您所在的位置: 上海有色 > 有色金属产品库 > 铝电解阳极碳块

铝电解阳极碳块

抱歉!您想要的信息未找到。

铝电解阳极碳块价格

更多
抱歉!您想要的信息未找到。

铝电解阳极碳块厂家

更多

大连瑞源动力有限公司

天津市佰瑞得商贸有限公司

益阳市久通冶炼有限公司

优锦化工(上海)有限公司

铝电解阳极碳块专区

更多
抱歉!您想要的信息未找到。

铝电解阳极碳块百科

更多

铝电解用炭阳极

2019-01-02 09:52:54

铝电解用炭阳极用于砌筑铝电解槽。  铝电解槽生产时的温度不太高,但是电解槽中电解质氟化盐有强烈的腐蚀性。一般耐火材料在氟化盐电解质及熔融铝的化学侵蚀下很快被腐蚀损坏,所以铝电解槽虽然也用一些粘土耐火砖,但接触电解质及熔融铝的槽膛都是采用炭素材料砌筑而成的。   生产铝电解用炭阳极的原料是无烟煤和冶金焦(有时也加入石墨化冶金焦或石墨碎)。   铝电解用炭阳极的技术要求和包装、标志,中国冶标(YB/T5230-93)作了规定。   铝电解用炭阳极的牌号分为TY-1和TY-2。

预防铝电解槽碳渣的产生

2019-01-15 14:10:21

铝电解槽产生的碳渣严重时可降低电效3~5%,致使吨铝电耗增加400~700度,所以对电解槽十分不利,200kA电解槽采取人工捞碳渣每日每槽可捞出碳渣20多公斤,吨铝13公斤,占吨铝碳耗在2.5%左右。为了更好地采取有效措施预防碳渣大量产生,可相应采取以下技术措施。    一、      保持适当厚度的保温料    实践证明,保温料过薄易使空气与阳极表面接触,使碳块表面氧化掉渣;过厚则可导致远槽温度一般应保持在14~18cm之间。另外,粉碎的面壳块粒度是越细越好,如果多数粒度直径超过5cm以上,易造成透气氧化掉渣的现象。    二、      保持适当的电解质水平     电解质水平的高低是决定碳块氧化掉渣的主要因素之一。电解质水平过低会使电解槽蓄热量减少,不利于槽况稳定,但电解质过高,特别是超过残极(指两天内要换的极)平面,且950度左右的电解质溶液循环流淌在碳块的表面时,致使固态保温料溶化变成流体,使碳块表面会加剧氧化,碳渣量激增。所以,电解质水平保持高度一般在19~21cm之间,     三、      采用无下棱抗冲刷阳极碳块     无下棱碳块是将碳块的侧面与底面的过渡角由90度改造成倒角状或圆弧状。停槽后细心观察前两天换上的新极,新极基本不导电,但下棱却由直角变成了圆弧状,这说明此时的圆弧角形成的主要原因是由电解质冲刷阳极碳块,来减少无用下棱变成的碳渣,据悉,挪威的一家铝厂已应了该方案,过渡角为圆弧状。无下棱碳块主要优点是抗冲刷力强,能有效减少槽中碳渣,从而提高电效。     经计算,200kA电解槽上使用的1450×660×570mm的阳极碳块,下棱由直角改为50450的倒角,单块重量减轻12公斤,吨铝碳耗可降低8公斤,每吨按2500元计算,吨铝成本降低20元。由于碳渣减少,槽电阻减少,因而可降低槽电压,从而可提高电效0.5%以上,降低吨铝电耗75度,按每度0.4元计算可降低吨铝成本30元。两项成果合计可使吨铝生产成本降低50元。以我国中小规模的年产10万吨铝锭企业为例,年可净增利润500万元。

