您所在的位置: 上海有色 > 有色金属产品库 > 压力变送器 > 压力变送器百科

压力变送器百科

压力钢管

2019-03-19 09:03:26

在水电站压力钢管的焊接一直采用传统、简单而繁重的焊条电弧焊技术,只有少量的制作场纵缝采用埋弧自动焊技术,压力钢管的全位置自动化焊接技术尚属空白。随着水电建设的高速发展和机组参数的不断增大,大直径厚壁压力钢管的焊接必须采用先进的全位置自动化焊接技术才能适应施工生产的需要。   压力钢管全位置自动焊不仅要实现焊接小车沿焊缝的自动行走,焊丝的自动输送、凋整,摆动及对中等机电控制过程,而且要解决焊丝的熔滴过渡形式,保证全位置焊接的焊缝成型质量,特别是对各种位置的焊接规范自动调整等一系列自动控制技术;而更重要的是现场拼装的焊缝对装质量差、施工环境恶劣,较难满足自动化焊接施工的要求。目前,压力钢管全位置自动化焊接技术在大直径厚壁压力钢管焊接中全面应用尚有一定难度,其主要原因是:   (1)大直径厚壁压力钢管的安装环缝组装难以达到均匀一致的高精度,这就要求全位置自动焊设备能根据坡口尺寸及偏差自动凋整有关工艺参数,以降低或消除不均匀参数对焊接质量的影响;   (2)焊缝空间位置不断变化,要求焊接系统能根据焊炬所在位置自动及时调整焊接工艺参数,实现各处焊接成型基本一致;   (3)要实现坡口尺寸、焊接熔地形状,焊接规范参数实寸调节三者匹配,保证焊缝质量,其自动控制技术难度较大。   因此,如何选择造价低、适应性强、操作简单、焊接效率高的全位置自动化焊接设备是解决上述问题的唯一途径。针对水电站压力钢管的焊接特点,我们开发研制了一套独具特色的全位置自动焊机,并在湖北省兴山县古洞口水电站压力钢管及三峡二期工程左厂11#14#压力钢管纵缝的焊接施工中获得了成功应用。 1 全位置自动焊机的主要研制内容及其实施方案   全位置自动焊机研制主要包括机械和电气控制两大部分内容。 1.1 机械设计与制造   整机机械设计包括爬行轨道、爬行小车,焊炬摆动机构及摆幅自适应坡口宽度传感器结构设计。 1.1.1 爬行轨道   爬行道轨由不锈钢薄板、分体式齿块组成的齿条和固定道轨于工件表面的水磁铁块组成。爬行小车和焊炬摆动的控制拖车分别借助左右共四对滚动轴承对夹持道轨边缘,从而使两者可以沿道轨平稳灵活地移动,借助爬行小车内的行车电机输出轴上的小齿轮与道轨上的齿条啮合并通过两侧联杆使爬行小车与焊炬摆动控制拖车联成一体,使两者可以在道轨上可靠、平稳地运行,实行全位置爬行的功能。 1.1.2 爬行小车   爬行小车分主动驱动的行走小车和被动行走的焊炬摆动控制拖车两部分。它们分别在底板下方两侧各有两对互成60°的轴承轮夹紧轨道边缘,运动灵活可靠。夹持轨道的两侧轴承轮中的其中一侧可以通过螺杆和滑块作横向移动以实现小车在轨道上夹持与拆卸,使小车在轨道上装卸十分方便。 1.1.3 焊炬摆动机构   焊炬摆动机构是实现焊接电弧横向运动的机构。本系统采用一空心薄壁不锈钢方管。其上固定有条状不锈钢板和齿条作摆杆,摆杆端部安装有焊炬夹紧和传感器固定及调节机构。依靠摆杆上条状不锈钢板两侧有倒角的边缘与安装于立板上的四只轴承外套的V型滚轮相啮合,组成了摆动十分灵活、轻巧、刚度好、间隙小、工作稳定可靠、拆卸十分方便的摆动机构。 1.1.4 摆幅自适应坡口宽度和焊接自动跟踪两用传感器   摆幅和跟踪两用传感器是为了适应在水电站现场施工条件下,大直径厚壁压力钢管的环缝坡口装配很难做到间隙均匀,而且全位置自动化焊接时轨道的铺设也很难与焊缝完全平行而设计的。本机传感器采用探针机械接触坡口侧壁获取信号,这是一种工作可靠、抗干扰能力最强的获取信号方式,然后通过传感器内部的摆杆系统产生光电信号,经逻辑电路分辨控制焊炬摆动电机转向和停留,实现了焊炬摆幅自适应坡口宽度的功能。 1.2 电气控制系统研制   焊机电气控制系统设计功能的完善、工作稳定可靠、抗干扰性好对于确保焊机工作质量十分重要。本焊机充分考虑了全位置自动化焊机所必须的基本功能和参考国内外同样先进焊机的功能,开发了具有自身特点的摆幅自适应坡口宽度和自动跟踪焊接控制功能。本机具备的主要控制功能如下:   1)焊炬摆幅自动与手动选择;   2)焊炬摆幅设定与自适应选择;   3)焊炬摆动两侧停留时间调节;   4)焊炬摆速调节;   5)焊接电弧运动轨迹选择;   6)焊接方向选择;   7)焊接速度凋节;   8)设定摆幅工作方式下始摆方向选择;   9)设定摆幅工作方式下电弧纠偏调节;   10)焊接行车小车近控与遥控。   其电气控制原理如下图所示: 2 整机主要技术参数: 小车电源:    220V 50HZ 小车爬行速度   0~450mm/min 焊炬摆动幅度   0~±40mm 焊炬摆动速度   250~3000mm/min 焊炬摆动方式   1)直线形;2)锯齿形;3)梯形;4)矩形 焊炬两侧停留时间  0~5sec 自动跟踪精度   ±0.5sec 焊炬调整自由度  6个 焊接钢管曲率半径 ≥1500mm 焊机重量     18.5 kg   本焊机适应的焊接方法不受限制,可以根据需要采用CQ2气体保护焊、药芯焊丝气保焊、药芯焊丝自保焊、MAG焊、MIG焊、TIG焊等方法,只需配以相应特性的焊接电源和焊炬。 3 工程应用与效果 3.1 应用工程简介   古洞口水电站位于湖北省兴山县古夫河下游,电站总装机容量为4.5万kW,多年平均发电量为1.24亿kwh,其压力钢管直径为5m,壁厚为16~40mm不等,全长600余m。全部采用国产16Mn低合金结构钢制造。   三峡工程是举世瞩目的水电工程,其装机总容量为1 820万kW,年发电量达847亿kwh,其压力钢管直径为12.4m,壁厚为26~541mm,单管长度122.5m,采用国产16MnR低合金结构钢和进口600MPa级低碳调质高强钢板制造。 3.2 全位置自动焊工艺   全位置自动焊工艺参数见表1。 表1 全位置自动焊工艺参数表 3.3 应用效果   (1)全位置自动焊与传统焊条电弧焊的各项性能效果对比如表2: 表2 全位置自动焊应用效果对比表   (2)通过对古洞口压力钢管和三峡二期工程左厂11#~14#压力钢管的焊接应用,纵缝超声波探伤的一次合格率为99.5%,环缝超声波探伤的一次合格率达98.1%,焊缝外观质量优良率达到了100%,这是传统的焊条电弧焊所无法比拟的。   (3)该焊接小车采用柔性轨道,机头行走摆动、焊缝两侧停留均能做到无级调速、自动送丝,稳定可靠,达到了全位置自动化焊接的基本要求。   (4)由于实现了机械化和自动化的焊接新技术,不仅减轻了焊工的劳动强度,而且大大提高了焊缝无损探伤的一次合格率,在焊接质量上大大减少了人为因素的影响。   (5)采用连续送丝和大电流密度焊接,与焊条电弧焊相比可提高工效1倍以上。   (6)与焊条电弧焊相比,该自动焊工艺具有较深的熔深,可采用较小坡口角度,同时可以大大降低焊接热影响区的宽度和焊接残余变形。 4 结束语   全位置自动焊机在吸取了国外同类焊机成功经验的基础上针对水电站压力钢管现场施工特点,创造性的开发;厂焊炬摆幅自适应坡口宽度和自动跟踪等重要功能,焊机整体设计合理,工作稳定可靠、外形美观、机构紧凑轻便,具有很高的推广应用价值。   全位置自动化焊接技术在古洞口压力钢管纵环缝及三峡二期工程左厂11#~14#压力钢管纵缝焊接施工中的成功应用,只是自动化焊接技术在水电站焊接施工中应用的一个开端,该设备与技术在三峡工程压力钢管环缝焊接中应用将是我们下一步追求的目标。全位置自动焊在水电站压力钢管及蜗壳上的应用也是焊接施工技术发展的必然结果

黄金压力加工

2019-01-29 10:09:51

压力加工方法是在金属塑性允许范围内借助金属塑性变形,改变坯料的形大辩论和尽寸,以获得所需要的产品。根据塑性变形过程温度、速度等条件的不同,可将变形划分为有完全再结晶而不残留京戏变硬化的热变形,伴有内应力回复的温变形和即无回复也无再结晶的冷变形三种形式。       金的塑性很好,在冷、热状态下加工都不出现特别的困难。        金及金基合金扁带(展平条材)用轧制线材的方法加工,其通常规格是:宽0.15~5mm、厚4µm至0.5mm。展干线采用展平机或二辊轧机,对于高强度的薄条材则采用多辊轧机轧制。轧制扁带的线材直径根据成品尺寸确定。若b/h≤10(b宽度,h为厚度)线材直径按成品和坯料断面积相等的原则来计算。若b/h>10时,则线材直径按公式    计算,式中Ky—轧制时的宽展系数,与合金成分有关,对于金Ky=1.03~1.1。       金具有极为优良的延展性能。在冷加工过程中,可以不用中间退火连续加工。民间长期流传的“羊皮金”术,加工成的金箔能够达到半透明状态。厚度为0.1~1µm的金箔采用手工锤锻的方法加工已有几千年历史,至今国内外仍然沿用此工艺加工金箔和金银双金属箔材。箔片用衬垫间隔叠成摞,塞在皮革壳里,用2~8kg重的链子锤击,经几次锤锻后达到要求尺寸。每次锤锻后需拆摞重新叠片,再重复下一次捶锻。衬垫一般用盲肠膜经特殊加工制成,以保证其完整性和弹性。       金的机械强度较低,延伸率较高,容易加工,在低于其熔点以上的温度各种压力加工方法都可采用。对于冷拉,道次加工率可达20%,两次退火间的总加工率可达95%以上,退火温度为400~500℃。纯度为99.9999%的高纯金丝具有室温下“自退火”的性能,会影响细金丝的使用。已经证明,高纯金中添加0.01%的Fe,Cu,Ag,Pt和Pb,可使再结晶温度由室温升至100℃;加0.01%Mg,Al,Si,Ni,Sb,Te和Bi的金,可在200℃或更高温度下退火。

钢管压力标准

2019-03-19 11:03:29

压力管道的组成件一般都是标准件,因此压力管道组成件的设计主要是其标准件的选用,管道压力等级的确定也就是其标准件等级的确定。 管道的压力等级包括两部分: 以公称压力表示的标准管件的公称压力等级; 以壁厚钢管等级表示的的标准管件的壁厚等级。 管道的压力等级:通常把管道中由标准管件的公称压力等级和壁厚等级共同确定的能反映管道承压特性的参数叫做管道的压力等级。而习惯上为简化描述,常把管道中管件的公称压力等级叫做管道的压力等级。 压力等级的确定是压力管道设计的基础,也是设计的核心。它是压力管道布置、压力管道应力校核的设计前提条件,也是影响压力管道基建投资和管道可靠性的重要因素。 5.1 设计条件 工程上,工艺操作参数不宜直接作为压力管道的设计条件,要考虑工艺操作的波动、相连设备的影响、环境的影响等因素,而在工艺操作参数的基础上给出一定的安全裕量作为设计条件。这里所说的设计条件主要是指设计压力和设计温度。 管道的设计压力:应不低于正常操作时,由内压(或外压)与温度构成的最苛刻条件下的压力。 最苛刻条件:是指导致管子及管道组成件最大壁厚或最高公称压力等级的条件。 设计压力确定:考虑介质的静液柱压力等因素的影响,设计压力一般应略高于由(或)外压与温度构成的最苛刻条件下的最高工作压力。 a.     一般情况下管道元件的设计压力确定 一般情况下,为了操作上的方便,在此不妨采用压力容器的做法,即在相应工作压力的基础上增加一个裕度系数。 表5-1   一般情况下管道元件的设计压力确定    工作压力Pw(MPa)  设计压力P(MPa)  Pw≤1.8  P= Pw+0.18  1.8  P= 1.1Pw  4.0  P= Pw+0.4  Pw>8.0  P=1.05 Pw      ※ 当按该原则确定的设计压力会引起管道压力等级变化时,应判断该工作压力是否就是由内压(或外压)与温度构成的最苛刻条件下的最高工作压力,如果是,在报请有关技术负责人批准的情况下,设计压力可取此时的最高工作压力,而不加系数。 b.     管道中有安全泄压装置时, 管道中有安全泄压装置时预示着该管道在运行过程中有出现超出其正常操作压力的可能。设置安全泄压装置(如安全阀、爆破片等)的目的,就是在系统中出现超出其正常操作压力的情况时,能将压力自动释放而使设备、管道等系统的硬件得到保护。此时管道的设计压力应不低于安全泄压装置的设定压力。 c.       管道中有高扬程的泵 对于高扬程的泵,尤其是往复泵,在开始启动的短时间内,往往会在第一道切断阀之前的管道和泵内产生一个较高的封闭压力,有时这个封闭压力会达到一个很大的值。此时泵的出口管道,其设计压力应取泵的最大封闭压力值。 D.      真空系统 真空系统管道承受的压力就是其外部的大气压力,故其设计压力应取0.1MPa外压; e.      与塔或容器等设备相连的管道   与塔或容器等设备相连的管道其设计压力应不低于所连设备的设计压力。当管道内有较高的液体液柱时,还应考虑该液体静压头的影响。事实上,对于管道来说,其受力要比设备复杂,这是因为它除受介质载荷之外,还往往遭受到由于管道的热胀冷缩而产生的管系力等。因此,管道的设计压力一般应不低于设备的设计压力。5.1.2设计温度   管道的设计温度:应不低于正常操作时,由内压(或外压)与温度构成的最苛刻条件下的温度。   最苛刻条件:  指导致管子及管道组成件最大壁厚、最高公称压力等级或最高材料等级的条件。   设计温度的确定:考虑环境、隔热、操作稳定性等因素的影响,设计温度应略高于由内压(或外压)与温度构成的最苛刻条件下的最高工作温度。   a.     一般情况下管道元件的设计温度确定   一般情况下为了操作上的方便,在此不妨也采用压力容器的做法,在相应工作温度的基础上增加一个裕度系数(除法兰和螺栓以外)。 表5-2  一般情况下管道元件的设计温度确定    工作温度Tw(℃)  设计温度T(℃)  -20  T= Tw-5(最低取-20)  15  T= Tw+20  Tw>350  T= Tw+(5~15)  ※当按该原则确定的设计温度会引起管道压力等级或材料变化时,应判断该工作温度是否      就是由内压(或外压)与温度构成的最苛刻条件下的最高工作温度,如果是,在报请有关技术负责人批准的情况下,设计温度可取此时的最高工作温度,而不加系数。   法兰、垫片的设计温度不低于最高工作温度的90%;   螺栓、螺母的设计温度应不低于最高工作温度的80%。   b.     夹套或外伴热管道   对于夹套或外伴热的管道当工艺介质温度高于伴热介质温度时,其设计温度按上表选取;当工艺介质温度低于伴热介质温度时,对夹套伴热取伴热介质温度为设计温度,而对外伴热则取伴热介质温度减10℃与工艺介质温度二者的较大值为设计温度;   c.      安全泄压管道   安全泄压管道取排放时可能出现的最高或最低温度为设计温度;   d.     蒸汽吹扫的管道   采用蒸汽吹扫的管道当介质温度高于吹扫蒸汽的温度时,则按介质温度根据上表确定其设计温度。当介质温度低于吹扫蒸汽温度时,应视具体情况而定。例如,按介质温度选取的管道及其元件不能承受吹扫介质的条件时,应适当提高等级以适应吹扫介质条件。   e.     多种工况下工作的管道   同一根管道,如果在两种或两种以上工况条件下工作时,其设计温度应取与内压(或外压)构成的最苛刻条件下的最高工作温度,并对其它工况进行校核。   f.       临氢管道   临氢操作的管道,在查Nelson曲线时,应取设计温度再加30~50℃作为查曲线的温度参数值。这是因为Nelson曲线为统计值,在邻近曲线下方选材时而出现氢损伤的实例也曾发生过;   g.     带衬里的管道   带隔热耐磨衬里的管道,其金属部分的管道设计温度应经计算或实测确定。一般情况下,宜取250℃作为设计温度;   h.     管系应力计算时   在进行有弹簧支架的管系应力计算时,宜取介质的正常工作温度作为计算参数。

