进行从低温向高温逐步升温的预热过程,这就是烤炉。由于炉膛内使用的耐火制品材质不同,所以烤炉升温的条件也不相同,必须制订合理的烤炉升温制度。 由于耐火材料的热膨胀性可用线膨胀的百分数α表示,故式中L2-耐火材料加热到规定温度后长度(米);     L1-耐火材料加热开始前的长度(米)。 热膨胀性只取决于耐火材料的化学矿物成分。耐火材料的材质有镁石质、钢玉质、粘土质与氧化硅质等几种,其中镁石质(如镁砖、铬镁砖)、钢玉质(如高铝砖、刚玉砖)、粘土质(如熟料及不烧粘土砖、半酸性耐火砖)耐火材料制品,它们的线膨胀系数α与温度差不多成正比,只要均匀升温,就可以保证耐火材料均匀膨胀。独有氧化硅质(如硅砖)耐火材料制品,当温度升至600℃左右时,曲线的斜率突然变化,使曲线向水平方向发展,直至1100℃以后,曲线才又硅著上升。这是因为SiO2在573℃时产生晶形转变.由β-石英→α-石英,体积膨胀0.82%,而在1000℃开始由α-石英→α-大硅石,但过程进行很慢,在1300℃以上时才快些,体积膨胀15.4%,所以在烤炉升温时,为了稳定晶形,必须在晶形转变阶段有一个恒温过程。 一般铋反射炉大修后烤炉9~12天,小修后烤炉5~7天。 烤炉质量与炉寿命有很大关系,必须严格按升温表执行。特别是在恒温阶段,由于存在硅砖的晶形转变而引起的体积膨胀,如果温度波动,就将使耐火材料反复膨胀收缩,从而损环耐火材料,缩短炉体寿命。 三、反射炉熔炼实践 反射炉正常作业包括:配料、进料、升温、熔化、沉淀、放渣、放冰铜、放粗铋、封炉口、清炉等步骤,可划分为备料(配料、进料),司炉(升温、熔化、沉淀、清炉)、炉前(放渣、放冰铜、放粗铋、封炉口)等三个岗位,实行岗位责任制。 (一)备料岗位。包括如下工作: 进行配料计算,根据炉况及时调整配料比; 严格按配料比配料,铋精矿、氧化铋渣与熔剂(纯碱与萤石粉)、还原剂(煤粉)、置换剂(铁屑)应混合均匀,各种返炉渣料与烟尘应配足量。 处理渣料时应注意以下几点:①每炉处理量不宜太大,将铋精矿与返渣料混合处理,一般返渣量为炉料量的十分之一;②精炼渣含NaOH较高,处理时要适当减少配入的纯碱量。精炼渣每炉处理量不宜太大,以防跑炉;③对难熔的渣料,如炉底灰、烟道结等,每炉配入量最好不大于炉料量的百分之五,以防炉料的熔点升高过多:④当不得不单独处理返渣时,精炼渣中要配入较多的煤粉还原;浸出渣中要配入较多的纯碱和其中脉石成分造渣;铋烟灰中要适当配入铁屑与其中的硫反应,生成FeS入冰铜。 进料前要打开进料口盖,关闭反射炉与烟道间闸门,并检查箕斗式进料机的运转状况。 (二)司炉岗位。司炉工作的关键是控制各阶段的炉温,最大限度地节约燃料。 炉温的控制:进料时炉温为1000℃左右;熔化阶段逐渐升温至1250℃;保持高温熔炼六小时以上,直至炉料化平;保温沉淀阶段温度控制在1200~1250℃之间,沉淀时间不少于六小时,以使冰铜与炉渣中悬浮的铋珠能进入粗铋。 