铝电解技术中减少碳渣的措施

2018-12-19 09:53:17

近年来,随着大型铝电解槽生产技术的进步和管理水平的快速推进,电解槽生产工艺技术参数的匹配更加合理,电解槽运行的稳定性不断提高,电解槽各项生产技术指标不断提升。  但是铝电解生产过程中原材料质量对电解槽运行的稳定性及生产指标的影响越来越引起企业生产管理人员的关注,特别是阳极质量。阳极碳块作为铝电解的心脏部分,其质量的好坏,直接影响着电解的进行和产品的质量。  如果碳块的质量达不到要求,将在铝电解质溶液中产生过多的碳渣,对铝电解过程产生一系列不利的影响,极易造成电解质电压升高,导致热槽的产生,这不但引起电解消耗的增加,而且当热槽产生时将恶化铝电解的生产的诸多技术经济指标,同时对电解槽的寿命也有影响,因此减少铝电解生产中的碳渣产生成为铝电解槽生产管理中的重要一环。  碳渣产生的根源  阳极质量不稳定。预焙碳块是由石油焦、沥青焦、沥青通过破碎、煅烧、配料、混捏等工序烧制而成,如果采用的原材料及工艺不合乎要求就会产出不合格的碳块。如:耐压强度低、空隙度大、杂质大等,从而导致阳极的氧化和碳粒在阳极表面的脱落进入电解质中形成碳渣,有时会形成掉块和裂缝,在电解质的冲蚀和洗刷下,形成碳渣。由于碳块质量而引起的碳渣是生产中碳渣形成的主要原因。  预焙阳极质量不合格是电解生产过程中碳渣产生的主要原因,然而预焙阳极质量的好坏又与生产阳极所使用的原材料,如石油焦、或市场上直接采购的锻后焦,煤沥青、残极等炭素生产用原材料中微量元素对阳极质量的影响。  炭素生产的主要原材料石油焦,其中的V、Ni等杂质元素对空气反应性影响非常明显,而Na对CO2反应性和空气反应性有着较强的催化作用。其次,电解生产过程中更换出的残极,表面粘附的电解质若清理不干净,阳极生产配料时带入到阳极中,特别高分子比的电解质,带入大量的Na。另外工艺波动和原料配方等也会生产出不合格的炭块。  预焙阳极从焙烧炉内出炉后阳极表面粘结的填充料清理不干净,进入电解槽后,随着电解反应的进行,逐渐脱落进入电解质中成为碳渣。  电解生产过程中产生的碳渣  作业操作质量较差引起的掉渣。换极作业质量十分重要,尤其在没有按照技术规范操作时,阳极也易掉渣。新阳极在安装初期不能实现全电流工作,阳极安装过低时浸润在电解质中受其冲刷易形成掉渣;另外,新极安装过低时,在电流导全时由于极距较均值要小,造成电流过大,导致强热应力,破坏阳极强度形成爆块和掉渣。其他作业质量,如氧化铝保温料覆盖不当,造成阳极外露产生阳极氧化掉渣,尤以出铝口、烟道端、下料口的阳极角部较为明显。  电解槽槽况不佳引起的掉渣。当电解槽况出现异常时,阳极的工作状况也随之恶化,如槽温升高,阳极的抗氧化性减弱,同时槽温高,侧部炉帮化空易富集碳渣,电解槽排渣功能减弱,易造成电解质含碳。1.4.2电解生产过程中,精细化管理不到位,作业质量粗糙,换极后保温料封盖不密实,甚至到处冒火,或暴露在空气中,高温阳极与空气接触后,氧化掉渣。  下料打壳锤头由于长期高温炙烤变形,靠近锤头处的阳极由于锤头粘附电解质,锤头增大,打壳下料过程中将阳极表面的保温料打掉,露出阳极表面,与空气接触氧化掉渣。  新建电解槽装炉时使用的焦粒,在电解槽焙烧启动结束后,打捞不干净遗留的碳渣。  阴极炭素内部的冲蚀剥落。在铝电解过程中,阴极炭素内部的冲蚀剥落和破碎是铝电解溶液产生碳渣的又一来源。铝电解槽启动后,由于钠的渗透,电解质溶液和铝的侵蚀和冲刷,阴极炭素内衬不久就会产生剥落,钠渗入阴极炭块是引起剥落的主要原因。钠的渗入使炭块内部产生应力,导致炭块体积膨胀,并变得疏松、多孔,以致剥落形成碳渣。  二次反应生成游离的固态碳。铝电解过程中的二次反应,不仅降低电流效率,而且还带来另一方面的不利的影响,即溶解在电解质溶液中的铝将阳极气体中的CO2和CO还原C,在电解质溶液中形成细微的游离态碳渣。  其反应有两种:  第一种反应为,在电解质的溶液中溶解的铝与CO2反应生成CO,而CO又与AL反应生成C,即:  2AL(溶解)+2CO2=AL2O3+3CO(1)  2AL(溶解)+3CO=AL2O3+3C(2)  第二种反应为,电解质中的铝直接将CO2还原成C,  3AL(溶解)+3CO2=2AL2O3+3C(3)  在上述两种反应中反应(3)对于在铝电解质中生成碳渣的作用,比反应(2)的作用要大,但这两种反应所产生的碳渣,不是电解质溶液中产生碳渣的主要原因。  碳渣对电解过程的影响  正常生产过程中,随着铝电解生产的持续进行,炭阳极随着生产的进行而慢慢地消耗,正常生产阳极消耗产生的碳渣,在合理的工艺技术条件下,可以从电解质中顺利的分离出来,对生产没有太大的影响,但是实际生产中很难有这种相对理想的生产状态存在。因此,作为生产管理人员要时刻关注电解质内碳渣量的变化,以减少对电解生产的影响。  