钼的压力加工

2019-01-25 13:36:45

由烧结的致密钼条生产钼棒、钼丝和钼带等的压力加工是旋锻和拉伸组成的典型工艺。为了提高钼加工材的质量和生产率,扩大产品的品种和规格,降低加工成本,目前已用轧制法代替旋锻法。为了使钼的压力加工型能得到改进,致密的钼条要求纯度高,密度大,晶粒度细且均匀。粉末冶金法制取的钼条一般都具备这些条件,而真空熔炼制取的钼制品,纯度虽高,但一般为粗晶粒结构,需在1400~1700℃下进行挤压,使晶粒变细后再进行锻造、拉丝、轧板。采用粉末冶金法制取的或真空熔炼挤压处理后的致密钼条(棒)经旋锻(或轧制)、拉拔加工成各种规格的棒材或丝材,带材,其致密的锭或板坯可经轧制加工成各种规格的钼板、箔等产品。关于钼压力加工的机理、工艺参数选择、影响产品质量等问题可参阅参考文献《稀有金属材料加工手册》(冶金工业出版社,北京,1984年)和《钼冶金进展》(西安冶金建筑学院,西安,1980年)。

铝市再现政策调控压力

2019-01-09 11:26:46

铝市再现政策调控压力  有关国内铝市场出口退税税率下调为零的消息在经过一段时间的平静以后再起波澜,据传除了取消出口退税之外,国家还将对出口企业另征收5%的税,并严格控制氧化铝进料加工的生产,鼓励一般贸易。果真如此的话,今后国内政策性因素将在很大程度上左右国内铝价走势以及国内铝市场今后的发展状况。  今年二季度以来,中国政府的宏观调控力度加大,电解铝行业经过一段时间的整顿之后取得了一定成效,但产量依然不减反增,而需求由于宏观调控,汽车和房地产等行业对铝锭的消费可能会出现一定程度下降,国内供过于求状况严重,对国家可能采取的取消出口退税的决策,铝厂反响强烈。不过,笔者认为,铝行业的调控仍然没有结束,产能的控制还远远没有达到目标,取消出口退税的可能性相当大,但具体实施的时间估计要到年底以后。综合考虑国家较终取消铝锭出口退税的可能性较大,对出口铝锭再征收5%左右关税的可能性较小。  取消出口退税将对国内市场产生较大冲击:其一,国内外比价进一步缩减。由于出口退税税率降至零,按照外贸中的汇率比公式人民币汇率÷【1-(1-退税率)×退税率】来计算,内外比价实际上就是人民币的汇率,约为8.30左右。其二,外强内弱的格局有望持续。出口退税取消之后,生产商出口铝锭的成本无疑会大大提高,也就是说利润大大减少。因此,国内外比价将进行重新调整达到新的平衡(即前面计算的8.30)。如果比价偏高,那么国内生产商将尽量减少出口在国内销售。否则,比价偏低将吸引国内生产商出口铝锭。目前,国内外比价维持在9.00左右(远期合约),倘若出口退税税率降至零,那么过高的比价将使得国内铝锭的出口行为难以发生,毕竟利润大大下降。因此,在出口退税政策取消之后的相当一段时间内,国内出口的大量减少可能会促使国际铝价走出强势上攻行情,而国内铝价则会因现货压力的沉重继续向下寻求支撑。也就是说外强内弱的格局将延续较长时间。其三,国内现货压力更加沉重。理论上计算,一般贸易的出口,在取消出口退税之后,利润减少按照出口价格×8%的公式可以得出,而对进料加工复出口核销的生产商来说,企业减少的利润可以根据(铝锭出口价格×人民币汇率-进口氧化铝价格×氧化铝用量×人民币汇率)×7%的公式计算出来。也就是说,出口退税税率降为零之后将导致国内生产商寻求在国内销售铝锭,直至国内外比价缩减指一个比较合理的水位之后才能吸引出口。因而,出口退税取消之后国内铝市场的现货压力将更加沉重,现货价格可能会持续低迷。其四,国内铝厂将面临重新洗牌。出口退税的取消无疑会使得国内现货压力变得更加沉重,国内铝厂的生产和经营面临巨大的困难。一些技术水平和管理水平落后,经营理念跟不上形势的铝厂将在市场残酷的竞争之中被迫关闭甚至倒闭,被市场无情淘汰掉。而一些实力雄厚,技术水平和经营理念先进的企业则会在逆境中发愤图强,通过重组、收购和兼并等举措来完成质的转变,从而会变得越来越强大。  因此,虽然出口退税政策的调整短期会给中国铝行业带来阵痛,对企业的生产经营产生负面影响,但长远来看将有利于国内铝行业的健康发展,提升企业的综合竞争能力。  来源:中国证券报

钢管承受压力标准介绍

2019-03-15 11:27:19

压力管道的组成件一般都是标准件,因此压力管道组成件的设计主要是其标准件的选用,管道压力等级的确定也就是其标准件等级的确定。 管道的压力等级包括两部分: 以公称压力表示的标准管件的公称压力等级; 以壁厚等级表示的的标准管件的壁厚等级。 管道的压力等级:通常把管道中由标准管件的公称压力等级和壁厚等级共同确定的能反映管道承压特性的参数叫做管道的压力等级。而习惯上为简化描述,常把管道中管件的公称压力等级叫做管道的压力等级。 压力等级的确定是压力管道设计的基础,也是设计的核心。它是压力管道布置、压力管道应力校核的设计前提条件,也是影响压力管道基建投资和管道可靠性的重要因素。 5.1 设计条件 工程上,工艺操作参数不宜直接作为压力管道的设计条件,要考虑工艺操作的波动、相连设备的影响、环境的影响等因素,而在工艺操作参数的基础上给出一定的安全裕量作为设计条件。这里所说的设计条件主要是指设计压力和设计温度。 管道的设计压力:应不低于正常操作时,由内压(或外压)与温度构成的最苛刻条件下的压力。 最苛刻条件:是指导致管子及管道组成件最大壁厚或最高公称压力等级的条件。 设计压力确定:考虑介质的静液柱压力等因素的影响,设计压力一般应略高于由(或)外压与温度构成的最苛刻条件下的最高工作压力。 a.     一般情况下管道元件的设计压力确定 一般情况下,为了操作上的方便,在此不妨采用压力容器的做法,即在相应工作压力的基础上增加一个裕度系数。 表5-1   一般情况下管道元件的设计压力确定    工作压力Pw(MPa)  设计压力P(MPa)  Pw≤1.8  P= Pw+0.18  1.8  P= 1.1Pw  4.0  P= Pw+0.4  Pw>8.0  P=1.05 Pw      ※ 当按该原则确定的设计压力会引起管道压力等级变化时,应判断该工作压力是否就是由内压(或外压)与温度构成的最苛刻条件下的最高工作压力,如果是,在报请有关技术负责人批准的情况下,设计压力可取此时的最高工作压力,而不加系数。 b.     管道中有安全泄压装置时, 管道中有安全泄压装置时预示着该管道在运行过程中有出现超出其正常操作压力的可能。设置安全泄压装置(如安全阀、爆破片等)的目的,就是在系统中出现超出其正常操作压力的情况时,能将压力自动释放而使设备、管道等系统的硬件得到保护。此时管道的设计压力应不低于安全泄压装置的设定压力。 c.       管道中有高扬程的泵 对于高扬程的泵,尤其是往复泵,在开始启动的短时间内,往往会在第一道切断阀之前的管道和泵内产生一个较高的封闭压力,有时这个封闭压力会达到一个很大的值。此时泵的出口管道,其设计压力应取泵的最大封闭压力值。 D.      真空系统 真空系统管道承受的压力就是其外部的大气压力,故其设计压力应取0.1MPa外压; e.      与塔或容器等设备相连的管道   与塔或容器等设备相连的管道其设计压力应不低于所连设备的设计压力。当管道内有较高的液体液柱时,还应考虑该液体静压头的影响。事实上,对于管道来说,其受力要比设备复杂,这是因为它除受介质载荷之外,还往往遭受到由于管道的热胀冷缩而产生的管系力等。因此,管道的设计压力一般应不低于设备的设计压力。   5.1.2设计温度   管道的设计温度:应不低于正常操作时,由内压(或外压)与温度构成的最苛刻条件下的温度。   最苛刻条件:  指导致管子及管道组成件最大壁厚、最高公称压力等级或最高材料等级的条件。   设计温度的确定:考虑环境、隔热、操作稳定性等因素的影响,设计温度应略高于由内压(或外压)与温度构成的最苛刻条件下的最高工作温度。   a.     一般情况下管道元件的设计温度确定   一般情况下为了操作上的方便,在此不妨也采用压力容器的做法,在相应工作温度的基础上增加一个裕度系数(除法兰和螺栓以外)。 表5-2  一般情况下管道元件的设计温度确定    工作温度Tw(℃)  设计温度T(℃)  -20  T= Tw-5(最低取-20)  15  T= Tw+20  Tw>350  T= Tw+(5~15)  ※当按该原则确定的设计温度会引起管道压力等级或材料变化时,应判断该工作温度是否      就是由内压(或外压)与温度构成的最苛刻条件下的最高工作温度,如果是,在报请有关技术负责人批准的情况下,设计温度可取此时的最高工作温度,而不加系数。   法兰、垫片的设计温度不低于最高工作温度的90%;   螺栓、螺母的设计温度应不低于最高工作温度的80%。   b.     夹套或外伴热管道   对于夹套或外伴热的管道当工艺介质温度高于伴热介质温度时,其设计温度按上表选取;当工艺介质温度低于伴热介质温度时,对夹套伴热取伴热介质温度为设计温度,而对外伴热则取伴热介质温度减10℃与工艺介质温度二者的较大值为设计温度;   c.      安全泄压管道   安全泄压管道取排放时可能出现的最高或最低温度为设计温度;   d.     蒸汽吹扫的管道   采用蒸汽吹扫的管道当介质温度高于吹扫蒸汽的温度时,则按介质温度根据上表确定其设计温度。当介质温度低于吹扫蒸汽温度时,应视具体情况而定。例如,按介质温度选取的管道及其元件不能承受吹扫介质的条件时,应适当提高等级以适应吹扫介质条件。   e.     多种工况下工作的管道   同一根管道,如果在两种或两种以上工况条件下工作时,其设计温度应取与内压(或外压)构成的最苛刻条件下的最高工作温度,并对其它工况进行校核。   f.       临氢管道   临氢操作的管道,在查Nelson曲线时,应取设计温度再加30~50℃作为查曲线的温度参数值。这是因为Nelson曲线为统计值,在邻近曲线下方选材时而出现氢损伤的实例也曾发生过;   g.     带衬里的管道   带隔热耐磨衬里的管道,其金属部分的管道设计温度应经计算或实测确定。一般情况下,宜取250℃作为设计温度;   h.     管系应力计算时   在进行有弹簧支架的管系应力计算时,宜取介质的正常工作温度作为计算参数。   5.2影响管道压力等级确定的因素   除了上述的设计温度和设计压力是管道压力等级确定的基本参数外,还有一些其它因素也将影响到管道压力等级的确定。   5.2.1应用标准体系   不同的标准体系,其公称压力等级系列是不同的,对应的温度-压力表也不相同。或者说,相同的设计条件,而选用不同的应用标准,其公称压力等级是不同的。因此,在确定管道公称压力等级之前,应首先确定其应用标准体系。   5.2.2材料   不同的材料,其机械性能是不同的,那么它们在标准中的温度-压力表上的对应值也是不相同的。因此在确定管道的公称压力之前应首先确定管道及其元件的材料。材料的选用是由设计温度、设计压力和操作介质确定的。   管道中各元件的材料标准往往是不同的,一般情况下,管子用管材,法兰   用锻材,而阀门多用铸材。无论用什么材料标准,它们都应该是同等级的材料,即具有对操作条件的同等适应性和等强度; 注意管材、板材、棒材、铸材的配伍。   5.2.3操作介质   一般情况下,管道的公称压力在对应温度下的许用压力不得超出其设计压力。   对由于管子及其元件失效而将造成严重危害或易于产生重大事故的介质,在考虑其公称压力等级时,不应仅仅按温度-压力表来确定,应适当提高其公称压力等级,即提高其安全可靠系数。SH3059、SYJ1064标准对此都有详细的规定,例如:   对输送剧毒介质的管道,当采用SH标准体系时,无论介质的操作压力是多少,其公称压力等级应不低于PN5.0MPa;当采用JB标准体系时,应不低于PN4.0;   对输送、气、液态烃等介质的管道,当采用SH标准体系时,无论介质的操作压力是多少,其最低公称压力等级应不低于PN2.OMPa,当采用JB标准体系时,应不低于PN2.5MPa;   对输送一般可燃介质的管道,当采用SH标准体系时,其公称压力等级应不低于PN2.0MPa,当采用JB标准体系时,应不低于PN1.6MPa。   5.2.4介质温度及管系附加力   许多法兰标准都给出这样一个注释:其温度-压力表的对应值是指法兰不受冲击载荷的对应值。事实上,法兰遭受外部管道给予的弯曲、振动、温度循环等附加载荷时,都将影响其密封性,甚至影响到强度的可靠性,此时应将这些外部载荷折算成当量介质压力来确定管道所需的公称压力。   给予法兰的弯曲载荷主要是由管系的热胀冷缩引起的。一般情况下,对于PN2.0等级的法兰,当其工作温度大于200℃时,或PN5.0及以上等级的法兰在工作温度大于400℃时,均应考虑管系对法兰产生的附加载荷的影响,否则应提高管系的公称压力等级。   5.3影晌壁厚等级确定的因素   5.3.1材料的许用应力   材料的许用应力是指材料的强度指标除以相应的安全系数而得到的值。材料的机械性能指标有屈服极限、强度极限、蠕变极限、疲劳极限等,这些指标分别反映了不同状态下失效的极限值。为了保证管道运行中的强度可靠,常将管道元件中的应力限制在各强度指标下某一值,该数值即为许用应力。当管道元件中的应力超过其许用应力值时,就认为其强度已不能得到保证。因此说,材料的许用应力是确定管道壁厚等级的基本参数。   不同的设计标准,选取材料的许用应力值是不同的。对压力管道来说,国内的设计标准是按GB150《钢制压力容器》确定的许用应力值,ASTM材料则是取按ANSI B31.3《Process Piping》标准确定的许用应力值。   5.3.2腐蚀余量   腐蚀余量是考虑因介质对管道的腐蚀而造成的管道壁厚减薄,从而增加的管道壁厚值。它的大小直接影响到管道壁厚的取值,或者说直接影响到壁厚等级的确定。   目前我国尚没有一套有关各种腐蚀介质在不同条件下对各种材料的腐蚀速率数据,因此,工程上大多数情况下仍是凭经验来确定其腐蚀余量的。许多国内外的工程公司或设计院通常都将腐蚀余量分为如下四级:   a.无腐蚀余量。对一般的不锈钢管道多取该值;   b.1.6mm腐蚀余量。对于腐蚀不严重的碳素钢和铬钼钢多取该值;   c.3.2mm腐蚀余量。对于腐蚀比较严重的碳素钢和铬钼钢管道多取该值;   d.加强级(大于3.2mn)腐蚀余量。对于有固体颗粒冲刷等特殊情况下的管道,根据实际情况确定其具体值。.   5.3.3管子及其元件的制造壁厚偏差   管子及其元件在制造过程中,相对于其公称壁厚(或者叫理论壁厚)都会有正、负偏差,因此在确定管子及其元件公称壁厚时一定要考虑可能出现的负偏差值。各种钢管标准中规定的负偏差值是不完全相同的,GB/T8163《流体输送用无缝钢管》、GB/T14976《流体输送用不锈钢无缝钢管》规定的壁厚偏差值如下:                          表5-3   常用标准的壁厚偏差值    材料标准  壁厚(mm)  偏差值(%)  GB/T8163  ≤20  +15,-10,+12,-5,-10  GB/T14976   ≥15  +15,-12.5   +20,-15   5.3.4焊缝系数   金属的焊接过程,实质上是一个冶金过程,其组织带有明显的铸造组织特征。一般情况下,铸造组织缺陷较多,材料性能也有所下降。对于有纵焊缝和螺旋焊缝的焊接管子及其元件,相对于无缝管子及其元件来说,工程上常给它一个强度降低系数(即焊缝系数),以衡量其机械性能下降的程度。其焊缝系数的取值见表5-4   表5-4        焊接钢管的焊缝系数           序号  焊接方法  接头形式  焊缝型式  检验型式  焊缝系数  1  锻焊  对焊  直线  按标准要求  0.6  2  电阻焊  对焊  直线或螺旋形  按标准要求  0.85  3  电弧焊  单面对焊  直线或螺旋形  无RT   10%RT   100%RT  0.8   0.9   1.0  双面对焊  直线或螺旋形  无RT   10%RT   100%RT  0.85   0.9   1.0   RT  射线探伤   5.3.5设计寿命   a.      设计寿命与压力管道的腐蚀余量有关。   对于均匀腐蚀来说,当知道其年腐蚀速率后,根据预定的设计寿命,就很容易算出其应取的腐蚀余量了。   b.     设计寿命还与交变应力作用的荷载变化次数、氢损伤的孕育时间、断裂因子的扩展期等影响因素有关,   c.      与压力管道的一次性投资、资金代尝期和技术更新周期有关。   d.     美国一杂志上推荐的设计使用寿命为:碳钢为5年;铬钼钢和不锈钢为10年。   SH3059标准规定的设计寿命为15年。   国外的一些工程公司对总承包项目规定一般为10年;非总包项目一般为15年,以便从中获取较大的利润。   5.4 常用压力管道器材的设计标准   1) GB50316-2000《工业金属管道设计规范》;   2) GB50251-94  《输气管道工程设计规范》;   3) GB50253-94  《输油管道工程设计规范》;   4) GB50028-93  《城镇燃气设计规范》(1998年版)(2002年局部修订条文);   5) GB50030-91  《氧气站设计规范》;   6) SH3059-2001 《石油化工管道设计器材选用通则》;   7) SH3064-1994 《石油化工钢制通用阀门选用、检验及验收》;   8) HG/T20646   《化工装置管道材料设计规定》。