执行节煤司炉制:采用薄煤层、勤添煤、炉膛内保持零压或微负压、微正压操作,保持适当的过剩空气量,使在熔池前部形成高温区,碳在炉膛内完全燃烧成CO2。 (三)炉前岗位。炉前操作影响到渣含铋,冰铜含铋等技术指标。 由于冰铜熔点比炉渣低,流动性比炉渣好,所以在开炉口前,做好一切准备,开始放渣时,应根据“宽,浅、平”的要诀开炉口,使渣慢慢流出,不致影响炉内液体的分层状况,尽量使渣放干净后,再放冰铜。冰铜放出速度宜快,因为冰铜放出时,会从炉内带走大量热,使炉温急剧下降,如果操作缓慢,则冰铜尚未放净时,炉温已降低,炉内尚未放出的冰铜粘度增加,流动性变差,所以要在炉温尚未下降之前,把冰铜放出,炉内可存少量冰铜以降低冰铜含铋。 虹吸放粗铋时,要掌握炉内粗铋的存留量,以防止冰铜或渣进入虹吸的下端口,而将虹吸孔道堵塞。最好将虹吸放粗铋次序安排在进完炉料后,以免由于炉内存留液体金属量太少,使固态炉料掉入虹吸孔道而堵塞孔道。当虹吸口堵塞时,可用氧气通入虹吸口内烧通。 四、反射炉故障及排除 (一)火膛炉顶烧塌。这是反射炉容易发生的故障。由于火膛炉顶温度变化激烈,高温时要承受1400℃左右温度,低温耐冷却至500℃左右,而每熔炼一炉温度反复剧变一次,使火膛炉顶耐火材料容易损坏。同时,筑炉质量对此影很大:如耐火材料受潮或机械损坏;筑炉时膨胀缝留得不足,使炉顶膨胀向上凸变形,砖体间互相挤压碎裂;或膨胀缝留得太宽,使炉顶下塌。还有些原因;如未能及时松、紧拉杆,造成砖体挤压或砖体下塌,使耐火材料受损;烤炉质量对此也有影响,不按升温制度烤炉,造成温度激烈波动,使耐火材料损坏;操作不慎的影响,如焦点区在火膛炉顶部,使炉顶承受过高的温度,或清炉前火膛过冷,易损坏炉顶耐火材料。 火膛炉顶烧塌可以进行抢修。抢修方法是在放冰铜后,降低炉温,拆除火膛炉顶烧坏部分,将湿润后的冷炉渣填充入火膛,使其平炉顶呈一定弧度,代替烘顶木模,再在熔池中进料三分之二以上,以降低炉顶温度,然后砌火膛炉顶,一般抢修时间为四小时。 (二)熔池侧墙烧垮。反射炉侧墙是内层与外层分别砌筑的,因为熔体腐蚀渣线,渣线附近的砖易损坏,从而造成熔池内墙部分烧垮,使高温火焰直接烧在拱脚大楼上。如不及时抢修,就会烧化大楔,使炉顶倒塌。 抢修方法是放完冰铜后,降低炉温,拆开烧垮的内侧墙部位的外侧墙,用钢板挡住熔池辐射热,进料三分之二,以降低炉温,再进行抢修,先砌内侧墙,再砌外侧墙。 (三)炉料难熔化。炉料难化的主要原因是配料不当,炉温不够、炉膛抽力不足,配料不当是指熔剂加入量不足,焦粉加入过量,高熔点返料加入过多,精矿中难熔组分含量高等:炉温的影响如火膛炉栅结死,避风面积小且分布不均匀,烟煤质量差,灰分多,发热值低,火焰短,或司炉工技术不熟练,工作责任心不强,如投煤不均匀,风量调节不当,造成炉温波动,保持不了炉料熔化温度等。抽力的影响如烟道堵塞、烟气受潮,布袋积尘厚,掉袋多,管道漏风等。必须针对炉况,分析矛盾,找出原因,及时处理。 (四)炉结。产生炉结是反射炉粗炼的主要故障,在生产实践中,由于炉内炉结恶性增长而被迫停炉的现象,在各炼铋厂均有发生,但对炉结产生的原因与排除措施,则研究不足。 