增加电能消耗  铝电解溶液中的碳渣,导致电解质的电阻增大,其结果造成电解质电压降的升高,增加铝电解生产的电能消耗。据具有关专业人士报道,当铝电解质溶液中的碳渣含量达到1%(重量)时,电解质导电率约降低11%,由此可见碳渣对电解质的导电率的不利影响是极为显著的,碳渣的颗粒越小,对降低电解质的导电率的作用越大。  形成热槽  若电解质中的碳渣积累到一定浓度时,由于比电阻的增大,必定造成电解质电压降升高,从而使电解槽两极间的电能收入额外增加,引起电解质过热,槽温升高,形成热槽。热槽形成后,电解槽的热平衡被破坏,正常工艺技术条件受到影响,同时会使电解槽的阴极受到损坏,影响槽寿命,此外在处理热槽时,还消耗大量的氟化盐,故其危害作用是非常巨大的。  造成电流空耗  当铝电解质熔液表面漂浮有大量碳渣时,部分碳渣成为炭素阳极和侧部或阴极的导电通道,一部分电流会直接通过碳渣进入阴极或侧部,而不能参与电解反应,形成侧部漏电,电流空耗,严重时会造成侧部漏炉。  阳极长包  由于碳渣大量聚集,及时不能清理出去,极易诱发电解槽角部或边部长包或长牙,导致电解槽电压摆动或压槽。  诱发阳极效应  大量碳渣漂浮在电解质表面,导致氧化铝不能及时溶解到电解质中,从而诱发阳极效应。  增加工人劳动强度  电解质中碳渣含量过大时,必须组织工人打捞,打捞碳渣不仅带走大量的电解质和热量,影响电解槽稳定,而且增大氟化盐消耗。打捞碳渣时要在电解槽的不同部位打洞,便于捞取碳渣,工人劳动量明显增加。  减少炭渣的措施  做好原材料供应管理  石油焦、煤沥青和煅后焦等炭素生产的主要原材料要选择性的采购,并根据检测结果及炭块抗氧化性能进行搭配使用,对产品质量不稳定的供应商采取停止供货措施。对于掺配的残极,其表面的电解质要全部清理干净,尽量减少电解质进入阳极内。  提高阳极制作工序的加工质量  提高炭素阳极制品质量,其根本在于提高阳极系统工序生产质量,即石油焦煅烧质量,成型配方、糊料混捏温度及混涅质量、生块成型质量,生块高温焙烧质量。规范各项作业操作程序,严格执行技术标准,确保阳极表面和内在理化指标满足电解生产的需要。  加强微量元素的分析检验  对影响炭阳极质量,导致影响炭阳极在电解槽中使用效果和铝质量的微量元素,如V、Na、S、Ca、Fe等均要严格控制,造成电解槽炭阳极掉渣的V、Na等活性强的元素,更应予以关注,并通过不同产地和质量指标混合配料,使其达到最佳配比。  改进阳极炭块形状,采用下表面无棱角抗冲刷阳极碳块。  下表面无棱角碳块是将碳块的侧面与底面的过渡角由90度直角形状改造成倒角状或圆弧状。通过试验,可以观察到1天前换上的新极,导电性能很差,但下棱角却由直角变成了圆弧状,说明此时的圆弧状形成的主要原因是由电解质冲刷阳极炭块,而炭块的这一直角全部变成碳渣进入到电解质中。无下棱碳块主要优点是抗冲刷力强,能有效减少槽中碳渣量。  选用高质量的阳极炭块  在前面关于碳渣来源中的讨论中,由于炭块质量不合格是造成炭粒脱落生产碳渣的主要原因。因此采用高质量的炭块是减少电解质溶液产生碳渣的重要措施。因此,预焙阳极块进厂之前就要进行严格的质量检验,防止不合格阳极进入生产线。  选用优质的阴极碳块  与阳极碳素材料一样,阴极碳块的质量优劣对碳块的剥落程度有影响,在砌筑电解槽阴极时采用优质阴极侧部碳块和底部碳块能较有效地承受和抵抗铝电解质溶液和铝液的侵蚀和冲刷,从而减少碳块的剥落,减少碳渣的产生。  采用低温铝电解生产工艺  由于铝的二次反应也是产生碳渣的一个原因,所以在电解生产过程中就要减少二次反应的发生。积极应用并优化低电压、低氧化铝浓度、低分子比、低温度、高极距等新工艺,从而保证电解生产在较低的温度的温度下进行,保持合理的过热度,既有利于碳渣分离,又能减少铝的二次反应损失,从而减少碳渣是生产。  保持适当厚度的保温料  实践证明,保温料过薄易使空气与阳极表面接触,电解槽内处于高温状态下的阳极炭块与空气接触表面氧化掉渣速度较快,保温料必须覆盖密实,避免与空气接触。此外,使用面壳块进行覆盖时,面壳块粉碎的粒度是越细越好,利于保证阳极覆盖的密实度。  保持适当的电解质水平  电解质水平的高低是决定炭块氧化掉渣的主要因素之一。电解质水平过低,电解槽热量损失快,不利于槽况稳定,但电解质水平过高,特别是超过残极上表面,电解质液流淌在炭块的表面时,致使残极上的保温料溶化,形成空间,会加剧炭块氧化,碳渣量激增。所以,要生产实际保持合理的电解质水平。  结论  在铝电解正常生产中碳渣的纯在是不可避免的,当电解槽中碳渣的含量达到一定程度时就会影响电解槽正常生产,带来负面影响。  在电解槽日常生产中,要提高阳极质量、提高换极质量、调节电解质成分及高低、控制电解温度、充分利用一切可能的机会打捞碳渣等措施,来减少碳渣对电解生产带来影响。