硫脲浸出矿浆浓度、温度和压力

2019-02-28 11:46:07

使用酸性液浸出金、银的作业一般是在室温文常压下进行。实验也证明,金、银的初始溶解速度随作业温度的进步而加快。但温度的进步会使溶液中的氧化速度加快,而使金、银的溶液速度随时刻的延伸急剧下降。当温度升高至100℃左右时,会剧烈氧化而失效。故提金的作业温度首要取决于的稳定性,尽量削减在浸金过程中的丢失。到目前为止,大多数研讨者以为应在低于或等于25℃的条件下进行。但也有人以为,这一温度上限纷歧定是最佳的。且据R.G.舒尔策的研讨,德国SKW公司的办法是将矿浆加热至40℃,以加快的氧化,并通入适量SO2操控矿浆中总量的50%坚持二硫甲脒状况,它可使贵金属到达最大的溶解速度,的消耗量也可降至吨矿0.57kg。 浸出矿浆的浓度一般选用固液比1∶2。但当处理含很多矿泥的粘性氧化矿浆时,也可将固液比恰当进步。

闪速炉温度与压力条件的选择

2019-01-07 07:51:19

铜锍和炉渣控制温度与铜锍品位和炉渣成分有关。各工厂实际生产数据见表1。 表1  闪速炉铜锍和炉渣控制温度工厂铜锍品位,%炉渣含SiO2  %铜锍温度℃炉渣温度℃贵冶503312101240哈里亚瓦尔塔60~7027~2812401320足尾503011801250小坂55~603211901190巴亚马雷48~5530~3211801260东予5632.711851220佐贺关603312001230玉野60~6231~3311701185汉堡60~6230~3211851220萨姆松572811551250凯特里40~5030~3211701260韦尔瓦572911501250伊达哥603012001250格沃古夫98.83212901290温山582811951255卡巴卡里602912001330伊萨贝拉503412001250圣马纽尔61~633012321260奥林匹克坝98.520.712701300      铜锍温度采用一次性热电偶检测。当铜锍温度偏差超出允许范围时,即通过调整反应塔燃料量予以纠正。     主要控制反应塔出口、沉淀池出口及上升烟道出口三处烟气温度。反应塔出口烟气温度是反映塔内精矿化学反应良好与否的重要参数。但由于难于实际侧量,一般通过热平衡计算及测定耐火材料温度进行推测。通常反应塔出口烟气温度为1350~1400℃。沉淀池及上升烟道出口烟气温度由热电偶测定。沉淀池出口烟气温度控制在1400~1420℃。上升烟道出口烟气温度控制在1300~1350℃。控制较低的上升烟道出口烟气温度有利于减轻废热锅炉烟尘粘结。     闪速炉炉内压力一般控制沉淀池拱顶为微负压。通过设于电收尘器与排风机之间的蝶阀自动控制。

黄铜板的挤压力和穿孔力

2019-05-29 18:53:13

黄铜板揉捏力和穿孔力影响揉捏力的各种要素     黄铜板影响揉捏力的要素许多,主要有:金属的变形扰力、变形程度、外冲突状况、模子形状尺度、揉捏模角、揉捏速度、锭坯长度、制品断面形状以及揉捏办法等。变形粗度对揉捏力的影晌    选用不同揉捏比、揉捏不同金属及合金时的揉捏力改变规则变形程度对揉捏力的影响规则   从能够看出,揉捏力与变形程度成正比联系.揉捏力跟着变形程度的增大而升高。几种钥合金的制作率与揉捏力的联系。    从能够看出,揉捏力跟着制作率的添加而添加。揉捏东西对揉捏力的影晌   金属在揉捏东西(揉捏筒、揉捏模)触摸面上的效果,所发生的阻力是揉捏力的组成部分。不同揉捏工其表面状况对揉捏力的影响规则。揉捏工其衷面状况时揉捏力的影响1-粗目面 2-究漪面 3-先淆面井润附   跟着外摩攘阻力的添加.金属活动不均匀程度添加,因此所需的揉捏力添加。能够看出,金属与揉捏筒内衬、揉捏模具表面之间的冲突阻力添加,揉捏力添加。

铜熔炼反射炉的炉内压力和温度

2019-01-07 17:38:32

熔炼反射炉一般保持微负压(0~-20Pa)操作,也有保持微正压的。压力测点一般设在距烟气出口烟道2~3m处的炉顶中心,炉内压力一般由废热锅炉后的闸门自动控制。加拿大弗林·弗朗厂240m3熔炼反射炉内压力保持为-24Pa,由设在废热锅炉和排风机间的水冷闸门或副烟道进口处的水冷闸门调节。 各种染料的燃烧器都应让染料可充分沿炉长分布,形成广泛的高温区,使大部分炉料在这里发生熔炼作用。燃烧气体距燃烧器端7~8m处温度最高,热量传给炉料及炉渣表面。燃烧气体在接近炉尾时,温度稳定下来,使铜锍和炉渣沉降分离。离炉烟气温度比炉渣温度高50~100℃,将烟气引入废热锅炉可利用约50%~60%的显热。 熔炼反射炉炉头温度一般为1500~1550℃,炉尾温度为1250~1300℃,出炉烟气温度为1200℃左右。当粉煤质量低劣或粒度较粗、水分较高时,炉头温度会降低,炉尾及烟气温度升高。若粉煤挥发分高、质量较好、粒度又很细时,将引起炉头温度过高。 设计应充分考虑对炉内压力和温度的各种测量仪表和自动控制装置,以及当仪表损坏或自动控制失灵时,有由人工处理的可能性。 表1为熔炼反射炉炉内压力和温度测量实例。 表1  反射炉炉内压力盒温度测量实例厂别炉床面积 m2炉内压力 Pa炉头温度 ℃炉尾温度 ℃烟气温度 ℃大冶21715~20①1450~15201200~13001200大冶2700~201450~1500②1200~12501150白银210-5~151500~1550③1250~13001200犹他360~181360~14771200~13401200~1310钦诺21515931270①炉内压力测点在距离炉子后墙9m的炉顶中心; ②炉头温度测点在距炉子前墙6.7m的炉顶中心,炉尾温度测点在距炉子后墙6.05m的炉顶中心,出炉烟气温度测点在斜坡烟道上,炉内压力的测点在距炉子后墙9m处; ③炉内压力测点在距炉子后墙1m侧炉顶中心。

精密数字压力计使用的注意事项

2019-03-01 14:09:46

精细数字压力机的内部结构是非常精细的,咱们在运用的进程中有许多需求留意的当地,往往一个过错的运用方导致产品损坏很多的机能,乃至导致产品作废。针对这个问题,下面小编经过简略的文章给咱们解说精细数字压力计在运用的进程中都需求留意哪些工作。   首要咱们先讲讲精细数字压力计的功用,它广泛应用于各个领域。并且能直观地显现出各个工序环节的压力改变,洞悉产品或介质流程中的条件构成,监督出产运转进程中的安全意向,并经过主动连锁或传感设备,构筑了一道敏捷牢靠的安全确保,为防备事端、确保人身和产业安全发挥了重要效果,被称作安全显现的“眼睛”。   (1)精细数字压力计装在锅炉、压力容器上的数字压力表,其较很多程(表盘上刻度极限值)应与设备的工作压力相适应。精细数字压力计的量程一般为设备工作压力的1.5~3倍,较好取2倍。若选用的数字压力表量程过大,因为相同精度的精细数字压力计,量程越大,答应差错的值和肉眼调查的差错就越大,则会影响压力读数的精确性;反之,若选用的数字压力表量程过小,设备的工作压力等于或挨近精细数字压力计的刻度极限,则会使数字压力表中的弹性元件长时间处于较大的变形状况,易发生较久变形,引起精细数字压力计的差错增大和运用寿命下降。别的,精细数字压力计的量程过小,万一超压运转,指针跳过较很多程挨近零位,而使操作人员发生幻觉,形成更大的事端。因而,精细数字压力计的运用压力规模,应不超越刻度极限的60~70%。   (2)工效果数字压力表的精度是以答应差错占表盘刻度极限值的百分数来表明的。精度等级一般都标在表盘上,选用精细数字压力计时,应根据设备的压力等级和实际工作需求来断定精度。   (3)表盘直径为了使操作人员能精确地看清压力值,数字压力表的表盘直径不该过小,假如数字压力表装得较高或离岗位较远,表盘直径应增大。   (4)精细数字压力计用于丈量的介质假如有腐蚀性,那么必定要根据腐蚀性介质的详细温度、浓度等参数来选用不同的弹性元件材料,不然达不到预期的意图。   (5)日常注重运用保护,定时进行检查、清洗并做好运用情况记载。   (6)精细数字压力计一般检定周期为半年。强制检定是确保精细数字压力计技能功能牢靠、量值传递精确、有用确保安全出产的法令办法。   以上并是小编针对精细数字压力机运用的留意事项作出的相关回答,信任您在看了以上文章之后在今后运用精细数字压力计时也可以愈加称心如意的操作。   文章来历:http://www.chinadwr.com/htm/newscenter-cn/2014_1124_823.html

压力铸造用铝合金的力学性能(JIS)

2019-01-02 16:33:41

合金 σb/MPa σ0.2/MPa δ/% αk/kJ.m-2 疲劳强度σ-1①/MPaADC1 240 145 1.8 56 130ADC3 295 170 3 144 125ADC5 280 185 7.5 144 140ADC6 280   10.5   125ADC10 295 170 2 85 140ADC12 295 185 2 81 140