某厂根据对炉结进行的多次分析研究,认为铁是炉结的主要组成部分,现将几种炉结化学成分列于表1。 表1  反射炉炉结的主要组成(%)从表1可见,炉结可分为两类: 第一类炉结-黄渣:上表中1~6号炉结,其中铁与砷含量之和为75%~85%,但铁与砷之间的波动范围较大,这实际上就是黄渣的成分,即Fe2As、Fe3As2、Fe5As等。 冶金炉内产生黄渣,必须具备三个条件;即炉内还原性气氛强;炉料中砷含量较高;有金属铁存在。而铋反射炉内由于煤粉加入过量或炉料混合不匀,个别区域内还原气氛可能较强;铋精矿中砷含量较高,加之烟尘返回配料,使氧化砷形成闭路循环,被还原为单体砷,而与金属铁组成黄渣。特别是当炉料中氧化铋渣搭配量大时,为了使此类氧化渣还原,常常额外增加煤粉的配入量,因而使炉内还原气氛增强,所以大量处理氧化铋渣时,黄渣在炉内出现的机会更多。 同时,铁屑质量对形成黄渣影响极大。若使用铸铁屑作置换剂,则黄渣不易产生,若使用钢屑,则黄渣易于产生。分析其原因,是因为在一定范围内,铁的熔点随铁中渗碳量升高而降低,如含碳4.3%的铁碳低共熔合金,当在1150℃就熔化了,而含碳在1.7%以下的钢,熔点高,结构致密。从Fe-C系状态图上可见。(见图3)图3  Fe-C系状态图 在铋反射炉的正常熔炼作业温度下,钢屑加入后与炉料进行置换反应的速度慢且不完全,一部分钢屑在赤热状态下与单体砷接触组成黄渣,密度约为7克/厘米3,界于冰铜与粗铋之间,熔点波动范围较大,甚至1300℃时仅能使其软化。黄渣产生后如不及时处理,则会迅速增厚,堵塞熔池,甚至死炉。 为了避免黄渣产生,应严格控制炉内弱还原性气氛,置换剂应尽量使用铸铁屑,对产出的烟尘应另行处理。 当炉内已出现黄渣时,可采用高温熔化法:放完冰铜后,露出黄渣固态表面,在1250~1350℃高温下熔化1~2小时,边化边放。对熔点高的黄渣,则在高温下由操作工人用粗大钢钎和木材插入炉内黄渣层下,依靠湿木材逸出气体的冲力和人力,强行将软化的黄渣破碎扒出。 从图4Bi-Fe系状态图可见,铋与铁在固态或液态均不互济而分层,所以黄渣中的铋主要是机械裹夹,可用熔析法分离。图4  Bi-Fe系状态图 第二类炉结-积铁:表1中所列第7号炉结,含砷不高,含铁达53.16%,经过物相分析,发现铁主要以Fe3O4状态存在(其中含Fe3O4 50%~70%)。根据对图5的分析,Fe3O4熔点1597℃,在铋反射炉熔炼温度下,不可能熔化,在炉内形成固态炉结,在炉尾部或侧墙附近及炉底部凝积,使熔池逐渐堵塞。 磁性氧化铁的分解程度,与温度及与SiO2的接触有关:   反应的平衡压力pSO2随温度升高而增大,当炉内有过量的SiO2存在时,温度高于1000℃,反应能迅速进行,70%~85%的Fe3O4在炉内分解。 金属铁可使Fe3O4还原为FeO造渣:处理此类炉结必须具备的条件:高温、过量的SiO2存在、FeS的存在,必要时加入铁屑搅动,增加接触的机会。图5  Fe-O系状态图