电解铝电解槽

2017-06-06 17:49:51

目前电解铝行业生产的耐酸、耐腐蚀电解槽销售基本稳定。从目前国内的铝产能看,根据SMM的调研数据显示,2009年年底中国电解铝的总产能已经达到2000万吨/年(当前国内运行总产能超过1800万吨/年)。而根据目前了解到的新建项目,至2010年年底中国氧化铝产能将达到4200万吨/年,同时未来三年仍将有超过500万吨/年的电解铝项目和800万吨/年的氧化铝项目建成投产,因此控制产能的任务非常严峻。SMM认为落实此规划的关键是调结构。调结构是转变中国经济增长方式、实现中国经济持续稳定增长的需要。调结构势必要淘汰落后产能。以电解铝为例,根据之前发改委要求淘汰100KA及以下电解槽的要求,2010、2011年中国将有接近160万吨/年的产能淘汰,而这对于产能控制效果相当有限,因此预计国家将更加严格的执行铝行业的落后产能淘汰计划,例如扩大落后产能的范围,将电解槽淘汰的电解强度提高至160KA或者200KA,将增加110万吨/年或者200万吨/年的淘汰产能。 更多电解铝电解槽资讯请登陆上海有色网查询。

铝电解电容

2018-12-29 11:29:07

经常在电源厂商的宣传中看到“采用高品质大电容”等类似广告语,于是笔者关于大电容在电源中的应用产生了兴趣。在翻阅资料的过程中,发现电源中采用的大电容几乎都是铝电解质电容。随着学习的深入,发现采用铝电解电容是非常有必要的。   选择铝电解电容会更好   电容的种类是非常多的,例如我们常常听到的固态电容、钽电解电容、铝电解电容等。其实固态电容的全称为固态铝电解电容,而我们常说的铝电解电容通常指的是液态铝电解电容,下文同指。铝电解质电容最明显的优点就是组成材料非常容易找到,都是普通的工业材料,制造设备也非常普通,因此其成本非常低。但成本低并不是电源生产商采用铝电解电容的唯一原因。下面笔者根据所学和大家分享一下,欢迎资深人士多多批评。   电容的基本构造   电容是一种最基本的电子元件,基本上所有的电子设备上都有它的存在,隔直、耦合、旁路、滤波、调谐回路、能量转换、控制电路等方面都会用到它。两块导体间加入一块绝缘体就构成了基本的电容。在中学时,我们曾经学习过电容的表示符号,一般来说非常简单。   电荷会在电场中受力而产生移动,当电荷遇到绝缘体时,电荷的移动受到了阻碍,于是电荷就逐渐累积在了两块导体上,储存的电荷量称为电容或者说是电容量。   由于两块导体之间存在着一块绝缘体,因此,一般情况下,电容是不会通过电流的,除非电容击穿。电容的计算公式为C=Q/V,C为电容,Q为电容两端电荷量,V为电容两端电压。C为固定值,当两块导体之间的电压增大时,电荷量也会随之增大,因此电容有着储能的作用,这个作用对于现代开关电源来说是非常重要的。   常见的电容介绍   电容的分类是非常复杂的,一般来说按照电介质,用途,结构,功能等分类,但是这种分类也会存在着交叉重叠,可以说是十分混乱的。因此笔者选择了几款我们常常听说的电容来介绍,分别是固态电容,铝电解电容,钽电解电容。   铝电解电容的优点是额定耐压值高,抗浪涌能力强,单位体积内的容量非常大,成本非常低,价格更加便宜。但是它也有着自己的缺点,存储寿命短,受温度影响较大,容易爆浆。温度每身高10度,寿命减半,这也是我们所熟知的。   钽电容的优点是ESR值很低,寿命较长而且耐高温。它的精度也非常高,机械强度也要比铝电解电容高,体积小也是它的一大优点。但是缺点是容量较小,额定耐压值比较低,价格也要比铝电解电容贵。   低阻抗、高低温稳定是固态电容的优点,特别是其超长的寿命更是铝电解电容所不能比的。但是其高昂的价格往往令众多厂商望而却步,然而这并不是最主要的,关键问题是固态电容的容量不大还有耐压性不强,这也是众多电源厂商不采用固态电容的原因所在。   铝电解电容的选择   铝电解电容在电源电路中起到什么样的作用呢?电源中整流电路将交流变成方波直流,然后在整流电路之后接入一个大容量的电解电容,利用其充放电特性,使整流后的方波直流电压变成相对比较稳定的脉动直流电压,这种作用在电源中是非常关键的。12后一页

电解铝电解质

2017-06-06 17:49:53

电解铝电解质过热问题一直是电解铝生产当中控制指标之一。在实际生产过程中肯定会有一定的影响因素。因此,近年来,对电解铝电解质“过热度”指标的控制研究,越来越引起众多专家学者及生产厂家的高度重视。2007年初,在进一步实施延长大型预焙槽寿命的探索实践中,中铝山东企业电解铝厂电解二车间针对电解质“过热度”对槽寿命的影响力,提出了对《提高电解质“过热度”合格率》的研究课题。该项目引起分厂领导的高度重视,被列入电解铝厂2007年重大科研项目之一。在此后半年多的时间里,该厂科研人员深入生产一线,采集了大量现场数据,准备利用这些数据拟合出初晶温度与电解质各组份之间的回归方程,建立“过热度”控制模型并编制控制程序,从而实现对电解质“过热度”的智能化控制。经多次测试并与现场数据反复验证,Minitab数据分析软件做出的回归方程,所拟合出的初晶温度与实际测量温度偏差控制在±5℃的范围内,准确率高达95%以上,较好地体现了拟合回归方程的价值,对进一步《提高电解质‘过热度’合格率》的深度研究和实践起到决定性作用。对于电解铝电解质的过热问题对于各大工厂企业来说都是不能避免的问题之一。 

铝电解生产概述

2019-03-11 09:56:47

1、一般金属元素分为哪两大类,铝归于其间的哪一类?   答:一般金属元素分为黑色和有色两大类。除了铁、锰、铬属黑色金属外,其他均为有色金属,铝归于有色金属之类。   2、有色金属按其某些特性又可分为哪几类?   答:有色金属按其某些特性又可分为重金属、轻金属、贵金属、稀有金属、半金属等。铝是有色轻金属类的一种金属。   3、铝有哪些性质和用处?   答:性质:铝是一种轻金属,具有银白色的金属光泽,在工业上被称称为全能金属。铝的比重为2.7/cm3,熔点为660℃。铝具有杰出的导电性、导热性和防腐蚀性,一起还具有杰出的延展性、可塑性,而铝合金又具有很高的机械强度。   用处:因为铝比重轻,铝及其合金强度高,因而铝可用做轻型结构材料和建筑工业材料,如飞机、轮船、型材等,还可制造电气材料,热器材料以及耐腐蚀材料,食物包装材料等。   4、炼铝的历史可划分为哪两个阶段?   答:化学法炼铝和电解法炼铝两个阶段。   5、什么是电解法炼铝?   答:电解法炼铝就是冰晶石一氧化铝融盐电解法,它是以冰晶石作为溶剂,氧化铝为熔质,强壮的直流电通入电解槽内,在阴极和阳极上起电化学反响。电解产品,阴极上是铝液,阳极上是CO2和CO气体(炭素作阳极),这种办法就是电解法炼铝。   6、铝电解用的原材料是什么?   答:铝电解用的原材料大致分三类:质料——氧化铝;熔剂——氟化盐(包含冰晶石、氟化铝、、氟化镁、氟化钙、等);阳极材料——预焙炭块(预焙槽)。12后一页