钛标准—压力容器用钛及钛合金焊丝

2018-12-18 10:15:53

JB/T 4745—2002                                附录D(规范性附录)压力容器用钛及钛合金焊丝 D.1 范 围 D.1.1 本附录适用于钛制压力容器的钨极气体保护焊用钛及钛合金填充丝和熔化极气体保护焊用钛及钛合金焊丝。D.1.2 本附录适用于压力容器用国产钛材的焊接,也可适用于相应进口钛材的焊接。D.1.3 本附录规定了钛及钛合金焊丝(包括焊丝和填充丝)的要求、试验方法、检验规则和标志、包装等。 D.2 合同内容 本附录所列焊丝的订货合同应包括下列内容:a) 焊丝的牌号、状态、直径;b) 产品形式(直段或无支架卷);c) 对残余元素是否有要求;d) 订货重量;e) 本标准及附录的编号;f) 其他需要说明的事项。 D.3 要 求 D.3.1 牌号、状态、直径与产品形式D.3.1.1 焊丝的牌号、状态、直径及其允许偏差应符合表D.1的规定。表D.1  钛焊丝牌号、状态、直径及其允许偏差牌号 状态 直径mm 直径允许偏差mmSTA0R   冷加工态(Y)真空退火态(M)   0.8,1.0,1.2,1.6,2.02.4,3.2,4.0,4.8    ±0.05(直径<4.0)±0.1(直径≥4.0)STA1R STA2R STA3R STA9R STA10R D.3.1.2 焊丝的产品形式分直段和无支架卷两种。D.3.1.3 直段供货的焊丝长度及允许偏差为915mm±6mm,长度有其他要求时应协议解决。D.3.2 熔炼方法和化学成分D.3.2.1 用于制作焊丝的铸锭应采用真空自耗电弧炉熔炼,熔炼次数不得少于两次。D.3.2.2 焊丝的化学成分应符合表D.2的规定。表D.2 钛焊丝化学成分牌号 主 要 成 分% 杂 质 元 素% 残 余 元 素≤ %Ti Mo Ni Pd Fe O C N H 单个 总和STA0R 余 — — — ≤0.10 ≤0.10 ≤0.03 ≤0.015 ≤0.005 0.05 0.20STA1R 余 — — — ≤0.20 ≤0.10 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA2R 余 — — — ≤0.20 0.10-0.15 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA3R 余 — — — ≤0.30 0.15-0.25 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA9R 余 — — 0.12~0.25 ≤0.20 ≤0.10 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA10R 余 0.2~0.4 0.6~0.9 — ≤0.30 ≤0.12 ≤0.03 ≤0.020 ≤0.008 0.05 0.20注:当合同中未特别指明时,残余元素包括AL、V、Sn、Mo、Zr、Ni、Cu、Si、Y(该牌号中含有主要成分元素应除去)。合同中未注明时,不提供残余元素的分析结果。D.3.2.3 用户从产品上取样进行化学成分复验时,成品分析的允许偏差列于表D.3。表D.3  钛焊丝成品化学成分分析允许偏差成分元素 规定成分范围% 成品分析允许偏差%Mo 0.2~0.4 ±0.03Ni 0.6~0.9 ±0.03Pd 0.12~0.25 ±0.02Fe ≤0.10或≤0.20 ±0.05≤0.30 ±0.10O ≤0.10 ±0.020.10~0.15 ±0.02≤0.25 +0.03C ≤0.03 +0.01N ≤0.015或≤0.02 +0.01H ≤0.005或≤0.008 +0.002单个残余元素 ≤0.05 +0.02D.3.3 低倍检查   焊丝的横向低倍组织上不应有裂纹、折叠、气孔、分层、缩尾、金属或非金属夹杂物及其他影响使用的缺陷。  3.4 表面与宏观质量  3.4.1 焊丝表面应清洁,无氧化色,不应有裂纹、起皮、折叠、起刺、斑疤和夹杂等,不应有润滑剂和其他外来物质的污染,以及其他影响使用的缺陷。  3.4.2 焊丝应满足在自动或半自动焊接设备中均匀送进的要求。  3.4.3 成卷供货的焊丝缠绕时不应有波浪形、死弯、重叠、并可无阻碍地自由退绕,外端头应有标记,以使方便的找出。 D.4 试验方法 D.4.1 焊丝化学成分仲裁分析方法按GB/T 4698的规定进行。D.4.2 焊丝的尺寸、重量应使用相应精度的量具测量。D.4.3 焊丝的低倍组织检验参照GB/T 5168的规定进行。D.4.4 焊丝的表面与宏观质量的检查采用目视进行。 D.5 检验规则 D.5.1 检查和验收D.5.1.1 焊丝应由供方技术监督部门检验,保证焊丝质量符合本标准的规定,并填写质量证明书。D.5.1.2 需方对收到的焊丝,应按本标准的规定进行复验,如复验结果与本标准规定不符时,应在收到产品之日起6个月内向供方提出。D.5.2 组批焊丝应成批提交检验,每批应由同一牌号、熔炼炉号、制造方法、状态和规格的产品组成。D.5.3 检验项目   每批焊丝均应进行化学成分、尺寸、代倍及表面与宏观质量的检验。D.5.4 取样位置和取样数量D.5.4.1 每批焊丝由成品上任取一个试样进行气体(N、H、O、C)含量的分析,其他成分的含量以原铸锭的分析结果报出。当所使用的铸锭没有分析过残余元素含量时,还应从同一锭号的成品丝材中任意取一个试样进行残余元素的分析。不注明可不分析残余元素。D.5.4.2 每批焊丝任取两卷(或根)分别在每根的两端各取一个试样进行横向低倍组织检查,检验不合格时,该批产品为不合格。D.5.4.3 焊丝应逐根(卷)进行尺寸、表面与宏观质量的检查。D.5.5 重复试验   在化学成分分析检验中,如果有一个分析结果不合格,则从该批焊丝中取双倍试样进行该不合格项目的复验。复验结果若仍有一个不合格,则该批焊丝为不合格。 D.6 标志、包装、运输、储存 D.6.1 产品标志   在已检验的每件(卷)焊丝上应牢固地扎上一个标牌,标牌上应注明牌号、状态、规格、熔炼炉号、批号、净重、生产厂名称(或标识)、本标准呈等。D.6.2 包装、包装标志、运输、储存D.6.2.1 焊丝按标准重量包装时,其实际净重与所示标准重量的差值应在标准重量的10%内,标准重量可按供方习惯,也可双方协议。D.6.2.2 成卷交货的焊丝,无支架卷的内、外直径和卷的宽度可按供方习惯,也可双方协议。D.6.2.3 每件(卷)焊丝用聚乙烯薄膜套好、扎紧后,用木箱包装。产品装箱时,箱内应衬以防潮纸,箱内各件之间须用软材料填实、固定。不同批号的焊丝不得装入同一箱内。D.6.2.4 产品装箱后,在包装箱外壁上应有一清晰、牢固的标记,标记内容有:产品名称、牌号、本标准号、锭号、批号、规格、净重、生产厂名称等。D.6.2.5 产品的其他包装、包装标志、运输和储存等应符合GB/T 8180的规定。D.6.3 质量证明书   每批产品应附有质量证明书。质量证明书应包括产品名称、牌号、锭号、批号、状态、规格、数量(件数、毛重、净重)、合同号、本标准号、生产厂名称与地址、各项分析检验的结果、技术监督部门的印记、检验员印鉴、检查日期、包装日期。 D.7 说明     压力容器用钛及钛合金焊丝也可按GB/T 3623—1998的焊丝技术要求订货,但焊丝的化学成分应符合本附录的要求。 .

微合金化Q345R压力容器板性能研究

2019-01-25 15:49:23

Q345R压力容器用钢板多用于制作球罐、油漆罐和化工机械设备容器等,一般需通过拉延、曲折、焊接等方法加工成必定形状后在接受压力状态下运用,因其内部装有各种易燃易爆的液体或气体,所以要求压力容器用钢板应具有杰出的强耐性和焊接功能。连轧TMCP工艺出产的钢板具有杰出的冲击韧度,一起下降钢材的碳当量,改进焊接功能,归纳下降成本。关于压力容器用钢及TMCP已有较多研讨,但就Nb-Ti微合金化热连轧压力容器钢板与传统中板功能比照研讨的报导较少,本文就此比照研讨了某钢厂中板线及连轧线出产的20mm厚Q345R压力容器钢板的力学功能,分析了控轧控冷工艺下Nb、Ti微合金化处理对其功能的影响。   试验材料为20mm厚中厚板轧机轧制及低碳、Nb-Ti微合金化热连轧Q345R压力容器钢板,其化学成分见表1。分别对钢板进行取样,进行根本力学功能测验、金相调查、晶粒度及夹杂物评级;在JBN-300型冲击试验机上进行系列温度冲击试验,记载试样夏比冲击功aKV2,丈量不同温度下断口断面纤维率。表1 试验钢板化学成分(质量分数,%)  C S P Si Mn Nb V Ti 1#(中板) 0.162 0.0061 0.016 0.405 1.460 - 0.019 - 2#(连轧板) 0.084 <0.005 0.014 0.241 1.440 0.028 - 0.014    通过低碳,Nb-Ti微合金化处理加操控轧制工艺可以充沛细化晶粒,完成材料的强耐性合理合作,进步功能,简化工艺。连轧Q345R压力容器钢板具有优秀的归纳力学功能,钢板屈从强度高,塑性好,冲击韧度较中板进步2~3倍,断裂耐性显着好于中板。低碳、Nb-Ti微合金化处理细化了钢板安排,消除了带状偏析,晶粒细化及安排均匀化是材料耐性大幅度进步的主要原因。

铂热电阻

2017-06-02 16:25:49

铂热电阻根据使用场合的不同与使用温度的不同,按照绕制的骨加来区分,有云母、陶瓷、簿膜等元件。作为测温元件,它具有良好的输出性能,可作为显示仪、记录仪、调节仪以及其它“电脑”之类仪表提供精确的输入值。若配接一体化温度变送器,可输出4~20mA和0~10V等标准电流和电压信号,使用更为方便。就结构而言,铂热电阻还可以分为工业铂热电阻和铠装铂热电阻。工业铂热电阻也叫装配铂热电阻,即是将铂热电阻感温元件焊上引线组装在一端封闭的 金属 管或陶瓷管内,再安装上接线盒而成;铠装铂热电阻是将铂热电阻元件,过渡引线,绝缘粉组装在不锈钢管内再经模具拉实的整体,具有坚实,抗震,可绕,线径小,使用安装方便等优点。装配式铂热电阻是由感温元件、不锈钢保护管、接线盒以及各种用途的固定装置组成。铠装式铂热电阻比装配式铂热电阻直径小、易弯曲、适宜安装在装配式无法安装的场合,它的外保护管采用不锈钢,内充满高密度氧化物质绝缘体因此它具有很强的抗污染和优良的机械强度,能在环境较为恶劣的场合使用。隔爆式铂热电阻通常用于生产现场伴有各种易燃、易爆等化学气体、蒸气的场合,如使用普通铂热电阻极易引起环境气体爆炸,因此在这种场合必须使用隔爆式的铂热电阻,杭州热电偶厂生产的隔爆铂热电阻,能适用在dⅡBT1—6以及dⅡCT1—6温度组别区间内具有爆炸性气体危险场所内。端面铂热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 本文为转载稿,仅代表作者本人的观点,与本网立场无关。上海有色网信息科技有限公司不对其中包含或引用的信息的准确性、可靠性或完整性提供任何明示或暗示的保证。对于任何因直接或间接采用、转载本文提供的信息造成的损失,上海有色网信息科技有限公司均不承担责任。媒体合作事宜, 敬请联系info@smm.cn 或 021-6183 1988 转 5009。

钛砂矿选矿厂-昆士兰钛矿公司B采选矿厂(澳大利亚)

2019-01-24 17:45:46

昆士兰钛矿公司在莫斯基普波因特(Inskip Point)地区经营两个采选厂,其中一个较大的称“B”选厂,处理能力为600吨/时。 该厂采用采砂船开采,原矿首先经过筛分除渣后,入缓冲矿仓,然后送入八台圆锥选矿机粗选丢弃尾矿,中矿再用四台圆锥选矿机再造也丢弃尾矿,中矿返回本作业,粗选及中矿再造精矿再经两次精选获得最终精矿。粗精矿送至设在雷恩堡海滨的公司所属的干选厂进行精选,在精选中获得金红石、锆英石和独居石。 该厂在设计前对采用圆锥选矿机处理本地区的矿石进行了大量的试验工作,以考查其工艺特性。同时认识到赖克特圆锥选矿机按流膜选矿原理进行分选,给矿矿浆的液固比(矿浆浓度)对该设备的选别效果是一个决定性因素,给矿速度大小,在不同的给矿品位条位下也是决定重矿物回收率的重要因素,根据试验所得到的数据确定了所采用的选矿系统的控制条件,并为满足所确定的技术条件建立了合适的控制系统。 图1表示出B采选厂所采用的工艺流程和控制点。该厂原矿绐矿和最终尾矿的排出采用了变速砂泵,从而使粗选循环选矿机的给矿速度恒定,以适应原矿的采出品位和二次选别循环的负荷变化。图1  B采选厂工艺流程 该厂为使在原矿品位变化时能使选矿过程保持最佳操作条件下进行,在选矿循环中对矿浆浓度进行连续测定、记录及控制,同时将矿浆流量与浓度两个因素结合在一起进行。全部记录器、控制器与所有砂泵电机操作台均安装在一个中央挖制室内,使全厂操作基本上由控制室予以监控。 在所用控制仪表选择上,均从实际效果出发,如浓度测定采用差压变送器并采用操作简单,适应性强的气动控制仪表。在流量控制上采用电磁流量计。 该厂实现上述检测及控制,在以下几方面表现出优越性。(1)为生产过程积累了宝贵的历史记录。(2)根据每班采样检验数目记录结果可计算各班生产指标。(3)简化了监督工作,节省人力。(4)可获得较好的技术经济指标。(5)在原矿品位变化时,可通过控制维持较佳的生产技术条件,消除了靠操作人员判断可能产生的误差。