反射炉故障及排除

2019-01-03 14:43:33

一、火膛炉顶烧塌。 这是反射炉容易发生的故障。由于火膛炉顶温度变化激烈,高温时要承受1400℃左右温度,低温耐冷却至500℃左右,而每熔炼一炉温度反复剧变一次,使火膛炉顶耐火材料容易损坏。同时,筑炉质量对此影很大:如耐火材料受潮或机械损坏;筑炉时膨胀缝留得不足,使炉顶膨胀向上凸变形,砖体间互相挤压碎裂;或膨胀缝留得太宽,使炉顶下塌。还有些原因;如未能及时松、紧拉杆,造成砖体挤压或砖体下塌,使耐火材料受损;烤炉质量对此也有影响,不按升温制度烤炉,造成温度激烈波动,使耐火材料损坏;操作不慎的影响,如焦点区在火膛炉顶部,使炉顶承受过高的温度,或清炉前火膛过冷,易损坏炉顶耐火材料。 火膛炉顶烧塌可以进行抢修。抢修方法是在放冰铜后,降低炉温,拆除火膛炉顶烧坏部分,将湿润后的冷炉渣填充入火膛,使其平炉顶呈一定弧度,代替烘顶木模,再在熔池中进料三分之二以上,以降低炉顶温度,然后砌火膛炉顶,一般抢修时间为四小时。 二、熔池侧墙烧垮。 反射炉侧墙是内层与外层分别砌筑的,因为熔体腐蚀渣线,渣线附近的砖易损坏,从而造成熔池内墙部分烧垮,使高温火焰直接烧在拱脚大楼上。如不及时抢修,就会烧化大楔,使炉顶倒塌。 抢修方法是放完冰铜后,降低炉温,拆开烧垮的内侧墙部位的外侧墙,用钢板挡住熔池辐射热,进料三分之二,以降低炉温,再进行抢修,先砌内侧墙,再砌外侧墙。 三、炉料难熔化。 炉料难化的主要原因是配料不当,炉温不够、炉膛抽力不足,配料不当是指熔剂加入量不足,焦粉加入过量,高熔点返料加入过多,精矿中难熔组分含量高等:炉温的影响如火膛炉栅结死,避风面积小且分布不均匀,烟煤质量差,灰分多,发热值低,火焰短,或司炉工技术不熟练,工作责任心不强,如投煤不均匀,风量调节不当,造成炉温波动,保持不了炉料熔化温度等。抽力的影响如烟道堵塞、烟气受潮,布袋积尘厚,掉袋多,管道漏风等。必须针对炉况,分析矛盾,找出原因,及时处理。 四、炉结。 产生炉结是反射炉粗炼的主要故障,在生产实践中,由于炉内炉结恶性增长而被迫停炉的现象,在各炼铋厂均有发生,但对炉结产生的原因与排除措施,则研究不足。 某厂根据对炉结进行的多次分析研究,认为铁是炉结的主要组成部分,现将几种炉结化学成分列于表1。 表1  反射炉炉结的主要组成(%)从表1可见,炉结可分为两类: 第一类炉结-黄渣:上表中1~6号炉结,其中铁与砷含量之和为75%~85%,但铁与砷之间的波动范围较大,这实际上就是黄渣的成分,即Fe2As、Fe3As2、Fe5As等。 冶金炉内产生黄渣,必须具备三个条件;即炉内还原性气氛强;炉料中砷含量较高;有金属铁存在。而铋反射炉内由于煤粉加入过量或炉料混合不匀,个别区域内还原气氛可能较强;铋精矿中砷含量较高,加之烟尘返回配料,使氧化砷形成闭路循环,被还原为单体砷,而与金属铁组成黄渣。特别是当炉料中氧化铋渣搭配量大时,为了使此类氧化渣还原,常常额外增加煤粉的配入量,因而使炉内还原气氛增强,所以大量处理氧化铋渣时,黄渣在炉内出现的机会更多。 同时,铁屑质量对形成黄渣影响极大。若使用铸铁屑作置换剂,则黄渣不易产生,若使用钢屑,则黄渣易于产生。分析其原因,是因为在一定范围内,铁的熔点随铁中渗碳量升高而降低,如含碳4.3%的铁碳低共熔合金,当在1150℃就熔化了,而含碳在1.7%以下的钢,熔点高,结构致密。从Fe-C系状态图上可见。(见图1)图1  Fe-C系状态图 在铋反射炉的正常熔炼作业温度下,钢屑加入后与炉料进行置换反应的速度慢且不完全,一部分钢屑在赤热状态下与单体砷接触组成黄渣,密度约为7克/厘米3,界于冰铜与粗铋之间,熔点波动范围较大,甚至1300℃时仅能使其软化。黄渣产生后如不及时处理,则会迅速增厚,堵塞熔池,甚至死炉。 为了避免黄渣产生,应严格控制炉内弱还原性气氛,置换剂应尽量使用铸铁屑,对产出的烟尘应另行处理。 当炉内已出现黄渣时,可采用高温熔化法:放完冰铜后,露出黄渣固态表面,在1250~1350℃高温下熔化1~2小时,边化边放。对熔点高的黄渣,则在高温下由操作工人用粗大钢钎和木材插入炉内黄渣层下,依靠湿木材逸出气体的冲力和人力,强行将软化的黄渣破碎扒出。 从图2Bi-Fe系状态图可见,铋与铁在固态或液态均不互济而分层,所以黄渣中的铋主要是机械裹夹,可用熔析法分离。图2  Bi-Fe系状态图 第二类炉结-积铁:表1中所列第7号炉结,含砷不高,含铁达53.16%,经过物相分析,发现铁主要以Fe3O4状态存在(其中含Fe3O4 50%~70%)。根据对图5的分析,Fe3O4熔点1597℃,在铋反射炉熔炼温度下,不可能熔化,在炉内形成固态炉结,在炉尾部或侧墙附近及炉底部凝积,使熔池逐渐堵塞。 磁性氧化铁的分解程度,与温度及与SiO2的接触有关:   反应的平衡压力pSO2随温度升高而增大,当炉内有过量的SiO2存在时,温度高于1000℃,反应能迅速进行,70%~85%的Fe3O4在炉内分解。 金属铁可使Fe3O4还原为FeO造渣:处理此类炉结必须具备的条件:高温、过量的SiO2存在、FeS的存在,必要时加入铁屑搅动,增加接触的机会。图5  Fe-O系状态图