400kA大型预焙阳极铝电解槽技术特点

2019-03-08 12:00:43

1、优化规划了合理的母线装备,进步了大型槽磁流体安稳性;     2、选用5段上烟道结构规划,有利于进步集气功率和改进环境;     3、选用电解厂房通风和电解槽全体热平衡相结合、摇篮架与槽壳全体焊接、槽壳外部焊接散热片、电解槽小面选用摇篮架与槽壳焊接、电解槽槽壳和内衬全体坐落操作面劣等技能,确保了大型电解槽的热安稳性,改进了劳作环境;     4、选用阴极炭块与阳极炭块投影相对应的技能,有利于阳极和阴极的电流散布均匀;     5、选用了电解槽全面操控和标准化操作系统,有用操控电解槽热平衡与物料平衡,开发了习惯大型槽安稳、安全的焙烧发动技能,形成了400kA电解槽出产操作办理技能;     6、本项目选用四种不同质量阴极炭块进行工业实验,均达到了400kA电解槽实验方针。运用30%石墨质阴极炭块的电解槽,阳极电流密度也达到了0.82A/cm2,石墨化阴极炭块的电解槽还有进一步进步电流强度的潜力。

浅谈铝电解生产中阳极效应的危害性

2019-01-15 09:51:37

阳极效应是熔盐电解特有的现象,而以电解铝生产表现优为明显。生产中当阳极效应发生时,电解槽电压急剧升高,达到20~50V,有时甚至更高。它的发生对整个电解系列产生很大影响,使电流效率降低,影响电解各个技术指标,且使铝的产量和质量降低,破坏了整个电解系列的平稳供电。在处理的方法上,不外乎有两种:用效应棒(木棒)熄灭,或降低阳极,增加氧化铝的下料量。达到熄灭阳极效应的目的。到目前还未发现有更好的处理方法。   当今社会,特别是西方国家,对铝电解生产中阳极效应的控制极为严格。目前已从若干年的氟化物转向温室气体PFCs=CF4+C2F6在阳极效应的发生量(USEPA)。[4]著名国际铝专家Haupin提出的"瞄准零效应"的管理思路,值得我们思考,Haupin认为,根据铝工业发展的现状,"零效应"管理较为理想。为此笔者认为:在环保日益重要的今天,铝电解生产中特别是在大型预焙槽生产中应严格控制阳极效应,只要电解槽槽况正常,就不必来效应。"零效应"管理是铝电解生产今后发展的方向。   1。阳极效应发生的机理   到目前关于阳极效应发生的机理众说纷纭,但是较好地解释阳极效应的发生机理的是"阳极过程改变学说" 这种观点认为[1]: 阳极效应的发生是由于随着电解过程的进行,电解质中含氧离子逐渐减少,当达到一定程度后,则有氟析出且与阳极炭作用生成炭的氟化物,炭的氟化物在分解时又析出细微的炭粒,这些炭粒附在阳极表面上,阻止了电解质与阳极的接触,使电解质不能很好地湿润阳极,就像水不能湿润涂油的表面一样,使电解质-阳极间形成一层导电不良的气膜,阳极过电压增大,引起阳极效应。当加入新的氧化铝后,在阳极上又析出氧,氧与炭粉反应,逐渐使阳极表面清静,电阻减小,电解过程又趋于正常。   阳极效应的机理是[4]:   Zc=RT/Fin{ic/ic-I}   式中Nc-产生阳极效应的浓度过电压;   R-气体常数;   T-温度, 0K;   F-法拉第常数;   Ic--临界电流密度;   i--任一阳极上的较大电流密度;   Nc--0。00004308Tin{ ic/ic-I }   临界电流密度是溶解氧化铝浓度的函数;然而也受电解质流动,电解质温度,阳极尺寸(包括消耗后阳极的界面变化)和槽膛体积的影响。临界电流密度随着氧化铝浓度的降低而降低(由于Nc随着ic趋近于1)随着氧化铝浓度的降低,阳极上产生了气泡,致使电解质表面张力增加,使阳极效应的过电压升高。导致AE发生。   这种观点较好地解释了阳极效应发生的原因。为电解科技工作者所接受。   2。 阳极效应危害   在铝电解生产中阳极效应的危害性,不仅表现在对生产的危害上,而且对生态环境的危害极其严重。笔者将从几个方面进行阐述。   2。1阳极效应危害性对生产的危害   生产中当阳极效应发生时,电解质的温度急剧升高,由正常值的940℃~955℃急速升高到980℃~990℃,炉帮熔化变薄,增加了侧部炭块被侵蚀的可能性。电压的急剧升高,使系列电流波动,影响电解槽的产量。电耗增加。生产中阳极效应的熄灭方法是:将效应棒即(大约2~3米直径2~4cm的树枝)插入铝液中使木棒燃烧排除阳极底掌的气体薄膜,清洁阳极底部,实际是在燃烧铝液,整个过程大约持续3~5分钟,而此时电解的电化学过程是停止的,这也就是电解职工常说的"效应时间不产铝,而且还要跑电耗的"原因所在。