影响铜基粉末冶金材料构造和性质的因素

2019-03-06 11:05:28

原始粉猜中总是存在必定的金属氧化物,因为在复原气氛中进行烧结,这些金属氧化物在烧结进程中会被复原,然后发作气体复原物质,因而在烧结进程中存在气体分出的进程。限制压力越大,金属粉末颗粒之间关闭孔隙的数量就越多,气体物质也就越难以排出,因而呈现基体中的孔隙数随限制压力的增大而添加的现象。  限制压力对材料密度的影响为压坯密度、烧结体密度随限制压力的改变曲线。由压坯密度改变曲线可以看出,限制压力由200MPa添加到400MPa时,压坯密度增幅较大,这是因为在较低限制压力条件下,颗粒与颗粒之间空地较多,触摸面较小,拱桥效应比较显着,压力略微添加,就可使拱桥遭到必定程度的损坏,压坯的密度随之显着添加;限制压力大于400MPa时,压坯密度增长幅度相对陡峭,这是因为当限制压力一旦大于基体铜的屈从极限(约350400MPa),金属颗粒就会发作显着的塑性变形,使颗粒之间的触摸面积显着添加,一起因为加工硬化的效果,紧缩阻力增大,细密化程度进一步添加,所需的压力大大添加。  限制压力对烧结体抗压功能的影响为烧结体抗压强度随限制压力的改变曲线。从可知,随限制压力的添加,材料的抗压强度呈现先升高再下降,最后又升高的趋势。对铜基制动冲突材料而言,在组元不变的情况下,基体中的缺点是影响抗压强度的要害。相关于低限制压力(200MPa)而言,适中的限制压力(400MPa)能使颗粒触摸严密,并且因为基体中的开孔隙较多,既能使颗粒之间的扩散距离缩短,又能使烧结进程中因复原反响发作的气体可以顺利排出,进而取得缺点较少的烧结体,有利于抗压强度的进步。在更高限制压力(600MPa)下,虽然坯体中颗粒触摸更严密,更有利于烧结的进行,可是因为基体中的孔隙较多,使得烧结体的抗压功能有所下降。进一步进步限制压力(700MPa)金属颗粒全体发作了显着的塑性变形,时再结晶形核数目大大添加,有助于构成晶粒更细微的安排,这在很大程度上弥补了孔隙多形成的基体强度削弱的问题,因而材料的抗压强度有所提高。  限制压力对烧结体冲突和耐磨功能的影响是烧结材料磨损曲线。由可知,各组烧结试样的冲突因数在0.220.23间改变,限制压力对冲突功能影响不大。烧结体磨损量则呈现先降再升又降的趋势。关于冲突功能而言,因为各冲突磨损调理组元的组成和安排改变不大,所以冲突因数的改变规则不是非常显着;对磨损而言,在组元、总孔隙度改变不大的情况下,首要决定因素是  在铜基粉末冶金航空刹车材料中,限制压力首要经过压坯的功能来影响刹车材料的烧结体功能,其影响如下:限制压力由200MPa添加到400MPa,基体晶粒尺度变小,晶粒尺度趋于均匀;限制压力达700MPa时,晶粒最为细微,尺度也最均匀。一起,随限制压力添加,基体中的孔隙数量也添加。随限制压力添加,铜基粉末冶金刹车材料的抗压强度和耐磨功能均呈现先增后降再增的趋势,但冲突因数改变不是非常显着。(完)

黄铜安全阀

2017-06-06 17:50:00

黄铜安全阀是一种安全保护用阀,它的启闭件受外力作用下处于常闭状态,当设备或管道内的介质压力升高,超过规定值时自动开启,通过向系统外排放介质来防止管道或设备内介质压力超过规定数值。黄铜安全阀属于自动阀类,主要用于锅炉、压力容器和管道上,控制压力不超过规定值,对人身安全和设备运行起重要保护作用。    黄铜安全阀构造特征:膜片式安全阀,弹簧不于水接触,密封材料为EPDM,耐老化,压力设定通过自动调试设备完成,泄压点准确。体积小,安装方便。    黄铜安全阀功能:    黄铜安全阀主要用于保护供暖、空调、水系统运行时不超过设定的安全值。当系统运行压力超过安全点时,黄铜安全阀自动开启泄水,使系统压力回复安全点以下然后自动关闭。    黄铜安全阀技术参数:    安全阀主体材料:黄铜。黄铜安全阀结构形式:弹簧式。黄铜安全阀阀瓣开启高度:全启式安全阀。黄铜安全阀阀体构造:封闭式 。    黄铜安全阀适用温度:≤220℃  启闭压差:≤15%整定压力  公称压力:1.6Mpa  适用介质:空气,蒸气,水     黄铜安全阀适用整定压力范围:1. 0.3~0.7Mpa, 2. 0.6~1.0Mpa,3. 1.0~1.6Mpa    黄铜安全阀安装使用说明     1:安全阀可水平或垂直安装,但不可倒置安装,即塑料旋钮不能在下部。    2:泄压口应连接排水管以便排水,旋转黑色旋钮可手动泄压。    更多关于黄铜安全阀的资讯,请登录上海有色网查询。 

镁合金型材挤压模具研究

2019-01-15 09:51:32

镁及镁合金具有质量轻,比强度高,弹性模具小,导热性能好,易于回收,对环境污染小等优点,在汽车、机械电子、航空航天、国防军工、交通运输等领域具有重要的应用价值。镁合金塑性成形困难,通常采用具有优良的变形力学条件的挤压方法成形。随着科学技术的进步,市场对制品质量的要求不断提高,模具在镁合金挤压成形中占的重要地位。文献资料表明,国内外对镁合金挤压模具结构的研究较少,特别是对型材挤压模具研究尚未见报道。本试验通过不同的模具结构对镁合金型材挤压成形过程的影响进行探讨。   1 模具结构特点与挤压成形工艺   由于高温下挤压镁合金所需的变形力较大,而且散热片型材带有较高的齿,因此,高温挤压中模具容易在悬臂处出现断裂、压塌等失效现象。本研究以计算机用散热片型材(图1)为研究对象,采用三种典型的模具进行镁合金的挤压成形研究。模具材料选用4Cr5MoSiV1 2008_08/temp_08080511396019.jpg">   1.1 模具结构特点   平模是生产实心型材的较普通的一种模具,其结构简单,成形所需挤压力大。图2是在平模基础上改进了的锥形模结构,与平模相比,锥模中的锥角有助于金属变形时的流动,可降低挤压力。   图3是前置式模具。其特点是上模的两个分流孔对称分布,焊合室在下模;同时由于上模的分流桥对下模悬臂部分的遮挡作用,减小了挤压力对下模悬部位的直接冲击作用,达到保护模具作用。   图4是桥式模具。其下模是一个简单的矩形孔,上模模芯上有若干个成形槽,对镁合金超导流和成形作用。与前置式模具相比,这种模具结构中没有悬臂,模芯与下模矩形孔互相配合,挤压中成形散热片上的齿。作用力全部转移到上模的矫和模芯上,从而保证了模具强度。  1.1  挤压成形工艺   挤压设备为3MN立式油压挤压机。镁合金铸锭尺寸直径82mmX150mm,铸锭的加热温度依据镁合金的相图、塑性图及再结晶图定为420℃,挤压速度控制在15mm/s~25mm/s之间,挤压筒和模具的预热温度分别为350℃和400℃。   2 试验结果及分析   图5和表1分别是图1所示制品在挤压试验中挤压力与行程的关系曲线和模具结构与较大挤压力间的关系。  图5可知:锥形模在挤压行程达到7mm左右,挤压力达到较大值1850kn,前置式模具和桥式模具在挤压行程达到12mm左右时,挤压力分别达到较大值2400kn和2800kn。在挤压的初始阶段,挤压力随行程的增加而急剧升高,使用锥形模具挤压时,挤压力达到极值所需行程较长,这是因为制品挤出前有一个金属充满模具焊合室及金属的焊合过程,因此,挤压力的峰值出现得较晚且较大。三种模具结构形式,其载荷与行程曲线的形状基本上是一致。  由图5可知,模具结构对挤压影响较大,桥式模所需要的挤压力较大,前置式模具次之,所需挤压较小的的是锥模挤压。   锥模挤压成形过程中,锥形腔起着导流作用,且金属成形过程中无需焊合,原所需的挤压力相对来说要小些。从结构上来说,由于组合模比锥模多一个分流和焊合过程,故组合模比平模和锥模所需的挤压力要大。   桥式模具结构有模芯,且模芯上有多条成形制品的导流槽,金属材料在导流槽中焊合所需的力较大,相应的挤压力也大。   采用各种模具挤出的AZ31镁合金散热片的制品如图6所示。由于采用桥式模具和前置式模具挤出过程经过分流和焊合过程,为确定制品的焊合情况,采用电子扫描镜观察分析金属在模具焊合室和型材焊合部位微观组织形貌。结果表明,制品在焊合部位没有焊缝,在焊合区的组织致密,与基体组织无明显差别,说明焊合状况较好。   前置式分流模在试验后悬臂处未出现任何塌陷及其他变形。虽然所需根的挤压力较大,但由于分流桥对悬臂的遮挡起了保护作用,故模具悬臂未出现任何变形。   桥式模具成形较困难。挤压过程中金属在模具芯头上导流槽处的流动阻力较大,使金属流出模孔困难;同时由于产品的不同部位壁厚差别较大,金属流动不均匀,造成模具芯头的受力不均匀,对芯头产生很大的剪切力和扭矩,导致挤压较大。   3  结论   1 在所设计的三种模具挤压过程中,锥模所需的压力较小,前置保护模次之,桥式模具的较大。   2 锥模和前置保护模成形质量较好,桥式模由于金属的模芯上的小槽处流动阻力大,挤压焊合困难,导致成形时所需挤压力很大。   3 从组合模结构挤压成形来看,AZ31镁合金在焊室中是能够完全焊合的,用扫描电镜观察焊合室部位和制品焊合处发现,其组织致密,与基体组织无明显差别,焊合质量较好,说明组合模挤压AZ31镁合金散热器是可行的,可推广应用于其他实心型材或中空型材制品的挤压成形。

无缝钢管规格表标准

2019-03-19 09:03:26

无缝钢管规格表标准如下: NF A 49-902-1999 ...气体传输用可再填充的无缝钢管.设计结构和试...   NF A 49-875-7-1996 钢管的无损试验.第7部分:纵向缺陷探测用无缝钢管   NF A 49-875-6-2000 钢管的无损检验.第6部分:检测横向缺陷用无缝钢管   NF A 49-875-14-2000 钢管的无损检验.第14部分:层面缺陷探测用无缝钢管   NF A 49-317-1980 钢管.机械用光端无缝钢管.奥式体不锈钢.(...   NF A 49-311-1974 钢管.机械用无缝钢管.(尺寸.交货技术条件...   NF A 49-310-1994 钢管.机械应用用精密无缝钢管.尺寸.交货技...   NF A 49-230-1985 钢管.压力容器和低温管道用光端无缝钢管.尺...   NF A 49-220-1990 钢管.高温用的无缝钢管.尺寸.交贷的技术条...   NF A 49-219-1990 钢管.非合金和钼与铬钼合金炉用无缝钢管.尺...   NF A 49-218-1979 钢管.奥氏体不锈钢熔炉用无缝钢管.(带标准...   NF A 49-217-1981 热交换器用奥氏体和铁素体不锈钢无缝钢管。尺...   NF A 49-215-1981 钢管.铁素体非合金和合金钢热交换器用的无缝钢管   NF A 49-214-1978 钢管.耐高温奥氏体无缝钢管.(带标准公差的...   NF A 49-212-1983 中温用碳素无缝钢管。尺寸(附标准公差)与交...   NF A 49-210-1985 钢管.液体管道用冷拉无缝钢管.尺寸.交货技...   NF A 49-200-4 A1-2004 压力载荷用无缝钢管.交货技术条件.第4部分...   NF A 49-200-3 A1-2004 压力载荷用无缝钢管.交货技术条件.第3部分...   NF A 49-200-2 A1-2004 压力载荷用无缝钢管.交货技术条件.第2部分...   NF A 49-200-1977 锅炉和压力容器用无缝钢管超声波检验——检验...   NF A 49-200-1 A1-2004 压力载荷用无缝钢管.交货技术条件.第1部分...   NF A 49-186-1987 ...用异经管.一般用途,无缝钢管制.尺寸.交货...   NF A 49-117-1985 钢管.一般用和管道用光端无缝钢管.铁素体和...   NF A 49-115-1978 钢管.适合车螺纹用的热加工无缝钢管.尺寸....   NF A 49-112-1987 钢管.热轧光端无缝钢管.交货特殊条件.(尺...   NF A 49-111-1978 钢管.一般商业用中压平端无缝钢管.(尺寸....   NF A 49-005-2003 焊接和无缝钢管.管的尺寸和单位长度重量的一...   MIL T 16286 E SHIPS-1977 船舶锅炉用无缝钢管   JIS G 7222-2003 承压用无缝钢管.交货技术条件.第4部分:奥...   JIS G 7221-2003 承压用无缝钢管.交货技术条件.第3部分:规...   JIS G 7220-2003 承压用无缝钢管.交货技术条件.第2部分:规...   JIS G 7219-2003 承压用无缝钢管.交货技术条件.第1部分:规...   JIS G 7215-2003 机械用光端无缝钢管(ISO规范)   JIS G 3465-1988 钻探用无缝钢管   JIS G 3439-1988 油井用无缝钢管   JIS G 3429-1988 高压气体容器用无缝钢管   ISO 9598-1989 受压力的无缝钢管.横向缺陷检验用全周边磁换... 6   ISO 9329-4-1997 受压力的无缝钢管.交货技术条件.第4部分:... 26   ISO 9329-3-1997 受压力的无缝钢管.交货技术条件.第3部分:... 16   ISO 9329-2-1997 受压力的无缝钢管.交货技术条件.第2部分:... 22   ISO 9329-1-1989 受压力的无缝钢管.交货技术条件.第1部分:... 8   ISO 9305-1989 受压力的无缝钢管.用全周边超声波试验法检验... 4   ISO 6759-1980 热交换器用无缝钢管   ISO 3304-1985 光端精密无缝钢管.交货技术条件 8   ISO 2937-1974 机械用光端无缝钢管 4   ISO 12095-1994 压力无缝钢管和压力焊接钢管.液体渗透检验 6   ISO 11120-1999 ...升水容量的可再填充的无缝钢管.设计,结构和... 30   ISO 10124-1994 压力无缝钢管和压力焊接(埋弧焊除外)钢管的... 5   GOST 8734-1975 冷轧(拉)无缝钢管品种   GOST 8733-1974 冷轧(拨)和热轧(拨)无缝钢管;技术要求   GOST 8731-1974 热轧无缝钢管   GOST 5654-1976 造船用热轧无缝钢管。技术条件   GOST 550-1975 石油加工和石油化学工业用的无缝钢管。技术条...   GOST 12132-1966 摩托车自行车工业用电焊和无缝钢管   GOST 11017-1980 高压无缝钢管。技术条件   GOST 10192-1962 双金属无缝钢管。品种   EN 10246-6-2000 钢管的无损试验.第6部分:无缝钢管横向缺陷...   EN 10246-4-2000 ...向不完整性检测用铁磁无缝钢管的自动全外围磁...   EN 10220-2002 无缝钢管.单位长度尺寸重量通用表   EN 10216-5-2004 压力用途无缝钢管.交货技术条件.第5部分:...   EN 10216-4-2004 压力载荷用无缝钢管.交货技术条件.第4部分...   EN 10216-3-2004 压力载荷用无缝钢管.交货技术条件.第3部分...   EN 10216-2-2004 压力载荷用无缝钢管.交货技术条件.第2部分...   EN 10216-1-2004 压力载荷用无缝钢管.交货技术条件.第1部分...   DIN EN 10246-6-2000 钢管的无损试验.第6部分:无缝钢管横向缺陷...   DIN EN 10246-4-2000 ...向不完整性检测用铁磁无缝钢管的自动全外围磁...   DIN EN 10220-2003 无缝钢管.单位长度尺寸重量通用表   DIN EN 10216-5-2004 压力用途无缝钢管.交货技术条件.第5部分:...   DIN EN 10216-4-2004 压力载荷用无缝钢管.交货技术条件.第4部分...   DIN EN 10216-3-2004 压力载荷用无缝钢管.交货技术条件.第3部分...   DIN EN 10216-2-2004 压力载荷用无缝钢管.交货技术条件.第2部分... 43   DIN EN 10216-1-2004 压力载荷用无缝钢管.交货技术条件.第1部分...   DIN 2917-1982 热蒸汽管道和贮存器用无缝钢管   DIN 28180-1985 管束式热交换器的无缝钢管.尺寸.尺寸偏差和...   DIN 29657-1991 航空和航天.结构用无缝钢管和镍合金管.交货...   DIN 2448-1981 无缝钢管.尺寸.单位长度质量   DIN 2445-2-2000 动态载荷无缝钢管.第2部分:流体系统用压力...   DIN 2445-1-2000 动态载荷无缝钢管.第1部分:流体系统用压力...   DIN 2445 BB.1-2000 动态载荷无缝钢管.设计规则   DIN 2391-2-1994 特殊尺寸精度的精密无缝钢管.第2部分:交货...   DIN 2391-1-1994 特殊尺寸精度的精密无缝钢管.第1部分:尺寸   DIN 17175-1979 耐热无缝钢管.交货技术条件   BS 4 T 100-1997 无缝钢管和管材的检验、试验和验收程序   BS KIT 109-2002 无缝钢管工具箱   BS EN ISO 13680-2002 ...油管和接箍的防腐合金无缝钢管.交货技术条件   BS EN ISO 11120-1999 ...升水容量的可再填充的无缝钢管.设计,结构和...   BS EN 10246-6-2000 钢管的无损检验.横向缺陷探测用无缝钢管自动...   BS EN 10216-5-2004 压力无缝钢管.交货技术条件.无缝钢管 48   BS EN 10216-4-2002 压力无缝钢管.交货技术条件.规定低温特性的... 32   BS EN 10216-3-2002 压力无缝钢管.交货技术条件.合金细粒钢管 37   BS EN 10216-2-2002 压力无缝钢管.交货技术条件.规定高温特性的... 43   BS EN 10216-1-2002 压力无缝钢管.交货技术条件.规定室温特性的... 28   BS 6323-8-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 6323-7-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 6323-6-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 6323-5-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 6323-4-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 6323-3-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 6323-2-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 6323-1-1982 汽车制造、机械制造及一般工程用无缝钢管与焊...   BS 3604-1-1990 ...铁合金钢.第1部分:无缝钢管和电阻焊接管规...   BS 3600-1997 承压用焊接钢管和无缝钢管的尺寸及单位长度质...   ASTM A 999 M-2004 合金钢及不锈钢管一般要求的标准规范 11   ASTM A 999 M-1998 合金钢及不锈钢管一般要求的标准规范 9   ASTM A 822-1990 液压系统设备用冷拉碳素无缝钢管   ASTM A 795 M-2004 用于防火的黑色和热浸镀锌焊接和无缝钢管的标... 6   ASTM A 714-2003 高强度低合金焊接和无缝钢管的标准规范 8   ASTM A 714-1999 高强度低合金焊接和无缝钢管 8   ASTM A 53-1998 非镀锌和热浸镀锌焊接钢管和无缝钢管规范   ASTM A 53 M-1999 黑色和热浸镀锌焊接及无缝钢管规范   ASTM A 252-2002 焊接钢和无缝钢管桩的标准规范 7   ASTM A 252-1998 焊接钢和无缝钢管桩 7   AS 1835-1983 承压无缝钢管  无缝钢管是分冷拔和热扎,但是表面没有经过什么处理的,   无缝钢管分好几种,在与它的材质和执行标准,材质有普通管,合金管,执行标准为 1、结构用于无缝钢管:GB8162-99   2、输送流体用地缝钢管:GB8163-99   3、锅炉用无缝钢管:GB3087-1999   4、锅炉用高压无缝管:GB5310-95(ST45.8-ⅲ型)   5、化肥设备用高压无缝钢管:GB6479-1999   6、地质钻探用无缝钢管:YB235-70   7、石油钻探用无缝钢管:YB528-65   8、石油裂化用无缝钢管:GB9948-88   9、石油钻铤专用无缝管:YB691-70   10、汽车半轴用无缝钢管:GB3088-1999   11、船舶用无缝钢管:GB5312-1999   12、冷拔冷轧精密无缝钢管:GB3639-1999   13、各种合金管16Mn、27SiMn、15CrMo、35CrMo、12CrMov、20G、40Cr,12Cr1MoV,15CrMo