铜熔炼反射炉车间配置参考图

2019-01-07 07:52:04

熔炼反射通常和转炉一起考虑车间配置。配置方式有反射有反射炉厂房纵向中心线与转炉厂房纵向中心线相互平行(见图1)和相互垂直(见图2)两种。原则上,平行配置适用于仅有1台反射炉的车间,垂直配置适用于有两台以上反射炉的车间。图1  210m2熔炼反射炉车间与转炉车间平行配置图 1-反射炉;2-粉煤燃烧器;3-螺旋给煤机;4-加料胶带输送机;5-铜锍包;6-渣罐车;7-转炉渣溜槽;8-50t转炉;9-粉煤仓;10-料仓;11-胶带输送机;12-鼓风机;13-桥式起重运输机 因故图表不清,需要者可来电免费索取。图2  240m2熔炼反射炉车间与转炉车间垂直配置图 1-反射炉;2-粉煤燃烧器;3-螺旋给煤机;4-加料胶带输送机; 5-铜锍包;6-卷扬机;7-渣罐车;8-转炉渣溜槽;9-50t转炉; 10-粉煤仓;11-吊车;12-吊车 因故图表不清,需要者可来电免费索取。

铜熔炼反射炉的炉内压力和温度

2019-01-07 17:38:32

熔炼反射炉一般保持微负压(0~-20Pa)操作,也有保持微正压的。压力测点一般设在距烟气出口烟道2~3m处的炉顶中心,炉内压力一般由废热锅炉后的闸门自动控制。加拿大弗林·弗朗厂240m3熔炼反射炉内压力保持为-24Pa,由设在废热锅炉和排风机间的水冷闸门或副烟道进口处的水冷闸门调节。 各种染料的燃烧器都应让染料可充分沿炉长分布,形成广泛的高温区,使大部分炉料在这里发生熔炼作用。燃烧气体距燃烧器端7~8m处温度最高,热量传给炉料及炉渣表面。燃烧气体在接近炉尾时,温度稳定下来,使铜锍和炉渣沉降分离。离炉烟气温度比炉渣温度高50~100℃,将烟气引入废热锅炉可利用约50%~60%的显热。 熔炼反射炉炉头温度一般为1500~1550℃,炉尾温度为1250~1300℃,出炉烟气温度为1200℃左右。当粉煤质量低劣或粒度较粗、水分较高时,炉头温度会降低,炉尾及烟气温度升高。若粉煤挥发分高、质量较好、粒度又很细时,将引起炉头温度过高。 设计应充分考虑对炉内压力和温度的各种测量仪表和自动控制装置,以及当仪表损坏或自动控制失灵时,有由人工处理的可能性。 表1为熔炼反射炉炉内压力和温度测量实例。 表1  反射炉炉内压力盒温度测量实例厂别炉床面积 m2炉内压力 Pa炉头温度 ℃炉尾温度 ℃烟气温度 ℃大冶21715~20①1450~15201200~13001200大冶2700~201450~1500②1200~12501150白银210-5~151500~1550③1250~13001200犹他360~181360~14771200~13401200~1310钦诺21515931270①炉内压力测点在距离炉子后墙9m的炉顶中心; ②炉头温度测点在距炉子前墙6.7m的炉顶中心,炉尾温度测点在距炉子后墙6.05m的炉顶中心,出炉烟气温度测点在斜坡烟道上,炉内压力的测点在距炉子后墙9m处; ③炉内压力测点在距炉子后墙1m侧炉顶中心。

锡精矿连续反射炉熔炼

2019-01-08 09:52:37

在反射炉中不间断加入锡精矿冶炼粗锡的过程。为改变传统反射炉熔炼锡精矿间断作业、生产效率低、燃料消耗大、劳动条件差的落后状况,中国云南锡业公司与协作单位共同开发出了锡精矿连续反射炉熔炼法,并用于正常工业生产。其主要特点是,连续自炉顶加料,在炉内沿两侧炉墙向炉中心形成料坡,进行不间断熔炼。熔炼产物粗锡和炉渣分别自虹吸口和渣用口间断排放。连续熔炼的床能率为1.7t/(m2·d),锡直收率76%,炉渣含锡10%。