因此造成铝液的严重损失。   以300KA中间下料预焙槽为例:效应系数0。3次/槽日,效应时间5min,电流效率93%,一个阳极效应少产原铝:300×0。3355×5÷60=8。4kg,吨铝电耗增加158kwh,   这种能量在生产中大多转化为热能,使电解槽极距间温度急剧升高,进而向阳极四周传导,使的电解槽温度升高,引起电解质中氟化铝的大量挥发。以我公司电解槽为例:一个效应时间5min,分子比平均上升0。1。氟化铝大约损失10~20kg。   传统的观点认为:利用阳极效应可以分离炭渣,清洁电解质,补充电解槽热量的不足,化沉淀。但是随着阳极质量的提高以及智能模糊控制计算机系统和点式下料技术的应用,阳极效应优点愈来愈变得渺小,因此传统的这种观点已不能适应当今现代电解槽生产。   1。2阳极效应对环境的危害   铝电解生产中,阳极效应还伴随着对大气臭氧层有破坏性的PFCs(CF4·C2F6)气体的产生。当今西方发达国家对铝电解的环保要求极为严格。   国际著名铝专家Haupin[4]认为PFCs的发生量与每天AE分钟数和电压高低成直线关系,但分析表明PFCsd 散发量在高电压效应时并未显示出效应时间长散发量多的特定。而个别试验显示减少效应次数比减少效应时间更有效能减少PFCs的发生量。因为无论是CF4还是C2F6都是在阳极效应刚发生时产生,电解槽发展到中间下料预焙槽后,不仅阳极效应次数成倍降低,而且效应时间也大大缩短。目前国外阳极效应系数有的已低于0。1次/槽日。   产生PFCs=CF4+C2F6的根源是阳极效应(AE),但是我们国家在很长的时期内只注意控制技术。还停留在传统的对氟化盐的控制上。了解当今世界铝工业的发展,特别是著名铝专家Haupind的"瞄准零效应"[4]对提高我国铝电解的整体水平是大有好处的。   我们国家是国际《京都协议书》的签署国家,减少温室效应,保护大气环境是义不容辞的责任。因此在控制有害气体排放上,今后一定会加强的。铝电解生产中,严格控制阳极效应是时代的要求。   1。3阳极效应对森林的危害   铝电解生产中阳极效应的熄灭方法有三种:   (1)、用漏铲熄灭阳极效应。(2)、用大耙熄灭阳极效应。(3)、用效应棒(木棒)熄灭阳极效应。   以上三种方法是铝电解生产特别是自焙槽常用的方法。目前自焙槽国内已几乎都改造成为中间下料预焙槽。而预焙槽采用多组阳极生产,大耙、漏铲熄灭阳极效应的方法失去了作用。效应棒即大约2~3米直径2~4cm的树枝。成为熄灭效应的方法。   当前国内铝电解生产飞速发展,2003年已突破520吨,已成为世界靠前产铝国,效应棒的使用急剧增加。如不得到控制,必然会给森林带来严重破坏。   以本企业为例,阳极效应系数控制为0。3次/槽日   每月1860槽日,共1860×0。3=558个效应   而日常熄灭一个效应大约需要2~3根效应棒,以3根计算每月需要558×3=1674根效应棒,以每捆30根计算一年大约需要1674÷30×12=672捆再加上抬大母线、压负荷等因素,一年需要大约900~1000捆。   目前各家铝厂效应棒基本是由市场来供应的,一些人为了谋取个人利益,乱砍甚至偷砍树木做成铝电解要求的效应棒卖给电解铝厂,因此铝电解阳极效应棒使用的急剧增加,必然助长一些人谋取个人利益,乱砍乱伐树木的行为,这将给国家森林带来一场灾难。   我国是森林覆盖面积极其少的国家。50~90年代由于过度的乱砍乱伐,使脆弱的森林植被受到严重破坏,土地沙漠化、扬尘暴天气的发生就是大自然对人类乱砍乱伐的较大报复。随着我国退耕还林,种树种草政策的实施,国家制定了一系列的相关政策来严厉制止乱砍乱伐现象,国家投入巨资恢复森林植被,对破坏严重的地区进行封山育林,种树种草。铝电解生产中效应棒的来源必然会受到严格控制。像我国西部地区的铝电解厂家,应该在铝电解生产中严格控制阳极效应,较大限度地减少效应棒的使   2。控制阳极效应的条件分析   当前自焙电解槽已基本消失,中间下料预焙槽已成为铝电解生产的主力。中间下料预焙槽采用低氧化铝浓度生产,使用智能模糊计算机控制系统对氧化铝浓度控制,采用中间点式下料技术定时打壳下料,为降低阳极效应系数创造了有利条件。   Haupin认为控制阳极效应[4],实现零效应主要取决于:   1。 氧化铝的质量:主要是氧化铝厂的电收尘料小于20微米(μm)溶解速度慢。   2。 现有的下料器是容积式的,而不是重量式的,所以下料不准,开发重量式的下料器是"零效应"的关键。   