钢管国际标准

2019-03-19 09:03:26

序号品种标准号标题1ISOISO 65—1981按照ISO 7/l车螺纹的碳素钢管2ISOISO 1129—1980锅炉、过热器和热交换器用钢管 尺寸、公差和单位常用重量3ISOISO 1179—1981符合ISO 228/1螺纹的工业用平端钢管和其他金属管接头4ISOISO 2937—1974机械用光端无缝钢管5ISOISO 3183-1-1996石油和天然气工业管道钢管交货技   术条件第l部分:A级钢管的要求6ISOISO 3183-2-1996石油和天然气工业管道钢管交货技    术条件 第2部分:B级钢管的要求7ISOISO 3183-3-1999石油和天然气工业 管道钢管 交货技术条件第3部分:c级钢管的要求8ISOISO 3183-3 Technical corrigendum 1-2000石油和天然气工业管道钢管交货技    术条件第3部分:c级钢管的要求技术勘误l9ISOISO 3304—1985光端精密无缝钢管交货技术条件10ISOISO 3305-1985光端焊接精密钢管交货技术条件11ISOISO 3306-1985焊后定径光端精密钢管交货技术条件12ISOISO 3545-1-1989钢管和管件 规范中使用的符号第1部分:圆形截面的管和管状附件13ISOISO 3545-2-1989钢管和管件规范中使用的符号第2部分:正方形和矩形中空截面14ISOISO 3545-3-1989钢管和管件规范中使用的符号第3部分:圆形截面管件15ISOISO 4200-1991光端焊接和无缝钢管 管的尺寸和单位长度重量的一览表16ISOISO 4394-1-1980流体传动系统和元件.缸筒.第l部分对特殊精加工内径的钢管的要求17ISOISO 5256-1985地下或水下管路用钢管和管件 管内外涂沥青或沥青油衍生物18ISOISO 5625-1978造船 钢管管路法兰焊接通舱管PN6、PN10、和PN1619ISOISO 6758-1980热交换器用焊接钢管20ISOISO 6759-1980热交换器用焊接钢管21ISOISO 6761-1981钢管 焊接用管端和配件的预处理22ISOISO 8535-1-1996压燃式发动机 高压燃油喷管用钢管第l部分:无缝冷拔单壁管的要求23ISOISO 8535-2-2003压燃式发动机 高压燃油喷管用钢管第2部分:组合管的要求24ISOISO 9095—1990钢管 鉴别材料用连续符号标志和颜色码25ISOISO 9302-1994压力用途的无缝钢管和焊接(埋弧焊除外)钢管 液压密封验证电磁试验法26ISOISO 9303-1989压力用途的无缝钢管和焊接(埋弧焊除外)钢管 检测纵向缺陷用全周边超声波试验27ISOISO 9304-1989压力用途的无缝钢管和焊接(埋弧焊除外)钢管 测缺陷用涡流电流试验28ISOISO 9305-1989压力用途的无缝钢管 横向缺陷全周边超声电流检验29ISOISO 9329-1-1989压力用途的无缝钢管交货技术条件第l部分:规定室温性能的非合金钢30ISOISO 9329-2-1997压力用途的无缝钢管 交货技术条件第2部分:规定高温性能的非合金钢和合金钢31ISOISO 9329-3-1997压力用途的无缝钢管交货技术条件第3部分:规定低温性能的非合金钢和合金钢32ISOISO 9329-4-1997压力用途的无缝钢管.交货技术条件第4部分:奥氏体不锈钢33ISOISO 9330-1-1990压力用途的焊接钢管 交货技术条件第l部分:规定室温性能的非合金钢管34ISOISO 9330-2-1997压力用途的焊接钢管交货技术条件      第2部分:规定高温性能的电阻焊接和感应焊接非合金钢管和合金钢管35ISOISO 9330-3-1997压力用途的焊接钢管交货技术条件      第3部分:规定低温性能的电阻焊接和感应焊接非合金钢管和合金钢管36ISOISO 9330-4-2000压力用途的焊接钢管  交货技术条件  第4部分:规定高温性能的埋弧焊接非合金钢管和合金钢管37ISOISO 9330-5-2000压力用途的焊接钢管交货技术条件  第5部分:规定低温性能的埋弧焊接非合金钢管和合金钢管38ISOISO 9330-6-1997压力用途的焊接钢管 交货技术条件 第6部分:奥氏体不锈钢管的焊接长度39ISOISO 9402-1989压力用途的无缝钢管和焊接(埋弧焊除外)钢管检测纵向缺陷用铁磁钢管全周边磁转换/磁链试验40ISOISO 9455-12-1992软钎焊剂试验方法第12部分:钢管腐蚀试验41ISOISO 9598-1989压力用途的无缝钢管 检测横向缺陷用铁磁钢管全周边磁转换/磁链试验42ISOISO 9764-1989压力用途的电阻焊和感应焊钢管 焊缝的纵向缺陷超声波检验43ISOISO 9765-1990压力用途的埋弧焊钢管 焊缝的纵向  和/或横向缺陷超声波检测44ISOISO 10124-1994压力用途的无缝钢管和焊接(埋弧焊除外)钢管 层状缺陷检测用超声检验45ISOISO 10332-1994压力用途的无缝钢管和焊接(埋弧焊除外)钢管验证液压防泄漏用超声波检验46ISOISO 10543-1993压力用无缝及热拉伸焊接钢管 全周边超声波厚度检测47ISOISO 10763-1994液压传动 端面平齐的无缝和焊接型精密钢管 尺寸及标称工作压力48ISOISO 11120-1999气瓶150升~3000升水容量的可重复充装无缝钢管气瓶 设计、结构和试验49ISOISO 11484-1994压力用途钢管无损检验人员的资格及认证50ISOISO 11496-1993压力用途的承压无缝和焊接钢管 层间不完整性检查的管端超声波检测51ISOISO 11960-2001石油和天然气工业 油井套管和油管用钢管52ISOISO 11960 Technical corrigendum-1-2002石油和天然气工业.油井套管或油管用钢管.技术勘误I53ISOISO 11961-1996石油和天然气工业 钻井杆用钢管规范54ISOISO 12094-1994压力用途的承压焊接钢管 焊接钢管用钢带/钢板分层缺陷检测用超声波试验55ISOISO 12095-1994压力用途的承压无缝和焊接钢管 液体渗透试验56ISOISO 12096-1996压力用途的承压埋弧焊接钢管焊缝缺陷柃测用X射线检查57ISOISO 13663-1995压力用途的承压焊接钢管焊缝周围  分层缺陷检测用超声波试验58ISOISO 13664-1997压力用途的承压无缝和焊接钢管管  端分层组织缺陷探测用磁粉检验59ISOISO 13665-1997压力用途的承压无缝和焊接钢管管  身表面缺陷探测用磁粉检验60ISOISO 13680-2000石油和天然气工业用作套管、油管和接箍的防腐合金无缝钢管交货技术条件61ISOISO 15741-2001色漆和清漆海上和近海的非腐蚀气  体钢管内侧的减小摩擦涂层62ISOISO 13-1978灰口铸铁管、特种铸件和耐压主管道的灰口铁部件63ISOISO 49-1994符合ISO 7—1可锻铸铁管螺纹接头64ISOISO 49 Technical corrigendum-1-1997符合ISO 7-l可锻铸铁管螺纹接头技术勘误165ISOISO 2531-1998输水和输气用球墨铸铁管、配件、附件及其接头66ISOISO 4179-1985压力和非压力管道用球墨铸铁管离  心法水泥砂浆内衬一般要求67ISOISO 7005-2--1988金属法兰第2部分:铸铁管法兰68ISOISO 8179-1-1995球墨铸铁管外部镀锌第1部分:终饰层用金属锌69ISOISO 8179-2--1995球墨铸铁管外部镀锌第2部分:终饰层用富锌涂层70ISOISO 8180-1985球墨铸铁管聚乙烯套管71ISOISO 9349-1991预绝缘球墨铸铁管道系统72ISOISO 10802-1992球墨铸铁管道 安装后水压试验73ISOISO 10803-1999球墨铸铁管的设计方法74ISOISO 10804-1-1996球墨铸铁管道用减震连接系统第1部分:设计规则和定型试验75ISOISO 1127-1992不锈钢管尺寸、公差和单位长度的 公称质量76ISOISO 2037-1992食品工业用不锈钢管77ISOISO 7598-1988适于按照ISO 7/1车螺纹用不锈钢管78ISOISO 9330-6-1997压力用途的焊接钢管交货技术条件  第6部分:奥氏体不锈钢管的焊接长度79BSIBS EN ISO 1127-1997不锈钢管.尺寸、公差和单位长度的规范质量80BSIBS EN ISO 9455-12-1994软钎焊剂.试验方法.钢管耐腐蚀试验81BSIBS EN ISO 11120-1999气体瓶.1501升-30001升水容量的可再填充的无缝钢管.设计,结构和试验82BSIBS EN ISO 11960-2001石油和天然气工业.油井套管和油管用钢管83BSIBS EN ISO 11961-1997石油和天然气工业.钻探管用钢管.规范84BSIBS EN ISO 13680-2002石油和天然气工业.用作套管、油管和接箍的防腐合金无缝钢管.交货技术条件85BSIBS EN ISO 3183-3-1999石油和天然气工业.管道用钢管的技术交货条件.C级要求的钢管86BSIBS EN ISO 8535-1-1997压燃式发动机.高压喷射燃油管用的钢管.无缝冷拔单壁管的要求87BSIBS EN ISO 8535-2-2004压燃式发动机.高压燃油喷管用钢管.合成管的要求