3。 由于电解质的过热度很小(8℃~10℃),系列电流和电压的变化时就会引起阳极效应。   4。 电解槽内衬不佳,例如阴极炭块质量不好,阴极棒与炭块接触不良,导致阴极电流分布不均,也是造成阳极效应发生的一个重要原因。   5。 阳极质量差,跟换阳极不还规范和不准确。个别阳极消耗过快,截面急剧减少,都会引起AE发生。   根据的观点,结合国内铝电解的实际情况,笔者认为在铝电解生产基础条件相对稳定的情况下,阳极效应系数的控制主要取决于阳极炭块的质量和氧化铝的特性。   2。1阳极质量   优质的阳极炭块有以下特点[5]:   1。 良好的导电性。以保证提高阳极电流密度,提高铝电解槽的产能降低电耗。   2。 有良好的热冲击性和抗氧化性。   3。 阳极质量均匀、稳定,以保证电解生产稳定,高效低耗。   4。 具有一定的抗张强度,抗弯强度和较大的热膨胀率。同时还要求阳极灰 分少,比电阻低,气孔率低,有害元素少,组织致密。   国外先进的预焙槽,由于阳极质量优良,电解质中的炭渣较少,对生产够不成影响,生产中几乎不捞炭渣,没有捞炭渣这项工序。阳极效应控制较低,一般在为0。05~0。1次/槽日。目前正趋向"零效应"控制。   国内预焙阳极质量由于原料、技术以及标准与国外有一定的差距,阳极抗氧化性差,脱落掉渣严重。捞炭渣作为做为生产中一项重要工序。传统的管理技术认为,利用阳极效应可促使电解质中炭渣分离,还可以补充热量,控制槽中的沉淀。因此提高国内阳极质量是降低阳极效应的一个关键因素。   2。2氧化铝的质量   铝电解生产要求氧化铝具有较小的吸水性,能够较快地溶解在熔融冰晶石里,同时要求具有较好的活性和足够的比表面积,以及粒度均匀,从而能够有效地吸收HF气体,能满足这些条件的是砂状氧化铝。   砂状氧化铝[2]具有熔解性能强,流动性好,粒度均匀,磨损系数小,吸附氟化氢能力强的特点。而国内由于生产氧化铝的铝土矿为一水硬铝石型,氧化铝生产的熔出温度高达240℃以上,种分分解的种子活性较差,生产砂状氧化铝难度较大,中铝公司虽然已试验成功,但个别技术指标与国外还有一定差距,特别是在摩损指数上与国外较大,国外摩损指数一般低于15%,而中铝山西分公司试验的氧化铝摩损指数在25%左右,况且还需要一定的时间实现工业化生产,因此国内铝电解生产能使用砂状氧化铝还需要一定的时间。   基于阳极质量、氧化铝的原因,生产中降低阳极效应系数受到一定限制,但是笔者认为将阳极效应系数控制在0。2次/槽日以下还是可以做到的。   3。 控制阳极效应的途径   综合分析我国预焙槽的实际情况,吸收国外在预焙槽上控制阳极效应的经验,笔者认为控制阳极效应,尽量减少阳极效应次数,应在下几个方面进行改进。   1) 。有条件使用砂状氧化铝,完善加工下料制度,确保原料充足,保证电解槽下料口畅通,防止下料不均。   2) 。 确保电解槽中有足够的电解质数量,防止电解质萎缩。保证生产平稳。保持适当高的电解质水平。象我公司75KA中间下料预焙槽,笔者认为电解质水平应≧18cm。铝水平   3) 。 提高电解槽的保温效果,减少热量损失,适当增加阳极上保温料的厚度。保持厚度在12cm以上。   4) 。平稳供电,减少电流波动,选择较佳的电流强度。   5) 。采用计算机智能模糊控制技术对电解槽控制,提高挂机率,减少手动次数。增大效应间隔时间。将效应间隔时间设定在100小时以上。   6) 。转变阳极效应管理思路,摆正电解槽与效应的关系,树立"只要槽况正常就不必来效应" 的管理理念。   7) 。优化电解槽内衬结构,采用半石墨质阴极炭块,采用新型干式防渗材料,提高阴极底部的保温效果,电解槽测部采用碳化硅复合材料。   8) 。抓好电解槽焙烧启动工作,保证能使电解槽在规定的时间内建立高分子炉帮。   9) 。 提高阳极工作质量,规范操作规程,提高阳极更换速度,减少对电解槽的干扰。保存电解槽生产稳定。   4。结论   阳极效应的危害性值得我们关注,特别是其对环境、森林的破坏性是我们过去未曾考虑到的。时代在发展,社会在进步。铝电解生产过去那种对阳极效应的理解。以及管理方法,是极其偏面的。已经不符合当今时代的要求。"零效应"管理是铝电解生产今后发展的方向。   因此在铝电解生产中,只要电解槽生产正常,阳极效应愈少愈好。考虑到目前国内阳极质量、氧化铝物理性能,以及其他方面的因素, 将阳极效应控制在0。2次/槽日以下是可以实现的。