ISO国际钢管标准

2019-03-19 11:03:29

序号品种标准号标题1ISOISO 65—1981按照ISO 7/l车螺纹的碳素钢管2ISOISO 1129—1980锅炉、过热器和热交换器用钢管 尺寸、公差和单位常用重量3ISOISO 1179—1981符合ISO 228/1螺纹的工业用平端钢管和其他金属管接头4ISOISO 2937—1974机械用光端无缝钢管5ISOISO 3183-1-1996石油和天然气工业管道钢管交货技   术条件第l部分:A级钢管的要求6ISOISO 3183-2-1996石油和天然气工业管道钢管交货技    术条件 第2部分:B级钢管的要求7ISOISO 3183-3-1999石油和天然气工业 管道钢管 交货技术条件第3部分:c级钢管的要求8ISOISO 3183-3 Technical corrigendum 1-2000石油和天然气工业管道钢管交货技    术条件第3部分:c级钢管的要求技术勘误l9ISOISO 3304—1985光端精密无缝钢管交货技术条件10ISOISO 3305-1985光端焊接精密钢管交货技术条件11ISOISO 3306-1985焊后定径光端精密钢管交货技术条件12ISOISO 3545-1-1989钢管和管件 规范中使用的符号第1部分:圆形截面的管和管状附件13ISOISO 3545-2-1989钢管和管件规范中使用的符号第2部分:正方形和矩形中空截面14ISOISO 3545-3-1989钢管和管件规范中使用的符号第3部分:圆形截面管件15ISOISO 4200-1991光端焊接和无缝钢管 管的尺寸和单位长度重量的一览表16ISOISO 4394-1-1980流体传动系统和元件.缸筒.第l部分对特殊精加工内径的钢管的要求17ISOISO 5256-1985地下或水下管路用钢管和管件 管内外涂沥青或沥青油衍生物18ISOISO 5625-1978造船 钢管管路法兰焊接通舱管PN6、PN10、和PN1619ISOISO 6758-1980热交换器用焊接钢管20ISOISO 6759-1980热交换器用焊接钢管21ISOISO 6761-1981钢管 焊接用管端和配件的预处理22ISOISO 8535-1-1996压燃式发动机 高压燃油喷管用钢管第l部分:无缝冷拔单壁管的要求23ISOISO 8535-2-2003压燃式发动机 高压燃油喷管用钢管第2部分:组合管的要求24ISOISO 9095—1990钢管 鉴别材料用连续符号标志和颜色码25ISOISO 9302-1994压力用途的无缝钢管和焊接(埋弧焊除外)钢管 液压密封验证电磁试验法26ISOISO 9303-1989压力用途的无缝钢管和焊接(埋弧焊除外)钢管 检测纵向缺陷用全周边超声波试验27ISOISO 9304-1989压力用途的无缝钢管和焊接(埋弧焊除外)钢管 测缺陷用涡流电流试验28ISOISO 9305-1989压力用途的无缝钢管 横向缺陷全周边超声电流检验29ISOISO 9329-1-1989压力用途的无缝钢管交货技术条件第l部分:规定室温性能的非合金钢30ISOISO 9329-2-1997压力用途的无缝钢管 交货技术条件第2部分:规定高温性能的非合金钢和合金钢31ISOISO 9329-3-1997压力用途的无缝钢管交货技术条件第3部分:规定低温性能的非合金钢和合金钢32ISOISO 9329-4-1997压力用途的无缝钢管.交货技术条件第4部分:奥氏体不锈钢33ISOISO 9330-1-1990压力用途的焊接钢管 交货技术条件第l部分:规定室温性能的非合金钢管34ISOISO 9330-2-1997压力用途的焊接钢管交货技术条件      第2部分:规定高温性能的电阻焊接和感应焊接非合金钢管和合金钢管35ISOISO 9330-3-1997压力用途的焊接钢管交货技术条件      第3部分:规定低温性能的电阻焊接和感应焊接非合金钢管和合金钢管36ISOISO 9330-4-2000压力用途的焊接钢管  交货技术条件  第4部分:规定高温性能的埋弧焊接非合金钢管和合金钢管37ISOISO 9330-5-2000压力用途的焊接钢管交货技术条件  第5部分:规定低温性能的埋弧焊接非合金钢管和合金钢管38ISOISO 9330-6-1997压力用途的焊接钢管 交货技术条件 第6部分:奥氏体不锈钢管的焊接长度39ISOISO 9402-1989压力用途的无缝钢管和焊接(埋弧焊除外)钢管检测纵向缺陷用铁磁钢管全周边磁转换/磁链试验40ISOISO 9455-12-1992软钎焊剂试验方法第12部分:钢管腐蚀试验41ISOISO 9598-1989压力用途的无缝钢管 检测横向缺陷用铁磁钢管全周边磁转换/磁链试验42ISOISO 9764-1989压力用途的电阻焊和感应焊钢管 焊缝的纵向缺陷超声波检验43ISOISO 9765-1990压力用途的埋弧焊钢管 焊缝的纵向  和/或横向缺陷超声波检测44ISOISO 10124-1994压力用途的无缝钢管和焊接(埋弧焊除外)钢管 层状缺陷检测用超声检验45ISOISO 10332-1994压力用途的无缝钢管和焊接(埋弧焊除外)钢管验证液压防泄漏用超声波检验46ISOISO 10543-1993压力用无缝及热拉伸焊接钢管 全周边超声波厚度检测47ISOISO 10763-1994液压传动 端面平齐的无缝和焊接型精密钢管 尺寸及标称工作压力48ISOISO 11120-1999气瓶150升~3000升水容量的可重复充装无缝钢管气瓶 设计、结构和试验49ISOISO 11484-1994压力用途钢管无损检验人员的资格及认证50ISOISO 11496-1993压力用途的承压无缝和焊接钢管 层间不完整性检查的管端超声波检测51ISOISO 11960-2001石油和天然气工业 油井套管和油管用钢管52ISOISO 11960 Technical corrigendum-1-2002石油和天然气工业.油井套管或油管用钢管.技术勘误I53ISOISO 11961-1996石油和天然气工业 钻井杆用钢管规范54ISOISO 12094-1994压力用途的承压焊接钢管 焊接钢管用钢带/钢板分层缺陷检测用超声波试验55ISOISO 12095-1994压力用途的承压无缝和焊接钢管 液体渗透试验56ISOISO 12096-1996压力用途的承压埋弧焊接钢管焊缝缺陷柃测用X射线检查57ISOISO 13663-1995压力用途的承压焊接钢管焊缝周围  分层缺陷检测用超声波试验58ISOISO 13664-1997压力用途的承压无缝和焊接钢管管  端分层组织缺陷探测用磁粉检验59ISOISO 13665-1997压力用途的承压无缝和焊接钢管管  身表面缺陷探测用磁粉检验60ISOISO 13680-2000石油和天然气工业用作套管、油管和接箍的防腐合金无缝钢管交货技术条件61ISOISO 15741-2001色漆和清漆海上和近海的非腐蚀气  体钢管内侧的减小摩擦涂层62ISOISO 13-1978灰口铸铁管、特种铸件和耐压主管道的灰口铁部件63ISOISO 49-1994符合ISO 7—1可锻铸铁管螺纹接头64ISOISO 49 Technical corrigendum-1-1997符合ISO 7-l可锻铸铁管螺纹接头技术勘误165ISOISO 2531-1998输水和输气用球墨铸铁管、配件、附件及其接头66ISOISO 4179-1985压力和非压力管道用球墨铸铁管离  心法水泥砂浆内衬一般要求67ISOISO 7005-2--1988金属法兰第2部分:铸铁管法兰68ISOISO 8179-1-1995球墨铸铁管外部镀锌第1部分:终饰层用金属锌69ISOISO 8179-2--1995球墨铸铁管外部镀锌第2部分:终饰层用富锌涂层70ISOISO 8180-1985球墨铸铁管聚乙烯套管71ISOISO 9349-1991预绝缘球墨铸铁管道系统72ISOISO 10802-1992球墨铸铁管道 安装后水压试验73ISOISO 10803-1999球墨铸铁管的设计方法74ISOISO 10804-1-1996球墨铸铁管道用减震连接系统第1部分:设计规则和定型试验75ISOISO 1127-1992不锈钢管尺寸、公差和单位长度的 公称质量76ISOISO 2037-1992食品工业用不锈钢管77ISOISO 7598-1988适于按照ISO 7/1车螺纹用不锈钢管78ISOISO 9330-6-1997压力用途的焊接钢管交货技术条件  第6部分:奥氏体不锈钢管的焊接长度79BSIBS EN ISO 1127-1997不锈钢管.尺寸、公差和单位长度的规范质量80BSIBS EN ISO 9455-12-1994软钎焊剂.试验方法.钢管耐腐蚀试验81BSIBS EN ISO 11120-1999气体瓶.1501升-30001升水容量的可再填充的无缝钢管.设计,结构和试验82BSIBS EN ISO 11960-2001石油和天然气工业.油井套管和油管用钢管83BSIBS EN ISO 11961-1997石油和天然气工业.钻探管用钢管.规范84BSIBS EN ISO 13680-2002石油和天然气工业.用作套管、油管和接箍的防腐合金无缝钢管.交货技术条件85BSIBS EN ISO 3183-3-1999石油和天然气工业.管道用钢管的技术交货条件.C级要求的钢管86BSIBS EN ISO 8535-1-1997压燃式发动机.高压喷射燃油管用的钢管.无缝冷拔单壁管的要求87BSIBS EN ISO 8535-2-2004压燃式发动机.高压燃油喷管用钢管.合成管的要求

世界废料网铜铝锌早评(2007年8月14日)

2018-12-17 14:19:53

世界废料网讯 倍特期货金属分析师邓宏分析认为:   铜:次级债担忧减缓,交割前温和的挤仓因素,期价反弹,7600以上成为压力,短暂上涨后还会回落寻底。沪铜66000成为压力,少量短空。   铝:维持2600一线的弱势震荡,现货贴水维持在60美元压力沉重,短线震荡,后市还有下跌空间。沪铝现货小幅升水,期价窄幅震荡,围绕19500波动。   锌:3300一线支撑明显,库存紧张与供应预期增加的矛盾令价格窄幅波动,难以走出方向,短线可能在挤仓因素下反弹。沪锌现货升水扩大,下档支撑明显,28000以下短买,上档压力下移到28500。.

含铁粉矿球团化制备工艺研究

2019-01-24 09:36:35

近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。 在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。 本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。 一、试验条件与方法 (一)原材料 1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。 2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程 每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。 (三)抗压力测试 试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。 (四)所用仪器与设备 加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析 (一)加热固化制度对球团抗压力的影响 所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。 试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。 从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。 (二)粘结剂加入量对抗压力的影响 在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。 (三)不同粉矿条件下的抗压力 为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。 按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。 通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。 三、结论 (一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。 (二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。 (三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。 参考文献 [1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64. [2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36. [3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98. [4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50. [5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20. [6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.

铜冶炼厂流态化焙烧炉所配鼓风机

2019-01-07 17:38:29

流态化焙烧炉通常配用风量稳定、风压较高的鼓风机,大型厂多用离心式鼓风机,小型厂多用罗茨鼓风机。 所选鼓风机的风量一般是冶金计算确定的风量加大30%或更大,以备生产波动及开炉、冷试的需要。鼓风机的风压应保证流态化床压力降,空气分布板的压力降(约为流态化层压力降的10~20%)以及空气管道系统的阻力损失的需要,同时考虑到开炉、冷试和处理故障等特殊需要(可为流态化床压力降的30%),故选用的鼓风机压应在计算的流态化床压力降的基数上加大50%或更大。 鼓风机出风管道上应安装回流管,以便通过其阀门调节入炉风量,并能节省电耗。由鼓风机到炉底风箱之间,在一段平直的风管上安装孔板流量计或涡轮流量计,以测量入炉风量。

硫酸锰生产新工艺研究

2019-01-24 09:36:23

锰的用途非常广泛,农业上是重要的微量元素;畜牧和饲养行业中,亦常在饲料中加入适量硫酸锰。硫酸锰也广泛用于医药、食品、农药、造纸、催化剂行业,随着科学技术的不断进步,其用量和应用领域会不断扩大。硫酸锰作为基础锰盐,只有含一个结晶水的硫酸锰物性比较稳定。除试剂级和有特殊要求的含有4~5个结晶水的产品外,几乎所有工厂生产的都是含一个结晶水的产品。随着高品位锰资源的日趋枯竭,传统蒸发浓缩的生产工艺已难以满足硫酸锰产品的生产需要。所以,研究、开发和应用硫酸锰生产新工艺,尤显必要。 一、试验部分 (一)原材料 软锰矿、黝锰矿、菱锰矿及黄铁矿的化学分析及矿粉粒度见表1和表2。钛白工业废酸:ρ(H2SO4)=168gL,ρ(FeSO4)=118gL。浓硫酸:w(H2SO4)=96%。 表1  软锰矿、黝锰矿、菱锰矿化学分析结果    % 注:1)广西桂平软锰矿物相分析结果:w(MnO2)=30.02%,w(Mn2O3)=2.25%,w(MnCO3)=0.88%;2)广西灵山太平黝锰矿物相分析 结果:w(MnO2)=29.5%,w(Mn2O3)=3.01%,w(MnCO3)=0.5%;3)广西大新菱锰矿:w(MnCO3)=39.58%。 表2  广西德保黄铁矿化学分析结果    %(二)主要设备 浸锰罐φ1000mm×1200mm;BMS6/450-U压滤机;BAS6/400-N不锈钢压滤机(过滤压强1MPa,过滤温度-5~200℃);YS-100L压力釜;202-4电热恒温干燥箱。 (三)工艺流程 以软锰矿或黝锰矿为原料制取硫酸锰工艺流程示意图见图1;以菱锰矿为原料制取硫酸锰工艺流程示意图见图2。图1  以软锰矿或黝锰矿为原料制取硫酸锰工艺流程示意图图2  以菱锰矿为原料制取硫酸锰工艺流程示意图 (四)原理 根据硫酸锰的溶解度超过100℃急剧降低的原理,采用压力釜结晶法预浓缩除杂净化生产硫酸锰产品。硫酸锰溶解度曲线如图3所示。图3  MnSO4溶解度曲线 二、结果及讨论 (一)压力釜析晶预浓缩 用压力釜对上述3种锰矿所制备的合格中性液进行预浓缩净化处理,中性液质量见表3。将100L的中性液注入压力釜中,用压强1.5 MPa的蒸汽间接加热。当釜内温度升至190~195℃时,釜内压强达到1.3~1.4 MPa,保压静置10~15 min。经取样排污阀外排部分上清液,达到预浓缩和一次净化之目的,结果见表4。随后用减压阀卸压,经卸料阀将预浓缩物料卸入冷却溶解槽,冷却溶解,静置陈化,达到二次净化目的,结果见表5。从表4和表5的结果可以看出,用压力釜析晶预浓缩,效果十分理想。关键是工艺流程的选择和终点温度的控制。 表3  中性液质量分析结果    g/L表4  压力釜外排上清液分析结果注:静置时间12min。 表5  压力釜预浓液冷却溶解、静置陈化净化分析结果 (二)压力釜结晶硫酸锰产品 将净化后的预浓液注入压力釜中,当釜内温度升至190~195℃时,釜内压强可达到1.3~1.4 MPa,该状态下静置8~10min,经取样排污阀排出部分上清液,再经卸料阀卸入板框压滤机进行固液分离,结果见表6。产品经干燥后化验分析,结果见表7。从表6、表7看出,压力釜结晶硫酸锰,结晶率高,质量稳定可靠。该工序控制的关键是每一釜的生产时间,时间过长,产品的铁含量增加,产品外观颜色变黄。 表6  压力釜结晶硫酸锰研究结果注:1#,2#为二矿加酸法预浓液;3#,4#为菱锰矿预浓液。 表7  硫酸锰产品检测结果    %注:1)外观颜色为亮淡玫瑰色;2)硫酸锰指MnSO4·H2O。 三、结论 1)压力釜结晶法生产硫酸锰,具有单位设备生产效率高、能耗较低、回收率高等优点。2)工艺先进,技术可靠,操作平稳,质量上乘,为中国丰富的低品位锰矿资源开拓综合利用的新途径,具有极高的社会经济效益。3)以该生产工艺为基础,可进一步开发w(Mn)≥45.5%的高纯合成碳酸锰、w(MnO)≥98%的高纯一氧化锰、w(MnO2)≥93. 5%的高纯电解二氧化锰系列产品。4)压力釜结晶法生产硫酸锰,是硫酸锰微酸性溶液在压力系统中的物理化学反应过程,对设备系统的材质要求和质量要求较为严格,对系统中的设备管道配置要科学合理,否则,会对系统的正常安全运行造成影响。5)原材料的物理化学特性决定生产工艺流程和工艺技术参数。

辉钼矿直接氢还原工艺的热力学研究

2019-02-21 12:00:34

钼是一种重要的有色金属,广泛用于现代科技的许多范畴。金属钼的工业出产道路为:首先将辉钼精矿在600~650℃下焙烧生成氧化钼,然后再提纯氧化钼,最后用H2复原得到金属钼粉。可是进程中存在三大问题:1、辉钼精矿氧化焙烧进程开释很多的二氧化硫,污染环境严峻;2、在辉钼矿氧化焙烧与进一步提纯进程中,钼的丢失比较严峻;3、MoO3在600℃时已明显提高,其蒸汽压在1151℃时即到达0.101 MPa,所以有必要在较低温度下(450~650℃)用将MoO3复原成安稳的MoO2,然后将MoO2在900~950℃下复原成金属钼。该工艺流程长、操作杂乱。     因而,一些研讨者测验寻觅新的金属钼提取工艺。这些研讨为拓荒新的金属钼出产工艺道路进行了有利的测验,可是研讨侧重于反响动力学机理分析,缺少系统的热力学分析,给新工艺道路的实验温度以及其它工况条件挑选带来困难。作者已对辉钼矿的碳热法与真空法非氧化焙烧道路进行了热力学分析。做为洁净动力的运用能够处理产品气体排放污染的问题。因而,本文将经过热力学分析,探讨了几种无SO2气体排放的辉钼矿氢复原出产金属钼新技术的可行性。     一、辉钼精矿直接氢复原     不必固硫剂,辉钼矿直接氢复原,其反响方程式为:   (1)     核算平衡时温度与系统气体成分之间的联系,得到方程:    式中:T为反响温度(K);V(%H2S)和V(%H2)别离为平衡气体成分中H, S和H2的体积百分含量。     由式(1)可知,该反响想在可行温度规模内进行有必要把PH2S/ PH2比值控制在很小的规模,这样才干使得反响吉布斯自由能小于零。例如,反响想在温度别离为1100K和1300K时进行,有必要把该比值别离控制在低于1.06×10-3和6.15×10-3。可见,不必固硫剂,直接用H2复原辉钼精矿的反响是很难进行的。反响平衡时,气体成分中H2含量很高。在实践出产中,反响是远离平衡的,这使得气体成分中H2含量更高。所以想在可行温度下用H2复原辉钼精矿有必要要加人固硫剂。     二、氧化钙做固硫剂氢复原辉铂矿     氧化钙做固硫剂,氢复原辉钼矿反响方程式为:    式中:ηH2为利用率;V(%H2O)和V(%H2)别离标明平衡气体成分中H2O和H2的体积百分含量。     核算平衡时温度与HZ利用率之间的联系。得到方程:    依据式(3)与式(5),能够得到图1。能够看出,当温度小于1200 K时,跟着温度的添加H2利用率添加很快,之后增长速度则趋于平缓,标明在H2复原辉钼矿进程中加人CaO作为固硫剂比没有CaO加入时反响简单,且用CaO做固硫剂能够把硫以安稳的CaS方式固定下来,一起气体产品为无污染的H2O,避免了有毒气体H2S的污染。图1  氧化钙做固硫剂H2利用率与温度联系     三、碳酸钠做固硫剂辉铂矿氢复原     (一)氢复原进程气体组分的改变规则     碳酸钠做固硫剂,辉钼矿氢复原的反响方程式为:    恒压下,式(6)温度与平衡气体体积百分含量之间的联系如图2所示;恒温下,压力与平衡气体体积百分含量之间的联系卜如图3所示。图2  温度与平衡气体成分联系图3  压力与平衡气体成分联系     由式吉布斯自由能能够看出,反响为吸热反响,在相同压力下,跟着温度的升高平衡常数是逐步添加的,这就使得平衡气体成分中复原剂H2的含量逐步下降,而H2O和CO气体含量添加。由图2可见,当压力为0.1 MPa时,温度为1073K和l173 K时,对应H2的体积百分含量为别78.8%和61.0%,H20为14.1%和26.O%,CO为7.1%和13.10%。由反响公式可见,当温度不变,跟着压力的下降,气氛中H2O和CO体积百分含量添加,H2体积百分含量下降。由图3可知,当温度为1173K时,压力为0.01 MPa和0.001MPa时,对应H2的体积百分含量为别38.5%和18.6%,H2O为41.0%和54.3%,CO为20.5%和27.1%。    (二)温度、压力对气体利用率的影响     常压下,式(6)的反响开端温度为1380K,产品为金属钼和,溶于水而金属钼则不溶于水。别的,辉钼矿中的首要杂质SO2也易于和碳酸钠反响生成硅酸钠,它也是溶于水的。因而能够经过水洗的办法得到纯洁的金属钼粉。其平衡常数在1100K和1200 K时别离为2.0×10-5和1.6×10-3,平衡常数很小,阐明气体产品中H2含量较高,H2利用率低。因为,反响一起受温度和压力的影响,当压力不变,温度上升时,平衡常数增大,H2利用率上升;当温度不变,压力下降时,反响平衡向右移动,H2利用率增大。所以现核算不同压力下,温度与H2利用率之间的联系。得到方程:     依据式(6)和式(7),能够得到图4。因为Na2CO3的熔点为1131K,当温度超越Na2CO3熔点时,反响就会有液相生成,就会分层,对反响晦气,所以反响一般挑选在Na2CO3熔点以下温度进行。可是假如温度挑选过低会使反响速率缓慢和H2利用率低。常压下,温度为1073K时,H2的平衡利用率只要15.2%。而当压力下降为。0.001MPa时,在1073K时H2的平衡利用率能够到达51.3%。图4  不同压力下温度与H2利用率联系     从图4能够看出,相同温度下,当压力从0.05MPa下降到0.01MPa和从0.005 MPa下降到0.001MPa,H2平衡利用率添加很快。     四、定论     (一)不必固硫剂,辉钼矿直接氢复原反响是很难进行的;     (二)用CaO做固硫剂,辉钼矿氢复原反响比无CaO加入时简单进行,1100K,1200 K和1300 K平衡时H2利用率别离能够到达50%、60%和67.7%;     (三)用Na2CO3做固硫剂,辉钼矿氢复原反响产品经过水洗能够得到纯钼粉。利用率受温度和压力影响,跟着温度的添加,利用率上升很快;跟着压力的下降,利用率添加。

我们说下空调铜管使用普通铜管和优质铜管的区别?

2019-03-06 11:05:28

空调铜管运用普通铜管和优质铜管的差异 1、假如选用普通的空调铜管,就简单影响空调夏日的制冷和冬天的制热作用,还简单影响空调的制冷系统,损坏空调压缩机。由于普通铜管归于上引拉制工艺,作业运转压力和爆炸接受压力都比较低,安全功能也没有优质空调制冷铜管的高。 2、假如运用优质的空调铜管,冬天制热作用和夏日制冷作用都会比运用普通铜管要好得多,由于优质空调铜管归于揉捏工艺,密度会比较大,作业运转压力和爆炸接受压力都比普通的空调紫铜管强上许多倍。

无缝钢管规格表

2019-03-15 10:05:15

无缝钢管的规格通常用外径*壁厚(单位:mm)表示。 一般用无缝钢管是用10#、20#、30#、35#、45#等优质碳结钢或16Mn、5MnV等低合金结构钢或40Cr、30CrMnSi、45Mn2、40MnB等合结钢热轧或冷轧制成的。10#、20#等低碳钢制造的无缝管主要用于流体输送管道。45#、40Cr等中碳钢制成的无缝管通常用来制造机械零件,如汽车、拖拉机的受力零件。一般用无缝钢管要保证强度和进行压扁试验。热轧钢管以热轧状态或热处理状态交货;冷轧以热处理状态交货单位:Kg/m 壁厚       外径无缝钢管规格表33.544.555.56322.1462.4602.7623.0523.3293.5943.847382.5892.9783.3543.7184.0694.4084.735422.8853.3233.7494.1624.5624.9515.327453.1073.5824.0444.4954.9325.3585.771503.4774.0144.5385.0495.5496.0366.511543.7734.3594.9325.4936.0426.5787.103573.9954.6185.2285.8266.4126.9857.546604.2174.8775.5246.1596.7827.3927.99063.54.4765.1795.8696.5487.2147.8678.508684.8095.5676.3137.0477.7688.4779.174704.9575.7406.5117.2698.0158.7499.470735.1795.9996.8077.6028.3859.1569.914765.4016.2587.1037.9358.7559.56310.358896.3637.3808.3859.37810.35811.32612.2811087.7689.02010.25911.48612.70113.90315.09313311.17812.72514.26115.78317.29418.79215913.42215.29017.14618.98920.82122.63921918.60121.20923.80526.38828.95931.51727323.26226.53629.79733.04636.28339.50832527.75031.66535.56839.45843.33747.20235538.89743.15847.40651.64137741.33945.87150.39054.89742646.77751.91357.03662.147450 480 530 630       单位:Kg/m 壁厚       外径6.5788.591012324.088 385.049 425.691 456.172 506.9737.4238.2868.699 547.6148.1149.0759.538 578.0958.6329.66710.167 608.5769.14910.25910.796 63.59.1379.75410.95011.529 689.85810.53011.83812.473 7010.17910.87612.23212.89213.53914.79717.1647310.66011.39412.82413.52114.20515.53718.0527611.14111.91213.41614.15014.87116.27718.9408913.22514.15615.98116.87517.75619.48322.78710816.27017.43619.72920.85821.97324.16828.41013320.27821.75124.66226.09827.52230.33435.80915924.44626.24029.79131.54833.29336.74643.50321934.06436.59841.62944.12646.61051.54361.25927342.72045.92052.28355.44558.59664.86077.24032551.05654.89762.54266.34670.13777.68492.62935555.86560.07668.46072.63476.79685.082101.50737759.39163.87372.80177.24681.67990.508108.01842667.24672.33282.46887.51892.555102.592122.51945071.09376.47587.20392.54997.882108.511129.62148075.90281.65493.12298.837104.540115.909138.49953083.91790.286102.987109.319115.638128.240153.29663099.947107.549122.716130.281137.833152.902182.890以上为无缝钢管规格,以下为无缝钢管重量计算的公式  (1):钢的密度为1.85kg/dm2 ,钢管每米重量的计算公式为:W(kg/m)=0.02466*壁厚*(外径-壁厚)  (2):冷拔无缝矩形钢管的计算方式: W(kg/m)=边长*4*厚度*0.00785  (3):不锈钢管每米重量的计算公式: W(kg/m)=0.02491*壁厚*(外径—壁厚) 无缝钢管的规格是以外径*壁厚毫米数表示。无缝钢管分热轧和冷轧(拨)无缝钢管两种规格。 热轧无缝钢管分一般钢管,低、中压锅炉钢管,高压锅炉钢管、合金管、不锈钢管、石油裂化管、地质钢管和其它钢管等。冷轧(拨)无缝钢管除分一般钢管、低中压锅炉钢管、高压锅炉管、合金管、不锈钢管、石油裂化管、其它钢管外,还包括碳素薄壁钢管、合金薄壁钢管、不锈薄壁钢管、异型钢管。热轧无缝管外径一般大于32mm,壁厚2.5-75mm,冷轧无缝钢管外径可以到6mm,壁厚可到0.25mm,薄壁管外径可到5mm壁厚小于0.25mm,冷轧比热轧尺寸精度高。 无缝钢管承受压力计算公式方法 一:以知无缝管无缝钢管外径和承受压力求壁厚计算方法:     壁厚=(压力*外径*系数)/(2*钢管材质抗拉强度) 二:以知无缝管无缝钢管外径规格壁厚求能承受压力计算方法 (钢管不同材质抗拉强度不同)     压力=(壁厚*2*钢管材质抗拉强度)/(外径*系数) 三:钢管压力系数表示方法:     压力P       7      压力P>17.5 系数S=4 钢管理论重量表 注:计算常用型材理论重量计算公式:  m=F×L×ρ m—质量 Kg ;F—断面积m2/m ;L—长度m ; ρ—密度 *Kg/m3 ☆其中:F断面积计算方法: 1、方钢 F= a2 2、钢管 F=3.1416×$(D-$) D—直径 $—厚度 3、钢板、扁钢 F= a×$ a—宽度 密度: 钢材:7.85*103 kg/m3 铝:2.5~2.95*103 铜:8.45~8.9*103 铸铁:6.6~7*103 尼龙:1.04~1.15*103 无缝钢管承受压力计算公式方法 一:以知无缝管无缝钢管外径规格壁厚求能承受压力计算方法 (钢管不同材质抗拉强度不同)     压力=(壁厚*2*钢管材质抗拉强度)/(外径*系数) 二:以知无缝管无缝钢管外径和承受压力求壁厚计算方法:     壁厚=(压力*外径*系数)/(2*钢管材质抗拉强度) 三:钢管压力系数表示方法:     压力P       7      压力P>17.5 系数S=4 钢管理论重量表 注:计算常用型材理论重量计算公式:  m=F×L×ρ m—质量 Kg ;F—断面积m2/m ;L—长度m ; ρ—密度 *Kg/m3 ☆其中:F断面积计算方法: 1、方钢 F= a2 2、钢管 F=3.1416×$(D-$) D—直径 $—厚度 3、钢板、扁钢 F= a×$ a—宽度 密度: 钢材:7.85*103 kg/m3 铝:2.5~2.95*103 铜:8.45~8.9*103 铸铁:6.6~7*103 尼龙:1.04~1.15*103

不锈钢波纹管

2019-03-18 08:36:58

不锈钢波纹管作为一种柔性耐压管件安装于液体输送系统中,用以补偿管道或机器、设备连接端的相互位移,吸收振动能量,能够起到减振、消音等作用,具有柔性好、质量轻、耐腐蚀、抗疲劳、耐高低温等多项特点。不锈钢波纹管  名称 代号 轴向型 普通轴向型 ZP 角向型 单式铰链型 JD 带支座轴向型 ZS 外压轴向型 ZW 单式方向型 JW 横向型 单式拉杆型 HD 压力平衡型 单式直管压力平衡型 DI 复式直管压力平衡型 FI 复式拉杆型 HF 单式弯管压力平衡型 DC 复式较链型 HJ 单式弯管压力平衡型 FU  不锈钢波纹管连接方式:  不锈钢波纹管连接方式分为法兰连接、焊接、丝扣连接、快速接头连接,小口径金属软管一般采用丝扣和快速接头连接,较大口径一般采用法兰连接和焊接接。具有耐高压.耐高低温.耐腐蚀.耐酸碱.主要用于各种机械.机电.热水器.壁挂炉等