自动熄灭阳极效应在铝电解生产中的应用

2018-12-27 15:30:42

摘 要:介绍了我公司铝电解自动控制系统中自动熄灭阳极效应功能的应用情况(成功率达92%),阐述了影响自动熄灭成功率的几个因素以及何种自动熄灭效应的参数组合对电解生产最有利。    关键词:铝电解,自动控制,自动熄灭阳极效应,成功率    作 者:陆义龙 韩丹群 饶晓凤一、引言:  国外许多电解铝厂都实现了阳极效应的自动熄灭,80年代来,其自动熄灭的成功率就已近100%[1]。国内电解铝厂贵铝,其自动控制系统中设有自动熄灭程序(软件包),但由于没有解决熄灭过程中电解质容易溢出和自动熄灭成功率低的问题,最后不得不采用传统的手工木棒熄灭方法。而其它大部分铝厂的铝电解自动控制系统中几乎没有该功能。所以长期以来,国内自动熄灭阳极效应鲜有更新的深度和成功的例子。  汉江丹江口铝业有限公司第三电解铝厂114.5KA系列预焙槽系列自动控制系统中配有阳极自动熄灭程序。1999年8月我们开始试验应用时,情况与贵铝相类似,即电解质容易溢出槽外,且由于参数匹配不合理,其自动熄灭成功率仅有10-20%,在经历了几次重大的工艺技术调整后,两水平总高降低,即实行低铝水平操作,电解质水平稳定在19-21cm,自动熄灭过程中不再有电解质溢流现象发生。分子比和槽温分别控制在2.1-2.3,950-960℃,槽况较为稳定。同时通过大量试验对程序中的相关参数优化组合,现自动熄灭成功率已稳步上升到95%。二、自动熄来阳极效应原理及步骤:  当电解质中AL2O3%降至1.0%以下,电解质性质发生重大变化,其对碳素阳极的湿润性变差,阳极效应发生。自动熄灭程序首先对电解槽进行快速加料,然后等待氧化铝溶解,改善电解质对碳素阳极的湿润性,接着下压阳极,靠增加的静压力将气泡起走,熄灭效应。其步骤为:  ①自动控制系统检测 效应,并启动自动熄灭效应程序;  ②对电解槽进行快速加料;  ③等待氧化铝的溶解;  ④下压阳极(分1-3个下压处理循环,每个,循环有1-2步下压,每步下压时间1-20秒)若未熄灭,则报警提示进行人工熄灭。  ⑤效应后的电压调整,(熄灭之后电压一般在3.9-4.0,需提升至值4.26左右)三、影响熄灭成功率的几个因素:  1、快速料的加料量。由于大部分效应都是缺料效应,所以效应后快速加料量就显得非常重要,不下料或下料不够都会造成效应 。我厂铝电解自动控制系统缺省值为两个下料点共计12次加料,每次加料量为1.5kg,共计1.5×2×12=36kg。平果铝业公司的有关实验表明其效应后的加料量为28.8kg时仍然不影响其效应的熄灭[3]。我们进行了相关试验,发现在快速加料次数在12、1、0、9、8次时都可以顺利熄灭只不过在8、7次时熄灭经历了两次循环,两次下压阳极,表明是自动熄灭难度在增加,在定为6次时熄灭的成功率降低为50%,这说明6×2×1.5=18kg是我们自动熄灭阳极的最低极限快速加料量。现在,我们将该值定为8次下料,共计8×2×1.5=24kg。  2、效应快速加料后到开始下压阳极之间的等待时间。这段等待时间主要用于等待快速加料所下的AL2O3的溶解。如果快速加料所下的氧化铝未被充分溶解,则电解质的与炭素阳极之间的湿润性不会被改善到足够的程度,自动熄灭难以成功。在理想的情况下,电解槽不产生沉淀的最大供料速度不宜超过3g/( kg电解质)[4],我厂114.5KA效槽电解容量按5t计算,快速加料8次完成的时间为1分钟,则其供料速度为2×8×1.5/1×5=4.8g(电解质),这说明该快速加料速度易造成沉,况且由于市场原因,我厂大部分使用国产中间状氧化铝,其溶解性差,所以必须有一段等待时间让其溶解。我们选择了10、20、40、50、60、90等几档做试验,发现等待时间为10-40秒时,熄灭成功率只有50%,而50秒为75%,60秒为85%90秒为92%,而再延长,成功率也未增长,现在我们将此参数定为90秒。  3、下压阳极的幅度与速度。下压阳极的幅度越大,所产生的静压力就越大,自动熄灭的成功率就越高。但该幅度并不是越大越好,太大容易将电解质压流,阳极也容易坐在侧部伸腿上,粘上沉淀,最后形成边部长牙,所以要寻求合理的下压阳极的幅度。最后我们选择了第一步下压11秒,第二步下压6秒,比缺省值少5秒,较好地满足了自动熄灭的要求。阳极下压的速度取决于运转的电机及传动机构,非计算机参数可修改的。我厂有100台电解槽,其中装配老式电机及动机构的16台,下压速度为每分钟2cm,发现相同情况下其熄灭成功率比新电机(下压速度为每分钟3cm)低30%,且通常要历经两次循环之后才能熄灭,这说明阳极下压的速度越快,其熄灭的成功率越高。阳极下压速度慢的槽子,我们将其下压幅度调整为第一步15秒,第二步11秒后,其熄灭成功率几乎与新电机槽相同。  4、槽况:槽况也是影响成功率的主要因素。低温及波动槽难熄,因为其电解质粘度大,流动性差,溶解AL2O3能力较低。另外高温槽(>980℃),通常其电解质不清洁,其电解质浓度太小,流动性强,AL2O3来不及溶解便形成炉底沉,因而其溶解AL2O3能力较低,所以这两类槽熄灭的成功率都很低。而槽温在950-960℃,分子比在2.1-2.3的电解槽,其槽况良好,熄灭的成功率几乎达100%。因而槽况越好越稳定,效应自动熄灭成功率也越高。四、关于效应量的讨论  从节约能量,减少效应对电解槽的不利影响角度出发,我们应该将效应时间缩短得越短越好,但实际上由于槽内总有相当部分碳渣需要通过效应来清理,且炉内局部沉淀等待效应时高温溶化,某些形炉膛也需要通过铲应来规整,所以保证适当的效应持续时间是必须的,现在我们将自动熄灭效应的时间平均控制在4分30秒左右,比可能达到的最短时间3分40秒延长了50秒,满足了生产需要,同时比手动槽熄灭法的平均时间5分20秒降低了50秒。所以我们认为要引入效应的持续时间。目前对于槽况的槽子,我们控制其效应时间在4分钟以内,对于槽况稍差的槽子,我们控制其效庆时间在5分钟以内。同时我们认为自动熄灭效庆时最好能第一个循环里的第一步就熄回去,因为循环次数越多,步骤越多,越可能在阳极降和升的过程中破坏极上的覆盖料的整体性,造成阳极不必要的额外氧化。 五、结论: 1、通过改进工艺技术条件,是可以实现用自动熄灭阳极效应程序(软件包)来熄灭阳极效应的。 2、应该根据实际情况选择合理的参数组合,使自动熄灭有既保证了阳极效应的质量,达到了节能降耗的目的。 3、自动熄灭阳极效庆由于采用下压阳极方式,因此不会像手工木棒法那样会剧烈搅动槽内熔体,因而铝的二次氧化损失较小,同时对电解槽的平稳生产要有利。 4、通过运行自动熄灭阳极效软件包,提高了铝电争自动控制水平,减轻了工人劳动强度,节省电能113×35×50/3600=55wh/5效应,年节能0.33×100×365×55=66万KWH,吨铝降低电解22kwh/tAl同时也降低了木棒消耗为0.33×0.92×100=30根/块,每年为12045根。